[2024-11-09 15:28:28,043][00359] Saving configuration to /content/train_dir/default_experiment/config.json... [2024-11-09 15:28:28,045][00359] Rollout worker 0 uses device cpu [2024-11-09 15:28:28,046][00359] Rollout worker 1 uses device cpu [2024-11-09 15:28:28,047][00359] Rollout worker 2 uses device cpu [2024-11-09 15:28:28,050][00359] Rollout worker 3 uses device cpu [2024-11-09 15:28:28,050][00359] Rollout worker 4 uses device cpu [2024-11-09 15:28:28,052][00359] Rollout worker 5 uses device cpu [2024-11-09 15:28:28,053][00359] Rollout worker 6 uses device cpu [2024-11-09 15:28:28,055][00359] Rollout worker 7 uses device cpu [2024-11-09 15:28:28,174][00359] Using GPUs [0] for process 0 (actually maps to GPUs [0]) [2024-11-09 15:28:28,176][00359] InferenceWorker_p0-w0: min num requests: 2 [2024-11-09 15:28:28,208][00359] Starting all processes... [2024-11-09 15:28:28,210][00359] Starting process learner_proc0 [2024-11-09 15:28:28,255][00359] Starting all processes... [2024-11-09 15:28:28,262][00359] Starting process inference_proc0-0 [2024-11-09 15:28:28,263][00359] Starting process rollout_proc0 [2024-11-09 15:28:28,263][00359] Starting process rollout_proc1 [2024-11-09 15:28:28,265][00359] Starting process rollout_proc2 [2024-11-09 15:28:28,266][00359] Starting process rollout_proc3 [2024-11-09 15:28:28,266][00359] Starting process rollout_proc4 [2024-11-09 15:28:28,266][00359] Starting process rollout_proc5 [2024-11-09 15:28:28,267][00359] Starting process rollout_proc6 [2024-11-09 15:28:28,267][00359] Starting process rollout_proc7 [2024-11-09 15:28:31,281][02442] Using GPUs [0] for process 0 (actually maps to GPUs [0]) [2024-11-09 15:28:31,281][02442] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0 [2024-11-09 15:28:31,299][02442] Num visible devices: 1 [2024-11-09 15:28:31,342][02442] Starting seed is not provided [2024-11-09 15:28:31,343][02442] Using GPUs [0] for process 0 (actually maps to GPUs [0]) [2024-11-09 15:28:31,343][02442] Initializing actor-critic model on device cuda:0 [2024-11-09 15:28:31,344][02442] RunningMeanStd input shape: (3, 72, 128) [2024-11-09 15:28:31,347][02442] RunningMeanStd input shape: (1,) [2024-11-09 15:28:31,368][02442] ConvEncoder: input_channels=3 [2024-11-09 15:28:31,402][02456] Worker 1 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] [2024-11-09 15:28:31,650][02455] Worker 0 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] [2024-11-09 15:28:31,674][02457] Using GPUs [0] for process 0 (actually maps to GPUs [0]) [2024-11-09 15:28:31,674][02457] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0 [2024-11-09 15:28:31,692][02457] Num visible devices: 1 [2024-11-09 15:28:31,710][02463] Worker 7 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] [2024-11-09 15:28:31,737][02442] Conv encoder output size: 512 [2024-11-09 15:28:31,737][02442] Policy head output size: 512 [2024-11-09 15:28:31,784][02461] Worker 4 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] [2024-11-09 15:28:31,802][02442] Created Actor Critic model with architecture: [2024-11-09 15:28:31,802][02442] ActorCriticSharedWeights( (obs_normalizer): ObservationNormalizer( (running_mean_std): RunningMeanStdDictInPlace( (running_mean_std): ModuleDict( (obs): RunningMeanStdInPlace() ) ) ) (returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace) (encoder): VizdoomEncoder( (basic_encoder): ConvEncoder( (enc): RecursiveScriptModule( original_name=ConvEncoderImpl (conv_head): RecursiveScriptModule( original_name=Sequential (0): RecursiveScriptModule(original_name=Conv2d) (1): RecursiveScriptModule(original_name=ELU) (2): RecursiveScriptModule(original_name=Conv2d) (3): RecursiveScriptModule(original_name=ELU) (4): RecursiveScriptModule(original_name=Conv2d) (5): RecursiveScriptModule(original_name=ELU) ) (mlp_layers): RecursiveScriptModule( original_name=Sequential (0): RecursiveScriptModule(original_name=Linear) (1): RecursiveScriptModule(original_name=ELU) ) ) ) ) (core): ModelCoreRNN( (core): GRU(512, 512) ) (decoder): MlpDecoder( (mlp): Identity() ) (critic_linear): Linear(in_features=512, out_features=1, bias=True) (action_parameterization): ActionParameterizationDefault( (distribution_linear): Linear(in_features=512, out_features=5, bias=True) ) ) [2024-11-09 15:28:31,807][02458] Worker 2 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] [2024-11-09 15:28:31,830][02460] Worker 6 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] [2024-11-09 15:28:31,851][02459] Worker 3 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] [2024-11-09 15:28:31,853][02462] Worker 5 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] [2024-11-09 15:28:32,118][02442] Using optimizer [2024-11-09 15:28:35,743][02442] No checkpoints found [2024-11-09 15:28:35,744][02442] Did not load from checkpoint, starting from scratch! [2024-11-09 15:28:35,744][02442] Initialized policy 0 weights for model version 0 [2024-11-09 15:28:35,746][02442] LearnerWorker_p0 finished initialization! [2024-11-09 15:28:35,747][02442] Using GPUs [0] for process 0 (actually maps to GPUs [0]) [2024-11-09 15:28:35,823][02457] RunningMeanStd input shape: (3, 72, 128) [2024-11-09 15:28:35,824][02457] RunningMeanStd input shape: (1,) [2024-11-09 15:28:35,837][02457] ConvEncoder: input_channels=3 [2024-11-09 15:28:35,948][02457] Conv encoder output size: 512 [2024-11-09 15:28:35,949][02457] Policy head output size: 512 [2024-11-09 15:28:36,004][00359] Inference worker 0-0 is ready! [2024-11-09 15:28:36,006][00359] All inference workers are ready! Signal rollout workers to start! [2024-11-09 15:28:36,039][02458] Doom resolution: 160x120, resize resolution: (128, 72) [2024-11-09 15:28:36,039][02463] Doom resolution: 160x120, resize resolution: (128, 72) [2024-11-09 15:28:36,040][02461] Doom resolution: 160x120, resize resolution: (128, 72) [2024-11-09 15:28:36,040][02459] Doom resolution: 160x120, resize resolution: (128, 72) [2024-11-09 15:28:36,060][02460] Doom resolution: 160x120, resize resolution: (128, 72) [2024-11-09 15:28:36,060][02456] Doom resolution: 160x120, resize resolution: (128, 72) [2024-11-09 15:28:36,060][02462] Doom resolution: 160x120, resize resolution: (128, 72) [2024-11-09 15:28:36,060][02455] Doom resolution: 160x120, resize resolution: (128, 72) [2024-11-09 15:28:36,356][02461] Decorrelating experience for 0 frames... [2024-11-09 15:28:36,356][02458] Decorrelating experience for 0 frames... [2024-11-09 15:28:36,358][02463] Decorrelating experience for 0 frames... [2024-11-09 15:28:36,363][02455] Decorrelating experience for 0 frames... [2024-11-09 15:28:36,364][02456] Decorrelating experience for 0 frames... [2024-11-09 15:28:36,461][02460] Decorrelating experience for 0 frames... [2024-11-09 15:28:36,618][02463] Decorrelating experience for 32 frames... [2024-11-09 15:28:36,626][02456] Decorrelating experience for 32 frames... [2024-11-09 15:28:36,630][02461] Decorrelating experience for 32 frames... [2024-11-09 15:28:36,631][02462] Decorrelating experience for 0 frames... [2024-11-09 15:28:36,664][02458] Decorrelating experience for 32 frames... [2024-11-09 15:28:36,707][02460] Decorrelating experience for 32 frames... [2024-11-09 15:28:36,913][02462] Decorrelating experience for 32 frames... [2024-11-09 15:28:36,914][02455] Decorrelating experience for 32 frames... [2024-11-09 15:28:36,947][02463] Decorrelating experience for 64 frames... [2024-11-09 15:28:36,999][02461] Decorrelating experience for 64 frames... [2024-11-09 15:28:37,019][02456] Decorrelating experience for 64 frames... [2024-11-09 15:28:37,051][02460] Decorrelating experience for 64 frames... [2024-11-09 15:28:37,225][00359] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 0. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0) [2024-11-09 15:28:37,261][02458] Decorrelating experience for 64 frames... [2024-11-09 15:28:37,281][02455] Decorrelating experience for 64 frames... [2024-11-09 15:28:37,294][02461] Decorrelating experience for 96 frames... [2024-11-09 15:28:37,297][02462] Decorrelating experience for 64 frames... [2024-11-09 15:28:37,353][02460] Decorrelating experience for 96 frames... [2024-11-09 15:28:37,573][02463] Decorrelating experience for 96 frames... [2024-11-09 15:28:37,578][02456] Decorrelating experience for 96 frames... [2024-11-09 15:28:37,591][02455] Decorrelating experience for 96 frames... [2024-11-09 15:28:37,606][02462] Decorrelating experience for 96 frames... [2024-11-09 15:28:37,611][02458] Decorrelating experience for 96 frames... [2024-11-09 15:28:40,023][02442] Signal inference workers to stop experience collection... [2024-11-09 15:28:40,029][02457] InferenceWorker_p0-w0: stopping experience collection [2024-11-09 15:28:42,225][00359] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 599.2. Samples: 2996. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0) [2024-11-09 15:28:42,227][00359] Avg episode reward: [(0, '2.709')] [2024-11-09 15:28:42,698][02442] Signal inference workers to resume experience collection... [2024-11-09 15:28:42,699][02457] InferenceWorker_p0-w0: resuming experience collection [2024-11-09 15:28:44,751][02457] Updated weights for policy 0, policy_version 10 (0.0151) [2024-11-09 15:28:47,215][02457] Updated weights for policy 0, policy_version 20 (0.0013) [2024-11-09 15:28:47,225][00359] Fps is (10 sec: 8192.0, 60 sec: 8192.0, 300 sec: 8192.0). Total num frames: 81920. Throughput: 0: 1175.6. Samples: 11756. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0) [2024-11-09 15:28:47,227][00359] Avg episode reward: [(0, '4.433')] [2024-11-09 15:28:48,166][00359] Heartbeat connected on Batcher_0 [2024-11-09 15:28:48,170][00359] Heartbeat connected on LearnerWorker_p0 [2024-11-09 15:28:48,178][00359] Heartbeat connected on InferenceWorker_p0-w0 [2024-11-09 15:28:48,183][00359] Heartbeat connected on RolloutWorker_w0 [2024-11-09 15:28:48,187][00359] Heartbeat connected on RolloutWorker_w1 [2024-11-09 15:28:48,193][00359] Heartbeat connected on RolloutWorker_w2 [2024-11-09 15:28:48,203][00359] Heartbeat connected on RolloutWorker_w5 [2024-11-09 15:28:48,205][00359] Heartbeat connected on RolloutWorker_w4 [2024-11-09 15:28:48,207][00359] Heartbeat connected on RolloutWorker_w6 [2024-11-09 15:28:48,209][00359] Heartbeat connected on RolloutWorker_w7 [2024-11-09 15:28:49,571][02457] Updated weights for policy 0, policy_version 30 (0.0013) [2024-11-09 15:28:52,001][02457] Updated weights for policy 0, policy_version 40 (0.0012) [2024-11-09 15:28:52,225][00359] Fps is (10 sec: 16793.6, 60 sec: 11195.8, 300 sec: 11195.8). Total num frames: 167936. Throughput: 0: 2484.0. Samples: 37260. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0) [2024-11-09 15:28:52,227][00359] Avg episode reward: [(0, '4.300')] [2024-11-09 15:28:52,235][02442] Saving new best policy, reward=4.300! [2024-11-09 15:28:54,265][02457] Updated weights for policy 0, policy_version 50 (0.0012) [2024-11-09 15:28:56,596][02457] Updated weights for policy 0, policy_version 60 (0.0012) [2024-11-09 15:28:57,225][00359] Fps is (10 sec: 17203.4, 60 sec: 12697.6, 300 sec: 12697.6). Total num frames: 253952. Throughput: 0: 3203.0. Samples: 64060. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0) [2024-11-09 15:28:57,228][00359] Avg episode reward: [(0, '4.372')] [2024-11-09 15:28:57,231][02442] Saving new best policy, reward=4.372! [2024-11-09 15:28:58,865][02457] Updated weights for policy 0, policy_version 70 (0.0013) [2024-11-09 15:29:01,318][02457] Updated weights for policy 0, policy_version 80 (0.0013) [2024-11-09 15:29:02,225][00359] Fps is (10 sec: 17203.1, 60 sec: 13598.7, 300 sec: 13598.7). Total num frames: 339968. Throughput: 0: 3086.9. Samples: 77172. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0) [2024-11-09 15:29:02,227][00359] Avg episode reward: [(0, '4.550')] [2024-11-09 15:29:02,236][02442] Saving new best policy, reward=4.550! [2024-11-09 15:29:03,702][02457] Updated weights for policy 0, policy_version 90 (0.0012) [2024-11-09 15:29:05,986][02457] Updated weights for policy 0, policy_version 100 (0.0012) [2024-11-09 15:29:07,225][00359] Fps is (10 sec: 17612.8, 60 sec: 14336.0, 300 sec: 14336.0). Total num frames: 430080. Throughput: 0: 3432.6. Samples: 102978. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0) [2024-11-09 15:29:07,227][00359] Avg episode reward: [(0, '4.466')] [2024-11-09 15:29:08,328][02457] Updated weights for policy 0, policy_version 110 (0.0012) [2024-11-09 15:29:10,611][02457] Updated weights for policy 0, policy_version 120 (0.0013) [2024-11-09 15:29:12,225][00359] Fps is (10 sec: 18022.3, 60 sec: 14862.6, 300 sec: 14862.6). Total num frames: 520192. Throughput: 0: 3704.4. Samples: 129654. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0) [2024-11-09 15:29:12,228][00359] Avg episode reward: [(0, '4.672')] [2024-11-09 15:29:12,235][02442] Saving new best policy, reward=4.672! [2024-11-09 15:29:12,946][02457] Updated weights for policy 0, policy_version 130 (0.0012) [2024-11-09 15:29:15,304][02457] Updated weights for policy 0, policy_version 140 (0.0013) [2024-11-09 15:29:17,225][00359] Fps is (10 sec: 17612.8, 60 sec: 15155.2, 300 sec: 15155.2). Total num frames: 606208. Throughput: 0: 3564.6. Samples: 142584. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0) [2024-11-09 15:29:17,228][00359] Avg episode reward: [(0, '4.327')] [2024-11-09 15:29:17,654][02457] Updated weights for policy 0, policy_version 150 (0.0012) [2024-11-09 15:29:19,934][02457] Updated weights for policy 0, policy_version 160 (0.0013) [2024-11-09 15:29:22,225][00359] Fps is (10 sec: 17203.3, 60 sec: 15382.8, 300 sec: 15382.8). Total num frames: 692224. Throughput: 0: 3760.1. Samples: 169206. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0) [2024-11-09 15:29:22,228][00359] Avg episode reward: [(0, '5.117')] [2024-11-09 15:29:22,247][02442] Saving new best policy, reward=5.117! [2024-11-09 15:29:22,250][02457] Updated weights for policy 0, policy_version 170 (0.0013) [2024-11-09 15:29:24,568][02457] Updated weights for policy 0, policy_version 180 (0.0013) [2024-11-09 15:29:26,862][02457] Updated weights for policy 0, policy_version 190 (0.0013) [2024-11-09 15:29:27,225][00359] Fps is (10 sec: 17612.8, 60 sec: 15646.7, 300 sec: 15646.7). Total num frames: 782336. Throughput: 0: 4282.2. Samples: 195696. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0) [2024-11-09 15:29:27,228][00359] Avg episode reward: [(0, '5.222')] [2024-11-09 15:29:27,230][02442] Saving new best policy, reward=5.222! [2024-11-09 15:29:29,338][02457] Updated weights for policy 0, policy_version 200 (0.0013) [2024-11-09 15:29:31,622][02457] Updated weights for policy 0, policy_version 210 (0.0012) [2024-11-09 15:29:32,225][00359] Fps is (10 sec: 17612.7, 60 sec: 15788.2, 300 sec: 15788.2). Total num frames: 868352. Throughput: 0: 4368.8. Samples: 208350. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0) [2024-11-09 15:29:32,227][00359] Avg episode reward: [(0, '5.105')] [2024-11-09 15:29:33,969][02457] Updated weights for policy 0, policy_version 220 (0.0012) [2024-11-09 15:29:36,241][02457] Updated weights for policy 0, policy_version 230 (0.0013) [2024-11-09 15:29:37,225][00359] Fps is (10 sec: 17612.8, 60 sec: 15974.4, 300 sec: 15974.4). Total num frames: 958464. Throughput: 0: 4396.3. Samples: 235094. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0) [2024-11-09 15:29:37,228][00359] Avg episode reward: [(0, '5.521')] [2024-11-09 15:29:37,230][02442] Saving new best policy, reward=5.521! [2024-11-09 15:29:38,577][02457] Updated weights for policy 0, policy_version 240 (0.0013) [2024-11-09 15:29:40,902][02457] Updated weights for policy 0, policy_version 250 (0.0012) [2024-11-09 15:29:42,225][00359] Fps is (10 sec: 17612.9, 60 sec: 17408.0, 300 sec: 16068.9). Total num frames: 1044480. Throughput: 0: 4382.9. Samples: 261292. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0) [2024-11-09 15:29:42,228][00359] Avg episode reward: [(0, '6.115')] [2024-11-09 15:29:42,234][02442] Saving new best policy, reward=6.115! [2024-11-09 15:29:43,323][02457] Updated weights for policy 0, policy_version 260 (0.0013) [2024-11-09 15:29:45,693][02457] Updated weights for policy 0, policy_version 270 (0.0013) [2024-11-09 15:29:47,225][00359] Fps is (10 sec: 17203.1, 60 sec: 17476.3, 300 sec: 16149.9). Total num frames: 1130496. Throughput: 0: 4378.7. Samples: 274212. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0) [2024-11-09 15:29:47,227][00359] Avg episode reward: [(0, '6.678')] [2024-11-09 15:29:47,229][02442] Saving new best policy, reward=6.678! [2024-11-09 15:29:47,979][02457] Updated weights for policy 0, policy_version 280 (0.0013) [2024-11-09 15:29:50,390][02457] Updated weights for policy 0, policy_version 290 (0.0012) [2024-11-09 15:29:52,225][00359] Fps is (10 sec: 17203.2, 60 sec: 17476.3, 300 sec: 16220.2). Total num frames: 1216512. Throughput: 0: 4387.0. Samples: 300394. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0) [2024-11-09 15:29:52,227][00359] Avg episode reward: [(0, '8.474')] [2024-11-09 15:29:52,253][02442] Saving new best policy, reward=8.474! [2024-11-09 15:29:52,760][02457] Updated weights for policy 0, policy_version 300 (0.0013) [2024-11-09 15:29:55,088][02457] Updated weights for policy 0, policy_version 310 (0.0012) [2024-11-09 15:29:57,225][00359] Fps is (10 sec: 17203.1, 60 sec: 17476.2, 300 sec: 16281.6). Total num frames: 1302528. Throughput: 0: 4366.5. Samples: 326146. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0) [2024-11-09 15:29:57,228][00359] Avg episode reward: [(0, '9.249')] [2024-11-09 15:29:57,229][02442] Saving new best policy, reward=9.249! [2024-11-09 15:29:57,498][02457] Updated weights for policy 0, policy_version 320 (0.0013) [2024-11-09 15:29:59,748][02457] Updated weights for policy 0, policy_version 330 (0.0012) [2024-11-09 15:30:02,085][02457] Updated weights for policy 0, policy_version 340 (0.0012) [2024-11-09 15:30:02,225][00359] Fps is (10 sec: 17612.9, 60 sec: 17544.5, 300 sec: 16384.0). Total num frames: 1392640. Throughput: 0: 4378.0. Samples: 339594. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0) [2024-11-09 15:30:02,228][00359] Avg episode reward: [(0, '11.648')] [2024-11-09 15:30:02,234][02442] Saving new best policy, reward=11.648! [2024-11-09 15:30:04,372][02457] Updated weights for policy 0, policy_version 350 (0.0012) [2024-11-09 15:30:06,671][02457] Updated weights for policy 0, policy_version 360 (0.0012) [2024-11-09 15:30:07,225][00359] Fps is (10 sec: 18022.6, 60 sec: 17544.5, 300 sec: 16475.0). Total num frames: 1482752. Throughput: 0: 4380.0. Samples: 366304. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0) [2024-11-09 15:30:07,228][00359] Avg episode reward: [(0, '11.806')] [2024-11-09 15:30:07,230][02442] Saving new best policy, reward=11.806! [2024-11-09 15:30:09,022][02457] Updated weights for policy 0, policy_version 370 (0.0013) [2024-11-09 15:30:11,410][02457] Updated weights for policy 0, policy_version 380 (0.0013) [2024-11-09 15:30:12,225][00359] Fps is (10 sec: 17612.7, 60 sec: 17476.3, 300 sec: 16513.3). Total num frames: 1568768. Throughput: 0: 4374.3. Samples: 392538. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0) [2024-11-09 15:30:12,228][00359] Avg episode reward: [(0, '10.272')] [2024-11-09 15:30:13,678][02457] Updated weights for policy 0, policy_version 390 (0.0013) [2024-11-09 15:30:15,946][02457] Updated weights for policy 0, policy_version 400 (0.0012) [2024-11-09 15:30:17,225][00359] Fps is (10 sec: 17612.9, 60 sec: 17544.5, 300 sec: 16588.8). Total num frames: 1658880. Throughput: 0: 4391.5. Samples: 405966. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0) [2024-11-09 15:30:17,227][00359] Avg episode reward: [(0, '12.584')] [2024-11-09 15:30:17,230][02442] Saving new best policy, reward=12.584! [2024-11-09 15:30:18,277][02457] Updated weights for policy 0, policy_version 410 (0.0012) [2024-11-09 15:30:20,512][02457] Updated weights for policy 0, policy_version 420 (0.0012) [2024-11-09 15:30:22,225][00359] Fps is (10 sec: 18022.4, 60 sec: 17612.8, 300 sec: 16657.1). Total num frames: 1748992. Throughput: 0: 4394.2. Samples: 432834. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0) [2024-11-09 15:30:22,228][00359] Avg episode reward: [(0, '17.082')] [2024-11-09 15:30:22,234][02442] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000427_1748992.pth... [2024-11-09 15:30:22,310][02442] Saving new best policy, reward=17.082! [2024-11-09 15:30:22,939][02457] Updated weights for policy 0, policy_version 430 (0.0013) [2024-11-09 15:30:25,262][02457] Updated weights for policy 0, policy_version 440 (0.0013) [2024-11-09 15:30:27,225][00359] Fps is (10 sec: 17612.8, 60 sec: 17544.6, 300 sec: 16681.9). Total num frames: 1835008. Throughput: 0: 4392.2. Samples: 458942. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0) [2024-11-09 15:30:27,228][00359] Avg episode reward: [(0, '18.357')] [2024-11-09 15:30:27,230][02442] Saving new best policy, reward=18.357! [2024-11-09 15:30:27,598][02457] Updated weights for policy 0, policy_version 450 (0.0013) [2024-11-09 15:30:29,836][02457] Updated weights for policy 0, policy_version 460 (0.0012) [2024-11-09 15:30:32,121][02457] Updated weights for policy 0, policy_version 470 (0.0013) [2024-11-09 15:30:32,225][00359] Fps is (10 sec: 17612.9, 60 sec: 17612.8, 300 sec: 16740.2). Total num frames: 1925120. Throughput: 0: 4403.7. Samples: 472376. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0) [2024-11-09 15:30:32,227][00359] Avg episode reward: [(0, '14.650')] [2024-11-09 15:30:34,439][02457] Updated weights for policy 0, policy_version 480 (0.0012) [2024-11-09 15:30:36,789][02457] Updated weights for policy 0, policy_version 490 (0.0013) [2024-11-09 15:30:37,225][00359] Fps is (10 sec: 17612.6, 60 sec: 17544.5, 300 sec: 16759.5). Total num frames: 2011136. Throughput: 0: 4414.0. Samples: 499026. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0) [2024-11-09 15:30:37,227][00359] Avg episode reward: [(0, '17.953')] [2024-11-09 15:30:39,181][02457] Updated weights for policy 0, policy_version 500 (0.0012) [2024-11-09 15:30:41,430][02457] Updated weights for policy 0, policy_version 510 (0.0012) [2024-11-09 15:30:42,225][00359] Fps is (10 sec: 17612.8, 60 sec: 17612.8, 300 sec: 16810.0). Total num frames: 2101248. Throughput: 0: 4428.2. Samples: 525414. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0) [2024-11-09 15:30:42,228][00359] Avg episode reward: [(0, '21.904')] [2024-11-09 15:30:42,235][02442] Saving new best policy, reward=21.904! [2024-11-09 15:30:43,724][02457] Updated weights for policy 0, policy_version 520 (0.0012) [2024-11-09 15:30:45,995][02457] Updated weights for policy 0, policy_version 530 (0.0012) [2024-11-09 15:30:47,225][00359] Fps is (10 sec: 18022.5, 60 sec: 17681.1, 300 sec: 16856.6). Total num frames: 2191360. Throughput: 0: 4428.7. Samples: 538886. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0) [2024-11-09 15:30:47,227][00359] Avg episode reward: [(0, '18.915')] [2024-11-09 15:30:48,264][02457] Updated weights for policy 0, policy_version 540 (0.0012) [2024-11-09 15:30:50,693][02457] Updated weights for policy 0, policy_version 550 (0.0013) [2024-11-09 15:30:52,225][00359] Fps is (10 sec: 17612.8, 60 sec: 17681.1, 300 sec: 16869.5). Total num frames: 2277376. Throughput: 0: 4420.8. Samples: 565238. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0) [2024-11-09 15:30:52,228][00359] Avg episode reward: [(0, '18.689')] [2024-11-09 15:30:52,997][02457] Updated weights for policy 0, policy_version 560 (0.0013) [2024-11-09 15:30:55,372][02457] Updated weights for policy 0, policy_version 570 (0.0012) [2024-11-09 15:30:57,225][00359] Fps is (10 sec: 17612.7, 60 sec: 17749.4, 300 sec: 16910.6). Total num frames: 2367488. Throughput: 0: 4426.5. Samples: 591730. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0) [2024-11-09 15:30:57,227][00359] Avg episode reward: [(0, '20.785')] [2024-11-09 15:30:57,622][02457] Updated weights for policy 0, policy_version 580 (0.0013) [2024-11-09 15:30:59,910][02457] Updated weights for policy 0, policy_version 590 (0.0013) [2024-11-09 15:31:02,205][02457] Updated weights for policy 0, policy_version 600 (0.0012) [2024-11-09 15:31:02,225][00359] Fps is (10 sec: 18022.2, 60 sec: 17749.3, 300 sec: 16949.0). Total num frames: 2457600. Throughput: 0: 4428.7. Samples: 605260. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0) [2024-11-09 15:31:02,227][00359] Avg episode reward: [(0, '25.186')] [2024-11-09 15:31:02,234][02442] Saving new best policy, reward=25.186! [2024-11-09 15:31:04,548][02457] Updated weights for policy 0, policy_version 610 (0.0013) [2024-11-09 15:31:06,922][02457] Updated weights for policy 0, policy_version 620 (0.0013) [2024-11-09 15:31:07,225][00359] Fps is (10 sec: 17612.8, 60 sec: 17681.1, 300 sec: 16957.4). Total num frames: 2543616. Throughput: 0: 4412.3. Samples: 631386. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0) [2024-11-09 15:31:07,228][00359] Avg episode reward: [(0, '25.674')] [2024-11-09 15:31:07,230][02442] Saving new best policy, reward=25.674! [2024-11-09 15:31:09,183][02457] Updated weights for policy 0, policy_version 630 (0.0012) [2024-11-09 15:31:11,515][02457] Updated weights for policy 0, policy_version 640 (0.0012) [2024-11-09 15:31:12,225][00359] Fps is (10 sec: 17612.8, 60 sec: 17749.3, 300 sec: 16991.8). Total num frames: 2633728. Throughput: 0: 4428.0. Samples: 658204. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0) [2024-11-09 15:31:12,227][00359] Avg episode reward: [(0, '24.820')] [2024-11-09 15:31:13,792][02457] Updated weights for policy 0, policy_version 650 (0.0012) [2024-11-09 15:31:16,121][02457] Updated weights for policy 0, policy_version 660 (0.0012) [2024-11-09 15:31:17,225][00359] Fps is (10 sec: 17612.8, 60 sec: 17681.0, 300 sec: 16998.4). Total num frames: 2719744. Throughput: 0: 4427.7. Samples: 671622. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0) [2024-11-09 15:31:17,228][00359] Avg episode reward: [(0, '23.935')] [2024-11-09 15:31:18,488][02457] Updated weights for policy 0, policy_version 670 (0.0013) [2024-11-09 15:31:20,806][02457] Updated weights for policy 0, policy_version 680 (0.0013) [2024-11-09 15:31:22,225][00359] Fps is (10 sec: 17613.0, 60 sec: 17681.1, 300 sec: 17029.4). Total num frames: 2809856. Throughput: 0: 4417.7. Samples: 697822. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0) [2024-11-09 15:31:22,227][00359] Avg episode reward: [(0, '21.884')] [2024-11-09 15:31:23,097][02457] Updated weights for policy 0, policy_version 690 (0.0012) [2024-11-09 15:31:25,384][02457] Updated weights for policy 0, policy_version 700 (0.0013) [2024-11-09 15:31:27,225][00359] Fps is (10 sec: 18022.4, 60 sec: 17749.3, 300 sec: 17058.6). Total num frames: 2899968. Throughput: 0: 4430.7. Samples: 724794. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0) [2024-11-09 15:31:27,227][00359] Avg episode reward: [(0, '23.741')] [2024-11-09 15:31:27,637][02457] Updated weights for policy 0, policy_version 710 (0.0012) [2024-11-09 15:31:29,915][02457] Updated weights for policy 0, policy_version 720 (0.0012) [2024-11-09 15:31:32,225][00359] Fps is (10 sec: 17612.6, 60 sec: 17681.0, 300 sec: 17062.8). Total num frames: 2985984. Throughput: 0: 4431.7. Samples: 738314. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0) [2024-11-09 15:31:32,228][00359] Avg episode reward: [(0, '25.367')] [2024-11-09 15:31:32,292][02457] Updated weights for policy 0, policy_version 730 (0.0013) [2024-11-09 15:31:34,608][02457] Updated weights for policy 0, policy_version 740 (0.0012) [2024-11-09 15:31:36,895][02457] Updated weights for policy 0, policy_version 750 (0.0012) [2024-11-09 15:31:37,225][00359] Fps is (10 sec: 17613.0, 60 sec: 17749.4, 300 sec: 17089.4). Total num frames: 3076096. Throughput: 0: 4431.6. Samples: 764658. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0) [2024-11-09 15:31:37,227][00359] Avg episode reward: [(0, '26.540')] [2024-11-09 15:31:37,230][02442] Saving new best policy, reward=26.540! [2024-11-09 15:31:39,154][02457] Updated weights for policy 0, policy_version 760 (0.0013) [2024-11-09 15:31:41,416][02457] Updated weights for policy 0, policy_version 770 (0.0012) [2024-11-09 15:31:42,225][00359] Fps is (10 sec: 18022.3, 60 sec: 17749.3, 300 sec: 17114.6). Total num frames: 3166208. Throughput: 0: 4443.0. Samples: 791664. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0) [2024-11-09 15:31:42,227][00359] Avg episode reward: [(0, '23.020')] [2024-11-09 15:31:43,719][02457] Updated weights for policy 0, policy_version 780 (0.0012) [2024-11-09 15:31:46,102][02457] Updated weights for policy 0, policy_version 790 (0.0013) [2024-11-09 15:31:47,225][00359] Fps is (10 sec: 17612.6, 60 sec: 17681.0, 300 sec: 17117.0). Total num frames: 3252224. Throughput: 0: 4433.2. Samples: 804754. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0) [2024-11-09 15:31:47,228][00359] Avg episode reward: [(0, '22.193')] [2024-11-09 15:31:48,425][02457] Updated weights for policy 0, policy_version 800 (0.0012) [2024-11-09 15:31:50,665][02457] Updated weights for policy 0, policy_version 810 (0.0012) [2024-11-09 15:31:52,225][00359] Fps is (10 sec: 17612.8, 60 sec: 17749.3, 300 sec: 17140.2). Total num frames: 3342336. Throughput: 0: 4447.1. Samples: 831504. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0) [2024-11-09 15:31:52,227][00359] Avg episode reward: [(0, '24.621')] [2024-11-09 15:31:53,000][02457] Updated weights for policy 0, policy_version 820 (0.0012) [2024-11-09 15:31:55,220][02457] Updated weights for policy 0, policy_version 830 (0.0013) [2024-11-09 15:31:57,225][00359] Fps is (10 sec: 18022.5, 60 sec: 17749.3, 300 sec: 17162.2). Total num frames: 3432448. Throughput: 0: 4446.2. Samples: 858284. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0) [2024-11-09 15:31:57,227][00359] Avg episode reward: [(0, '23.619')] [2024-11-09 15:31:57,553][02457] Updated weights for policy 0, policy_version 840 (0.0012) [2024-11-09 15:31:59,968][02457] Updated weights for policy 0, policy_version 850 (0.0013) [2024-11-09 15:32:02,225][00359] Fps is (10 sec: 17612.8, 60 sec: 17681.1, 300 sec: 17163.2). Total num frames: 3518464. Throughput: 0: 4434.2. Samples: 871162. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0) [2024-11-09 15:32:02,227][00359] Avg episode reward: [(0, '23.879')] [2024-11-09 15:32:02,229][02457] Updated weights for policy 0, policy_version 860 (0.0013) [2024-11-09 15:32:04,527][02457] Updated weights for policy 0, policy_version 870 (0.0013) [2024-11-09 15:32:06,758][02457] Updated weights for policy 0, policy_version 880 (0.0012) [2024-11-09 15:32:07,225][00359] Fps is (10 sec: 18022.4, 60 sec: 17817.6, 300 sec: 17203.2). Total num frames: 3612672. Throughput: 0: 4454.9. Samples: 898294. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0) [2024-11-09 15:32:07,228][00359] Avg episode reward: [(0, '26.899')] [2024-11-09 15:32:07,231][02442] Saving new best policy, reward=26.899! [2024-11-09 15:32:09,054][02457] Updated weights for policy 0, policy_version 890 (0.0012) [2024-11-09 15:32:11,349][02457] Updated weights for policy 0, policy_version 900 (0.0013) [2024-11-09 15:32:12,225][00359] Fps is (10 sec: 18022.6, 60 sec: 17749.4, 300 sec: 17203.2). Total num frames: 3698688. Throughput: 0: 4448.1. Samples: 924958. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0) [2024-11-09 15:32:12,228][00359] Avg episode reward: [(0, '28.112')] [2024-11-09 15:32:12,236][02442] Saving new best policy, reward=28.112! [2024-11-09 15:32:13,752][02457] Updated weights for policy 0, policy_version 910 (0.0013) [2024-11-09 15:32:16,073][02457] Updated weights for policy 0, policy_version 920 (0.0012) [2024-11-09 15:32:17,225][00359] Fps is (10 sec: 17613.0, 60 sec: 17817.6, 300 sec: 17221.8). Total num frames: 3788800. Throughput: 0: 4435.6. Samples: 937916. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0) [2024-11-09 15:32:17,228][00359] Avg episode reward: [(0, '23.384')] [2024-11-09 15:32:18,335][02457] Updated weights for policy 0, policy_version 930 (0.0012) [2024-11-09 15:32:20,615][02457] Updated weights for policy 0, policy_version 940 (0.0013) [2024-11-09 15:32:22,225][00359] Fps is (10 sec: 18022.3, 60 sec: 17817.6, 300 sec: 17239.6). Total num frames: 3878912. Throughput: 0: 4450.7. Samples: 964942. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0) [2024-11-09 15:32:22,227][00359] Avg episode reward: [(0, '20.857')] [2024-11-09 15:32:22,235][02442] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000947_3878912.pth... [2024-11-09 15:32:22,887][02457] Updated weights for policy 0, policy_version 950 (0.0012) [2024-11-09 15:32:25,198][02457] Updated weights for policy 0, policy_version 960 (0.0012) [2024-11-09 15:32:27,225][00359] Fps is (10 sec: 17612.6, 60 sec: 17749.3, 300 sec: 17238.8). Total num frames: 3964928. Throughput: 0: 4440.2. Samples: 991472. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0) [2024-11-09 15:32:27,228][00359] Avg episode reward: [(0, '24.351')] [2024-11-09 15:32:27,563][02457] Updated weights for policy 0, policy_version 970 (0.0013) [2024-11-09 15:32:29,404][02442] Stopping Batcher_0... [2024-11-09 15:32:29,404][02442] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth... [2024-11-09 15:32:29,404][00359] Component Batcher_0 stopped! [2024-11-09 15:32:29,408][00359] Component RolloutWorker_w3 process died already! Don't wait for it. [2024-11-09 15:32:29,404][02442] Loop batcher_evt_loop terminating... [2024-11-09 15:32:29,423][02457] Weights refcount: 2 0 [2024-11-09 15:32:29,425][02457] Stopping InferenceWorker_p0-w0... [2024-11-09 15:32:29,426][02457] Loop inference_proc0-0_evt_loop terminating... [2024-11-09 15:32:29,426][00359] Component InferenceWorker_p0-w0 stopped! [2024-11-09 15:32:29,454][02462] Stopping RolloutWorker_w5... [2024-11-09 15:32:29,454][02455] Stopping RolloutWorker_w0... [2024-11-09 15:32:29,455][02462] Loop rollout_proc5_evt_loop terminating... [2024-11-09 15:32:29,455][02455] Loop rollout_proc0_evt_loop terminating... [2024-11-09 15:32:29,454][00359] Component RolloutWorker_w5 stopped! [2024-11-09 15:32:29,457][02460] Stopping RolloutWorker_w6... [2024-11-09 15:32:29,458][02460] Loop rollout_proc6_evt_loop terminating... [2024-11-09 15:32:29,458][02461] Stopping RolloutWorker_w4... [2024-11-09 15:32:29,459][02456] Stopping RolloutWorker_w1... [2024-11-09 15:32:29,457][00359] Component RolloutWorker_w0 stopped! [2024-11-09 15:32:29,459][02456] Loop rollout_proc1_evt_loop terminating... [2024-11-09 15:32:29,459][02461] Loop rollout_proc4_evt_loop terminating... [2024-11-09 15:32:29,460][02458] Stopping RolloutWorker_w2... [2024-11-09 15:32:29,459][00359] Component RolloutWorker_w6 stopped! [2024-11-09 15:32:29,461][02458] Loop rollout_proc2_evt_loop terminating... [2024-11-09 15:32:29,461][02463] Stopping RolloutWorker_w7... [2024-11-09 15:32:29,461][02463] Loop rollout_proc7_evt_loop terminating... [2024-11-09 15:32:29,461][00359] Component RolloutWorker_w4 stopped! [2024-11-09 15:32:29,464][00359] Component RolloutWorker_w1 stopped! [2024-11-09 15:32:29,465][00359] Component RolloutWorker_w2 stopped! [2024-11-09 15:32:29,469][00359] Component RolloutWorker_w7 stopped! [2024-11-09 15:32:29,483][02442] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000427_1748992.pth [2024-11-09 15:32:29,494][02442] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth... [2024-11-09 15:32:29,616][02442] Stopping LearnerWorker_p0... [2024-11-09 15:32:29,616][02442] Loop learner_proc0_evt_loop terminating... [2024-11-09 15:32:29,616][00359] Component LearnerWorker_p0 stopped! [2024-11-09 15:32:29,620][00359] Waiting for process learner_proc0 to stop... [2024-11-09 15:32:30,529][00359] Waiting for process inference_proc0-0 to join... [2024-11-09 15:32:30,532][00359] Waiting for process rollout_proc0 to join... [2024-11-09 15:32:30,535][00359] Waiting for process rollout_proc1 to join... [2024-11-09 15:32:30,536][00359] Waiting for process rollout_proc2 to join... [2024-11-09 15:32:30,539][00359] Waiting for process rollout_proc3 to join... [2024-11-09 15:32:30,539][00359] Waiting for process rollout_proc4 to join... [2024-11-09 15:32:30,541][00359] Waiting for process rollout_proc5 to join... [2024-11-09 15:32:30,543][00359] Waiting for process rollout_proc6 to join... [2024-11-09 15:32:30,545][00359] Waiting for process rollout_proc7 to join... [2024-11-09 15:32:30,547][00359] Batcher 0 profile tree view: batching: 16.5471, releasing_batches: 0.0256 [2024-11-09 15:32:30,548][00359] InferenceWorker_p0-w0 profile tree view: wait_policy: 0.0001 wait_policy_total: 3.8880 update_model: 3.8373 weight_update: 0.0013 one_step: 0.0033 handle_policy_step: 212.5154 deserialize: 8.0454, stack: 1.4952, obs_to_device_normalize: 51.5267, forward: 102.7698, send_messages: 13.8758 prepare_outputs: 25.2332 to_cpu: 15.3834 [2024-11-09 15:32:30,551][00359] Learner 0 profile tree view: misc: 0.0054, prepare_batch: 7.0491 train: 19.0067 epoch_init: 0.0057, minibatch_init: 0.0058, losses_postprocess: 0.3408, kl_divergence: 0.3495, after_optimizer: 1.8542 calculate_losses: 8.6386 losses_init: 0.0034, forward_head: 0.6446, bptt_initial: 4.7573, tail: 0.6363, advantages_returns: 0.1560, losses: 1.1651 bptt: 1.0986 bptt_forward_core: 1.0472 update: 7.4516 clip: 0.8148 [2024-11-09 15:32:30,554][00359] RolloutWorker_w0 profile tree view: wait_for_trajectories: 0.1659, enqueue_policy_requests: 8.9870, env_step: 143.2896, overhead: 7.1047, complete_rollouts: 0.2728 save_policy_outputs: 10.0892 split_output_tensors: 4.0277 [2024-11-09 15:32:30,555][00359] RolloutWorker_w7 profile tree view: wait_for_trajectories: 0.1650, enqueue_policy_requests: 8.9906, env_step: 142.8375, overhead: 6.9846, complete_rollouts: 0.2706 save_policy_outputs: 10.1767 split_output_tensors: 4.0813 [2024-11-09 15:32:30,557][00359] Loop Runner_EvtLoop terminating... [2024-11-09 15:32:30,558][00359] Runner profile tree view: main_loop: 242.3498 [2024-11-09 15:32:30,560][00359] Collected {0: 4005888}, FPS: 16529.4 [2024-11-09 15:32:30,606][00359] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json [2024-11-09 15:32:30,607][00359] Overriding arg 'num_workers' with value 1 passed from command line [2024-11-09 15:32:30,609][00359] Adding new argument 'no_render'=True that is not in the saved config file! [2024-11-09 15:32:30,610][00359] Adding new argument 'save_video'=True that is not in the saved config file! [2024-11-09 15:32:30,611][00359] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file! [2024-11-09 15:32:30,613][00359] Adding new argument 'video_name'=None that is not in the saved config file! [2024-11-09 15:32:30,615][00359] Adding new argument 'max_num_frames'=1000000000.0 that is not in the saved config file! [2024-11-09 15:32:30,615][00359] Adding new argument 'max_num_episodes'=10 that is not in the saved config file! [2024-11-09 15:32:30,617][00359] Adding new argument 'push_to_hub'=False that is not in the saved config file! [2024-11-09 15:32:30,618][00359] Adding new argument 'hf_repository'=None that is not in the saved config file! [2024-11-09 15:32:30,619][00359] Adding new argument 'policy_index'=0 that is not in the saved config file! [2024-11-09 15:32:30,621][00359] Adding new argument 'eval_deterministic'=False that is not in the saved config file! [2024-11-09 15:32:30,622][00359] Adding new argument 'train_script'=None that is not in the saved config file! [2024-11-09 15:32:30,623][00359] Adding new argument 'enjoy_script'=None that is not in the saved config file! [2024-11-09 15:32:30,624][00359] Using frameskip 1 and render_action_repeat=4 for evaluation [2024-11-09 15:32:30,653][00359] Doom resolution: 160x120, resize resolution: (128, 72) [2024-11-09 15:32:30,656][00359] RunningMeanStd input shape: (3, 72, 128) [2024-11-09 15:32:30,658][00359] RunningMeanStd input shape: (1,) [2024-11-09 15:32:30,672][00359] ConvEncoder: input_channels=3 [2024-11-09 15:32:30,786][00359] Conv encoder output size: 512 [2024-11-09 15:32:30,788][00359] Policy head output size: 512 [2024-11-09 15:32:30,945][00359] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth... [2024-11-09 15:32:31,754][00359] Num frames 100... [2024-11-09 15:32:31,881][00359] Num frames 200... [2024-11-09 15:32:32,001][00359] Num frames 300... [2024-11-09 15:32:32,124][00359] Num frames 400... [2024-11-09 15:32:32,247][00359] Num frames 500... [2024-11-09 15:32:32,368][00359] Num frames 600... [2024-11-09 15:32:32,489][00359] Num frames 700... [2024-11-09 15:32:32,609][00359] Num frames 800... [2024-11-09 15:32:32,743][00359] Avg episode rewards: #0: 17.640, true rewards: #0: 8.640 [2024-11-09 15:32:32,745][00359] Avg episode reward: 17.640, avg true_objective: 8.640 [2024-11-09 15:32:32,792][00359] Num frames 900... [2024-11-09 15:32:32,913][00359] Num frames 1000... [2024-11-09 15:32:33,036][00359] Num frames 1100... [2024-11-09 15:32:33,160][00359] Num frames 1200... [2024-11-09 15:32:33,282][00359] Num frames 1300... [2024-11-09 15:32:33,405][00359] Num frames 1400... [2024-11-09 15:32:33,530][00359] Num frames 1500... [2024-11-09 15:32:33,652][00359] Num frames 1600... [2024-11-09 15:32:33,770][00359] Num frames 1700... [2024-11-09 15:32:33,893][00359] Num frames 1800... [2024-11-09 15:32:34,021][00359] Num frames 1900... [2024-11-09 15:32:34,144][00359] Num frames 2000... [2024-11-09 15:32:34,258][00359] Avg episode rewards: #0: 24.740, true rewards: #0: 10.240 [2024-11-09 15:32:34,259][00359] Avg episode reward: 24.740, avg true_objective: 10.240 [2024-11-09 15:32:34,324][00359] Num frames 2100... [2024-11-09 15:32:34,448][00359] Num frames 2200... [2024-11-09 15:32:34,576][00359] Num frames 2300... [2024-11-09 15:32:34,698][00359] Num frames 2400... [2024-11-09 15:32:34,823][00359] Num frames 2500... [2024-11-09 15:32:34,946][00359] Num frames 2600... [2024-11-09 15:32:35,070][00359] Num frames 2700... [2024-11-09 15:32:35,193][00359] Num frames 2800... [2024-11-09 15:32:35,317][00359] Num frames 2900... [2024-11-09 15:32:35,439][00359] Num frames 3000... [2024-11-09 15:32:35,500][00359] Avg episode rewards: #0: 23.680, true rewards: #0: 10.013 [2024-11-09 15:32:35,502][00359] Avg episode reward: 23.680, avg true_objective: 10.013 [2024-11-09 15:32:35,621][00359] Num frames 3100... [2024-11-09 15:32:35,743][00359] Num frames 3200... [2024-11-09 15:32:35,864][00359] Num frames 3300... [2024-11-09 15:32:35,987][00359] Num frames 3400... [2024-11-09 15:32:36,066][00359] Avg episode rewards: #0: 19.300, true rewards: #0: 8.550 [2024-11-09 15:32:36,068][00359] Avg episode reward: 19.300, avg true_objective: 8.550 [2024-11-09 15:32:36,167][00359] Num frames 3500... [2024-11-09 15:32:36,289][00359] Num frames 3600... [2024-11-09 15:32:36,414][00359] Num frames 3700... [2024-11-09 15:32:36,539][00359] Num frames 3800... [2024-11-09 15:32:36,662][00359] Num frames 3900... [2024-11-09 15:32:36,782][00359] Num frames 4000... [2024-11-09 15:32:36,905][00359] Num frames 4100... [2024-11-09 15:32:37,026][00359] Num frames 4200... [2024-11-09 15:32:37,149][00359] Num frames 4300... [2024-11-09 15:32:37,275][00359] Num frames 4400... [2024-11-09 15:32:37,423][00359] Avg episode rewards: #0: 20.552, true rewards: #0: 8.952 [2024-11-09 15:32:37,425][00359] Avg episode reward: 20.552, avg true_objective: 8.952 [2024-11-09 15:32:37,458][00359] Num frames 4500... [2024-11-09 15:32:37,581][00359] Num frames 4600... [2024-11-09 15:32:37,704][00359] Num frames 4700... [2024-11-09 15:32:37,828][00359] Num frames 4800... [2024-11-09 15:32:37,953][00359] Num frames 4900... [2024-11-09 15:32:38,085][00359] Num frames 5000... [2024-11-09 15:32:38,247][00359] Avg episode rewards: #0: 19.473, true rewards: #0: 8.473 [2024-11-09 15:32:38,248][00359] Avg episode reward: 19.473, avg true_objective: 8.473 [2024-11-09 15:32:38,271][00359] Num frames 5100... [2024-11-09 15:32:38,393][00359] Num frames 5200... [2024-11-09 15:32:38,518][00359] Num frames 5300... [2024-11-09 15:32:38,641][00359] Num frames 5400... [2024-11-09 15:32:38,765][00359] Num frames 5500... [2024-11-09 15:32:38,893][00359] Num frames 5600... [2024-11-09 15:32:39,019][00359] Num frames 5700... [2024-11-09 15:32:39,185][00359] Avg episode rewards: #0: 18.269, true rewards: #0: 8.269 [2024-11-09 15:32:39,187][00359] Avg episode reward: 18.269, avg true_objective: 8.269 [2024-11-09 15:32:39,206][00359] Num frames 5800... [2024-11-09 15:32:39,330][00359] Num frames 5900... [2024-11-09 15:32:39,458][00359] Num frames 6000... [2024-11-09 15:32:39,583][00359] Num frames 6100... [2024-11-09 15:32:39,705][00359] Num frames 6200... [2024-11-09 15:32:39,823][00359] Num frames 6300... [2024-11-09 15:32:39,915][00359] Avg episode rewards: #0: 16.915, true rewards: #0: 7.915 [2024-11-09 15:32:39,917][00359] Avg episode reward: 16.915, avg true_objective: 7.915 [2024-11-09 15:32:40,001][00359] Num frames 6400... [2024-11-09 15:32:40,122][00359] Num frames 6500... [2024-11-09 15:32:40,241][00359] Num frames 6600... [2024-11-09 15:32:40,370][00359] Num frames 6700... [2024-11-09 15:32:40,505][00359] Num frames 6800... [2024-11-09 15:32:40,626][00359] Num frames 6900... [2024-11-09 15:32:40,747][00359] Num frames 7000... [2024-11-09 15:32:40,868][00359] Num frames 7100... [2024-11-09 15:32:40,990][00359] Num frames 7200... [2024-11-09 15:32:41,079][00359] Avg episode rewards: #0: 17.253, true rewards: #0: 8.031 [2024-11-09 15:32:41,081][00359] Avg episode reward: 17.253, avg true_objective: 8.031 [2024-11-09 15:32:41,170][00359] Num frames 7300... [2024-11-09 15:32:41,291][00359] Num frames 7400... [2024-11-09 15:32:41,414][00359] Num frames 7500... [2024-11-09 15:32:41,541][00359] Num frames 7600... [2024-11-09 15:32:41,663][00359] Num frames 7700... [2024-11-09 15:32:41,788][00359] Num frames 7800... [2024-11-09 15:32:41,911][00359] Num frames 7900... [2024-11-09 15:32:42,031][00359] Num frames 8000... [2024-11-09 15:32:42,154][00359] Num frames 8100... [2024-11-09 15:32:42,276][00359] Num frames 8200... [2024-11-09 15:32:42,397][00359] Num frames 8300... [2024-11-09 15:32:42,526][00359] Num frames 8400... [2024-11-09 15:32:42,650][00359] Num frames 8500... [2024-11-09 15:32:42,793][00359] Avg episode rewards: #0: 18.872, true rewards: #0: 8.572 [2024-11-09 15:32:42,795][00359] Avg episode reward: 18.872, avg true_objective: 8.572 [2024-11-09 15:33:03,546][00359] Replay video saved to /content/train_dir/default_experiment/replay.mp4! [2024-11-09 15:33:33,953][00359] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json [2024-11-09 15:33:33,954][00359] Overriding arg 'num_workers' with value 1 passed from command line [2024-11-09 15:33:33,956][00359] Adding new argument 'no_render'=True that is not in the saved config file! [2024-11-09 15:33:33,957][00359] Adding new argument 'save_video'=True that is not in the saved config file! [2024-11-09 15:33:33,958][00359] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file! [2024-11-09 15:33:33,960][00359] Adding new argument 'video_name'=None that is not in the saved config file! [2024-11-09 15:33:33,961][00359] Adding new argument 'max_num_frames'=100000 that is not in the saved config file! [2024-11-09 15:33:33,962][00359] Adding new argument 'max_num_episodes'=10 that is not in the saved config file! [2024-11-09 15:33:33,963][00359] Adding new argument 'push_to_hub'=True that is not in the saved config file! [2024-11-09 15:33:33,965][00359] Adding new argument 'hf_repository'='lahirum/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file! [2024-11-09 15:33:33,966][00359] Adding new argument 'policy_index'=0 that is not in the saved config file! [2024-11-09 15:33:33,967][00359] Adding new argument 'eval_deterministic'=False that is not in the saved config file! [2024-11-09 15:33:33,968][00359] Adding new argument 'train_script'=None that is not in the saved config file! [2024-11-09 15:33:33,970][00359] Adding new argument 'enjoy_script'=None that is not in the saved config file! [2024-11-09 15:33:33,971][00359] Using frameskip 1 and render_action_repeat=4 for evaluation [2024-11-09 15:33:33,994][00359] RunningMeanStd input shape: (3, 72, 128) [2024-11-09 15:33:33,996][00359] RunningMeanStd input shape: (1,) [2024-11-09 15:33:34,008][00359] ConvEncoder: input_channels=3 [2024-11-09 15:33:34,048][00359] Conv encoder output size: 512 [2024-11-09 15:33:34,050][00359] Policy head output size: 512 [2024-11-09 15:33:34,069][00359] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth... [2024-11-09 15:33:34,491][00359] Num frames 100... [2024-11-09 15:33:34,617][00359] Num frames 200... [2024-11-09 15:33:34,736][00359] Num frames 300... [2024-11-09 15:33:34,859][00359] Num frames 400... [2024-11-09 15:33:34,981][00359] Num frames 500... [2024-11-09 15:33:35,056][00359] Avg episode rewards: #0: 8.160, true rewards: #0: 5.160 [2024-11-09 15:33:35,058][00359] Avg episode reward: 8.160, avg true_objective: 5.160 [2024-11-09 15:33:35,159][00359] Num frames 600... [2024-11-09 15:33:35,280][00359] Num frames 700... [2024-11-09 15:33:35,399][00359] Num frames 800... [2024-11-09 15:33:35,520][00359] Num frames 900... [2024-11-09 15:33:35,637][00359] Num frames 1000... [2024-11-09 15:33:35,803][00359] Avg episode rewards: #0: 9.960, true rewards: #0: 5.460 [2024-11-09 15:33:35,805][00359] Avg episode reward: 9.960, avg true_objective: 5.460 [2024-11-09 15:33:35,818][00359] Num frames 1100... [2024-11-09 15:33:35,938][00359] Num frames 1200... [2024-11-09 15:33:36,058][00359] Num frames 1300... [2024-11-09 15:33:36,176][00359] Num frames 1400... [2024-11-09 15:33:36,298][00359] Num frames 1500... [2024-11-09 15:33:36,423][00359] Num frames 1600... [2024-11-09 15:33:36,551][00359] Num frames 1700... [2024-11-09 15:33:36,679][00359] Num frames 1800... [2024-11-09 15:33:36,806][00359] Num frames 1900... [2024-11-09 15:33:36,936][00359] Num frames 2000... [2024-11-09 15:33:37,060][00359] Num frames 2100... [2024-11-09 15:33:37,181][00359] Num frames 2200... [2024-11-09 15:33:37,307][00359] Num frames 2300... [2024-11-09 15:33:37,414][00359] Avg episode rewards: #0: 15.467, true rewards: #0: 7.800 [2024-11-09 15:33:37,415][00359] Avg episode reward: 15.467, avg true_objective: 7.800 [2024-11-09 15:33:37,494][00359] Num frames 2400... [2024-11-09 15:33:37,615][00359] Num frames 2500... [2024-11-09 15:33:37,738][00359] Num frames 2600... [2024-11-09 15:33:37,867][00359] Num frames 2700... [2024-11-09 15:33:37,989][00359] Num frames 2800... [2024-11-09 15:33:38,111][00359] Num frames 2900... [2024-11-09 15:33:38,231][00359] Num frames 3000... [2024-11-09 15:33:38,351][00359] Num frames 3100... [2024-11-09 15:33:38,474][00359] Num frames 3200... [2024-11-09 15:33:38,575][00359] Avg episode rewards: #0: 16.840, true rewards: #0: 8.090 [2024-11-09 15:33:38,577][00359] Avg episode reward: 16.840, avg true_objective: 8.090 [2024-11-09 15:33:38,654][00359] Num frames 3300... [2024-11-09 15:33:38,779][00359] Num frames 3400... [2024-11-09 15:33:38,901][00359] Num frames 3500... [2024-11-09 15:33:39,021][00359] Num frames 3600... [2024-11-09 15:33:39,144][00359] Num frames 3700... [2024-11-09 15:33:39,264][00359] Num frames 3800... [2024-11-09 15:33:39,387][00359] Num frames 3900... [2024-11-09 15:33:39,471][00359] Avg episode rewards: #0: 16.044, true rewards: #0: 7.844 [2024-11-09 15:33:39,473][00359] Avg episode reward: 16.044, avg true_objective: 7.844 [2024-11-09 15:33:39,569][00359] Num frames 4000... [2024-11-09 15:33:39,691][00359] Num frames 4100... [2024-11-09 15:33:39,812][00359] Num frames 4200... [2024-11-09 15:33:39,935][00359] Num frames 4300... [2024-11-09 15:33:40,059][00359] Num frames 4400... [2024-11-09 15:33:40,178][00359] Num frames 4500... [2024-11-09 15:33:40,301][00359] Num frames 4600... [2024-11-09 15:33:40,424][00359] Num frames 4700... [2024-11-09 15:33:40,507][00359] Avg episode rewards: #0: 16.703, true rewards: #0: 7.870 [2024-11-09 15:33:40,509][00359] Avg episode reward: 16.703, avg true_objective: 7.870 [2024-11-09 15:33:40,608][00359] Num frames 4800... [2024-11-09 15:33:40,734][00359] Num frames 4900... [2024-11-09 15:33:40,855][00359] Num frames 5000... [2024-11-09 15:33:40,978][00359] Num frames 5100... [2024-11-09 15:33:41,101][00359] Num frames 5200... [2024-11-09 15:33:41,224][00359] Num frames 5300... [2024-11-09 15:33:41,350][00359] Num frames 5400... [2024-11-09 15:33:41,472][00359] Num frames 5500... [2024-11-09 15:33:41,579][00359] Avg episode rewards: #0: 16.203, true rewards: #0: 7.917 [2024-11-09 15:33:41,581][00359] Avg episode reward: 16.203, avg true_objective: 7.917 [2024-11-09 15:33:41,652][00359] Num frames 5600... [2024-11-09 15:33:41,774][00359] Num frames 5700... [2024-11-09 15:33:41,899][00359] Num frames 5800... [2024-11-09 15:33:42,021][00359] Num frames 5900... [2024-11-09 15:33:42,145][00359] Num frames 6000... [2024-11-09 15:33:42,303][00359] Avg episode rewards: #0: 15.608, true rewards: #0: 7.607 [2024-11-09 15:33:42,305][00359] Avg episode reward: 15.608, avg true_objective: 7.607 [2024-11-09 15:33:42,325][00359] Num frames 6100... [2024-11-09 15:33:42,448][00359] Num frames 6200... [2024-11-09 15:33:42,572][00359] Num frames 6300... [2024-11-09 15:33:42,694][00359] Num frames 6400... [2024-11-09 15:33:42,814][00359] Num frames 6500... [2024-11-09 15:33:42,938][00359] Num frames 6600... [2024-11-09 15:33:43,058][00359] Num frames 6700... [2024-11-09 15:33:43,181][00359] Num frames 6800... [2024-11-09 15:33:43,303][00359] Num frames 6900... [2024-11-09 15:33:43,426][00359] Num frames 7000... [2024-11-09 15:33:43,500][00359] Avg episode rewards: #0: 16.016, true rewards: #0: 7.793 [2024-11-09 15:33:43,501][00359] Avg episode reward: 16.016, avg true_objective: 7.793 [2024-11-09 15:33:43,605][00359] Num frames 7100... [2024-11-09 15:33:43,726][00359] Num frames 7200... [2024-11-09 15:33:43,848][00359] Num frames 7300... [2024-11-09 15:33:43,970][00359] Num frames 7400... [2024-11-09 15:33:44,092][00359] Num frames 7500... [2024-11-09 15:33:44,214][00359] Num frames 7600... [2024-11-09 15:33:44,342][00359] Num frames 7700... [2024-11-09 15:33:44,469][00359] Num frames 7800... [2024-11-09 15:33:44,595][00359] Num frames 7900... [2024-11-09 15:33:44,719][00359] Num frames 8000... [2024-11-09 15:33:44,844][00359] Num frames 8100... [2024-11-09 15:33:44,968][00359] Num frames 8200... [2024-11-09 15:33:45,089][00359] Num frames 8300... [2024-11-09 15:33:45,215][00359] Num frames 8400... [2024-11-09 15:33:45,338][00359] Num frames 8500... [2024-11-09 15:33:45,462][00359] Num frames 8600... [2024-11-09 15:33:45,584][00359] Num frames 8700... [2024-11-09 15:33:45,711][00359] Num frames 8800... [2024-11-09 15:33:45,834][00359] Num frames 8900... [2024-11-09 15:33:45,959][00359] Num frames 9000... [2024-11-09 15:33:46,073][00359] Avg episode rewards: #0: 19.548, true rewards: #0: 9.048 [2024-11-09 15:33:46,074][00359] Avg episode reward: 19.548, avg true_objective: 9.048 [2024-11-09 15:34:07,689][00359] Replay video saved to /content/train_dir/default_experiment/replay.mp4! [2024-11-09 15:34:13,175][00359] The model has been pushed to https://huggingface.co/lahirum/rl_course_vizdoom_health_gathering_supreme [2024-11-09 15:35:07,244][00359] Loading legacy config file train_dir/doom_health_gathering_supreme_2222/cfg.json instead of train_dir/doom_health_gathering_supreme_2222/config.json [2024-11-09 15:35:07,246][00359] Loading existing experiment configuration from train_dir/doom_health_gathering_supreme_2222/config.json [2024-11-09 15:35:07,247][00359] Overriding arg 'experiment' with value 'doom_health_gathering_supreme_2222' passed from command line [2024-11-09 15:35:07,249][00359] Overriding arg 'train_dir' with value 'train_dir' passed from command line [2024-11-09 15:35:07,250][00359] Overriding arg 'num_workers' with value 1 passed from command line [2024-11-09 15:35:07,251][00359] Adding new argument 'lr_adaptive_min'=1e-06 that is not in the saved config file! [2024-11-09 15:35:07,253][00359] Adding new argument 'lr_adaptive_max'=0.01 that is not in the saved config file! [2024-11-09 15:35:07,254][00359] Adding new argument 'env_gpu_observations'=True that is not in the saved config file! [2024-11-09 15:35:07,255][00359] Adding new argument 'no_render'=True that is not in the saved config file! [2024-11-09 15:35:07,256][00359] Adding new argument 'save_video'=True that is not in the saved config file! [2024-11-09 15:35:07,258][00359] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file! [2024-11-09 15:35:07,259][00359] Adding new argument 'video_name'=None that is not in the saved config file! [2024-11-09 15:35:07,260][00359] Adding new argument 'max_num_frames'=1000000000.0 that is not in the saved config file! [2024-11-09 15:35:07,261][00359] Adding new argument 'max_num_episodes'=10 that is not in the saved config file! [2024-11-09 15:35:07,262][00359] Adding new argument 'push_to_hub'=False that is not in the saved config file! [2024-11-09 15:35:07,264][00359] Adding new argument 'hf_repository'=None that is not in the saved config file! [2024-11-09 15:35:07,265][00359] Adding new argument 'policy_index'=0 that is not in the saved config file! [2024-11-09 15:35:07,266][00359] Adding new argument 'eval_deterministic'=False that is not in the saved config file! [2024-11-09 15:35:07,267][00359] Adding new argument 'train_script'=None that is not in the saved config file! [2024-11-09 15:35:07,269][00359] Adding new argument 'enjoy_script'=None that is not in the saved config file! [2024-11-09 15:35:07,270][00359] Using frameskip 1 and render_action_repeat=4 for evaluation [2024-11-09 15:35:07,294][00359] RunningMeanStd input shape: (3, 72, 128) [2024-11-09 15:35:07,296][00359] RunningMeanStd input shape: (1,) [2024-11-09 15:35:07,310][00359] ConvEncoder: input_channels=3 [2024-11-09 15:35:07,361][00359] Conv encoder output size: 512 [2024-11-09 15:35:07,363][00359] Policy head output size: 512 [2024-11-09 15:35:07,386][00359] Loading state from checkpoint train_dir/doom_health_gathering_supreme_2222/checkpoint_p0/checkpoint_000539850_4422451200.pth... [2024-11-09 15:35:07,818][00359] Num frames 100... [2024-11-09 15:35:07,941][00359] Num frames 200... [2024-11-09 15:35:08,063][00359] Num frames 300... [2024-11-09 15:35:08,183][00359] Num frames 400... [2024-11-09 15:35:08,305][00359] Num frames 500... [2024-11-09 15:35:08,428][00359] Num frames 600... [2024-11-09 15:35:08,549][00359] Num frames 700... [2024-11-09 15:35:08,672][00359] Num frames 800... [2024-11-09 15:35:08,795][00359] Num frames 900... [2024-11-09 15:35:08,918][00359] Num frames 1000... [2024-11-09 15:35:09,040][00359] Num frames 1100... [2024-11-09 15:35:09,161][00359] Num frames 1200... [2024-11-09 15:35:09,282][00359] Num frames 1300... [2024-11-09 15:35:09,406][00359] Num frames 1400... [2024-11-09 15:35:09,532][00359] Num frames 1500... [2024-11-09 15:35:09,659][00359] Num frames 1600... [2024-11-09 15:35:09,792][00359] Num frames 1700... [2024-11-09 15:35:09,932][00359] Num frames 1800... [2024-11-09 15:35:10,059][00359] Num frames 1900... [2024-11-09 15:35:10,220][00359] Avg episode rewards: #0: 61.839, true rewards: #0: 19.840 [2024-11-09 15:35:10,222][00359] Avg episode reward: 61.839, avg true_objective: 19.840 [2024-11-09 15:35:10,245][00359] Num frames 2000... [2024-11-09 15:35:10,370][00359] Num frames 2100... [2024-11-09 15:35:10,500][00359] Num frames 2200... [2024-11-09 15:35:10,631][00359] Num frames 2300... [2024-11-09 15:35:10,764][00359] Num frames 2400... [2024-11-09 15:35:10,894][00359] Num frames 2500... [2024-11-09 15:35:11,024][00359] Num frames 2600... [2024-11-09 15:35:11,155][00359] Num frames 2700... [2024-11-09 15:35:11,282][00359] Num frames 2800... [2024-11-09 15:35:11,433][00359] Num frames 2900... [2024-11-09 15:35:11,563][00359] Num frames 3000... [2024-11-09 15:35:11,691][00359] Num frames 3100... [2024-11-09 15:35:11,816][00359] Num frames 3200... [2024-11-09 15:35:11,943][00359] Num frames 3300... [2024-11-09 15:35:12,067][00359] Num frames 3400... [2024-11-09 15:35:12,190][00359] Num frames 3500... [2024-11-09 15:35:12,315][00359] Num frames 3600... [2024-11-09 15:35:12,440][00359] Num frames 3700... [2024-11-09 15:35:12,568][00359] Num frames 3800... [2024-11-09 15:35:12,691][00359] Num frames 3900... [2024-11-09 15:35:12,815][00359] Num frames 4000... [2024-11-09 15:35:12,977][00359] Avg episode rewards: #0: 61.919, true rewards: #0: 20.420 [2024-11-09 15:35:12,980][00359] Avg episode reward: 61.919, avg true_objective: 20.420 [2024-11-09 15:35:13,001][00359] Num frames 4100... [2024-11-09 15:35:13,125][00359] Num frames 4200... [2024-11-09 15:35:13,246][00359] Num frames 4300... [2024-11-09 15:35:13,371][00359] Num frames 4400... [2024-11-09 15:35:13,494][00359] Num frames 4500... [2024-11-09 15:35:13,618][00359] Num frames 4600... [2024-11-09 15:35:13,743][00359] Num frames 4700... [2024-11-09 15:35:13,868][00359] Num frames 4800... [2024-11-09 15:35:13,993][00359] Num frames 4900... [2024-11-09 15:35:14,121][00359] Num frames 5000... [2024-11-09 15:35:14,244][00359] Num frames 5100... [2024-11-09 15:35:14,368][00359] Num frames 5200... [2024-11-09 15:35:14,492][00359] Num frames 5300... [2024-11-09 15:35:14,618][00359] Num frames 5400... [2024-11-09 15:35:14,744][00359] Num frames 5500... [2024-11-09 15:35:14,868][00359] Num frames 5600... [2024-11-09 15:35:14,992][00359] Num frames 5700... [2024-11-09 15:35:15,119][00359] Num frames 5800... [2024-11-09 15:35:15,245][00359] Num frames 5900... [2024-11-09 15:35:15,368][00359] Num frames 6000... [2024-11-09 15:35:15,494][00359] Num frames 6100... [2024-11-09 15:35:15,654][00359] Avg episode rewards: #0: 62.279, true rewards: #0: 20.613 [2024-11-09 15:35:15,656][00359] Avg episode reward: 62.279, avg true_objective: 20.613 [2024-11-09 15:35:15,678][00359] Num frames 6200... [2024-11-09 15:35:15,803][00359] Num frames 6300... [2024-11-09 15:35:15,928][00359] Num frames 6400... [2024-11-09 15:35:16,051][00359] Num frames 6500... [2024-11-09 15:35:16,174][00359] Num frames 6600... [2024-11-09 15:35:16,297][00359] Num frames 6700... [2024-11-09 15:35:16,420][00359] Num frames 6800... [2024-11-09 15:35:16,547][00359] Num frames 6900... [2024-11-09 15:35:16,670][00359] Num frames 7000... [2024-11-09 15:35:16,797][00359] Num frames 7100... [2024-11-09 15:35:16,923][00359] Num frames 7200... [2024-11-09 15:35:17,048][00359] Num frames 7300... [2024-11-09 15:35:17,172][00359] Num frames 7400... [2024-11-09 15:35:17,297][00359] Num frames 7500... [2024-11-09 15:35:17,422][00359] Num frames 7600... [2024-11-09 15:35:17,547][00359] Num frames 7700... [2024-11-09 15:35:17,670][00359] Num frames 7800... [2024-11-09 15:35:17,799][00359] Num frames 7900... [2024-11-09 15:35:17,925][00359] Num frames 8000... [2024-11-09 15:35:18,050][00359] Num frames 8100... [2024-11-09 15:35:18,175][00359] Num frames 8200... [2024-11-09 15:35:18,335][00359] Avg episode rewards: #0: 61.959, true rewards: #0: 20.710 [2024-11-09 15:35:18,337][00359] Avg episode reward: 61.959, avg true_objective: 20.710 [2024-11-09 15:35:18,359][00359] Num frames 8300... [2024-11-09 15:35:18,484][00359] Num frames 8400... [2024-11-09 15:35:18,607][00359] Num frames 8500... [2024-11-09 15:35:18,732][00359] Num frames 8600... [2024-11-09 15:35:18,858][00359] Num frames 8700... [2024-11-09 15:35:18,983][00359] Num frames 8800... [2024-11-09 15:35:19,106][00359] Num frames 8900... [2024-11-09 15:35:19,230][00359] Num frames 9000... [2024-11-09 15:35:19,355][00359] Num frames 9100... [2024-11-09 15:35:19,478][00359] Num frames 9200... [2024-11-09 15:35:19,601][00359] Num frames 9300... [2024-11-09 15:35:19,726][00359] Num frames 9400... [2024-11-09 15:35:19,855][00359] Num frames 9500... [2024-11-09 15:35:19,982][00359] Num frames 9600... [2024-11-09 15:35:20,107][00359] Num frames 9700... [2024-11-09 15:35:20,234][00359] Num frames 9800... [2024-11-09 15:35:20,363][00359] Num frames 9900... [2024-11-09 15:35:20,492][00359] Num frames 10000... [2024-11-09 15:35:20,617][00359] Num frames 10100... [2024-11-09 15:35:20,744][00359] Num frames 10200... [2024-11-09 15:35:20,871][00359] Num frames 10300... [2024-11-09 15:35:21,032][00359] Avg episode rewards: #0: 62.167, true rewards: #0: 20.768 [2024-11-09 15:35:21,035][00359] Avg episode reward: 62.167, avg true_objective: 20.768 [2024-11-09 15:35:21,058][00359] Num frames 10400... [2024-11-09 15:35:21,183][00359] Num frames 10500... [2024-11-09 15:35:21,309][00359] Num frames 10600... [2024-11-09 15:35:21,435][00359] Num frames 10700... [2024-11-09 15:35:21,563][00359] Num frames 10800... [2024-11-09 15:35:21,691][00359] Num frames 10900... [2024-11-09 15:35:21,823][00359] Num frames 11000... [2024-11-09 15:35:21,953][00359] Num frames 11100... [2024-11-09 15:35:22,081][00359] Num frames 11200... [2024-11-09 15:35:22,213][00359] Num frames 11300... [2024-11-09 15:35:22,343][00359] Num frames 11400... [2024-11-09 15:35:22,479][00359] Num frames 11500... [2024-11-09 15:35:22,614][00359] Num frames 11600... [2024-11-09 15:35:22,745][00359] Num frames 11700... [2024-11-09 15:35:22,881][00359] Num frames 11800... [2024-11-09 15:35:23,016][00359] Num frames 11900... [2024-11-09 15:35:23,146][00359] Num frames 12000... [2024-11-09 15:35:23,271][00359] Num frames 12100... [2024-11-09 15:35:23,399][00359] Num frames 12200... [2024-11-09 15:35:23,525][00359] Num frames 12300... [2024-11-09 15:35:23,649][00359] Num frames 12400... [2024-11-09 15:35:23,808][00359] Avg episode rewards: #0: 62.805, true rewards: #0: 20.807 [2024-11-09 15:35:23,810][00359] Avg episode reward: 62.805, avg true_objective: 20.807 [2024-11-09 15:35:23,833][00359] Num frames 12500... [2024-11-09 15:35:23,959][00359] Num frames 12600... [2024-11-09 15:35:24,083][00359] Num frames 12700... [2024-11-09 15:35:24,209][00359] Num frames 12800... [2024-11-09 15:35:24,336][00359] Num frames 12900... [2024-11-09 15:35:24,462][00359] Num frames 13000... [2024-11-09 15:35:24,587][00359] Num frames 13100... [2024-11-09 15:35:24,712][00359] Num frames 13200... [2024-11-09 15:35:24,836][00359] Num frames 13300... [2024-11-09 15:35:24,963][00359] Num frames 13400... [2024-11-09 15:35:25,088][00359] Num frames 13500... [2024-11-09 15:35:25,213][00359] Num frames 13600... [2024-11-09 15:35:25,337][00359] Num frames 13700... [2024-11-09 15:35:25,464][00359] Num frames 13800... [2024-11-09 15:35:25,591][00359] Num frames 13900... [2024-11-09 15:35:25,716][00359] Num frames 14000... [2024-11-09 15:35:25,842][00359] Num frames 14100... [2024-11-09 15:35:25,967][00359] Num frames 14200... [2024-11-09 15:35:26,095][00359] Num frames 14300... [2024-11-09 15:35:26,219][00359] Num frames 14400... [2024-11-09 15:35:26,345][00359] Num frames 14500... [2024-11-09 15:35:26,507][00359] Avg episode rewards: #0: 63.404, true rewards: #0: 20.834 [2024-11-09 15:35:26,508][00359] Avg episode reward: 63.404, avg true_objective: 20.834 [2024-11-09 15:35:26,532][00359] Num frames 14600... [2024-11-09 15:35:26,663][00359] Num frames 14700... [2024-11-09 15:35:26,794][00359] Num frames 14800... [2024-11-09 15:35:26,926][00359] Num frames 14900... [2024-11-09 15:35:27,056][00359] Num frames 15000... [2024-11-09 15:35:27,187][00359] Num frames 15100... [2024-11-09 15:35:27,319][00359] Num frames 15200... [2024-11-09 15:35:27,450][00359] Num frames 15300... [2024-11-09 15:35:27,583][00359] Num frames 15400... [2024-11-09 15:35:27,712][00359] Num frames 15500... [2024-11-09 15:35:27,835][00359] Num frames 15600... [2024-11-09 15:35:27,960][00359] Num frames 15700... [2024-11-09 15:35:28,086][00359] Num frames 15800... [2024-11-09 15:35:28,210][00359] Num frames 15900... [2024-11-09 15:35:28,332][00359] Num frames 16000... [2024-11-09 15:35:28,457][00359] Num frames 16100... [2024-11-09 15:35:28,582][00359] Num frames 16200... [2024-11-09 15:35:28,709][00359] Num frames 16300... [2024-11-09 15:35:28,836][00359] Num frames 16400... [2024-11-09 15:35:28,934][00359] Avg episode rewards: #0: 62.665, true rewards: #0: 20.541 [2024-11-09 15:35:28,936][00359] Avg episode reward: 62.665, avg true_objective: 20.541 [2024-11-09 15:35:29,019][00359] Num frames 16500... [2024-11-09 15:35:29,144][00359] Num frames 16600... [2024-11-09 15:35:29,273][00359] Num frames 16700... [2024-11-09 15:35:29,404][00359] Num frames 16800... [2024-11-09 15:35:29,536][00359] Num frames 16900... [2024-11-09 15:35:29,664][00359] Num frames 17000... [2024-11-09 15:35:29,788][00359] Num frames 17100... [2024-11-09 15:35:29,914][00359] Num frames 17200... [2024-11-09 15:35:30,038][00359] Num frames 17300... [2024-11-09 15:35:30,161][00359] Num frames 17400... [2024-11-09 15:35:30,287][00359] Num frames 17500... [2024-11-09 15:35:30,415][00359] Num frames 17600... [2024-11-09 15:35:30,540][00359] Num frames 17700... [2024-11-09 15:35:30,665][00359] Num frames 17800... [2024-11-09 15:35:30,787][00359] Num frames 17900... [2024-11-09 15:35:30,913][00359] Num frames 18000... [2024-11-09 15:35:31,036][00359] Num frames 18100... [2024-11-09 15:35:31,160][00359] Num frames 18200... [2024-11-09 15:35:31,285][00359] Num frames 18300... [2024-11-09 15:35:31,410][00359] Num frames 18400... [2024-11-09 15:35:31,539][00359] Num frames 18500... [2024-11-09 15:35:31,639][00359] Avg episode rewards: #0: 62.258, true rewards: #0: 20.592 [2024-11-09 15:35:31,641][00359] Avg episode reward: 62.258, avg true_objective: 20.592 [2024-11-09 15:35:31,726][00359] Num frames 18600... [2024-11-09 15:35:31,856][00359] Num frames 18700... [2024-11-09 15:35:31,982][00359] Num frames 18800... [2024-11-09 15:35:32,107][00359] Num frames 18900... [2024-11-09 15:35:32,233][00359] Num frames 19000... [2024-11-09 15:35:32,387][00359] Avg episode rewards: #0: 57.176, true rewards: #0: 19.077 [2024-11-09 15:35:32,389][00359] Avg episode reward: 57.176, avg true_objective: 19.077 [2024-11-09 15:36:17,821][00359] Replay video saved to train_dir/doom_health_gathering_supreme_2222/replay.mp4! [2024-11-09 15:37:17,872][00359] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json [2024-11-09 15:37:17,873][00359] Overriding arg 'num_workers' with value 1 passed from command line [2024-11-09 15:37:17,875][00359] Adding new argument 'no_render'=True that is not in the saved config file! [2024-11-09 15:37:17,876][00359] Adding new argument 'save_video'=True that is not in the saved config file! [2024-11-09 15:37:17,877][00359] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file! [2024-11-09 15:37:17,879][00359] Adding new argument 'video_name'=None that is not in the saved config file! [2024-11-09 15:37:17,880][00359] Adding new argument 'max_num_frames'=100000 that is not in the saved config file! [2024-11-09 15:37:17,881][00359] Adding new argument 'max_num_episodes'=10 that is not in the saved config file! [2024-11-09 15:37:17,883][00359] Adding new argument 'push_to_hub'=True that is not in the saved config file! [2024-11-09 15:37:17,884][00359] Adding new argument 'hf_repository'='lahirum/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file! [2024-11-09 15:37:17,885][00359] Adding new argument 'policy_index'=0 that is not in the saved config file! [2024-11-09 15:37:17,887][00359] Adding new argument 'eval_deterministic'=False that is not in the saved config file! [2024-11-09 15:37:17,888][00359] Adding new argument 'train_script'=None that is not in the saved config file! [2024-11-09 15:37:17,889][00359] Adding new argument 'enjoy_script'=None that is not in the saved config file! [2024-11-09 15:37:17,890][00359] Using frameskip 1 and render_action_repeat=4 for evaluation [2024-11-09 15:37:17,914][00359] RunningMeanStd input shape: (3, 72, 128) [2024-11-09 15:37:17,916][00359] RunningMeanStd input shape: (1,) [2024-11-09 15:37:17,929][00359] ConvEncoder: input_channels=3 [2024-11-09 15:37:17,968][00359] Conv encoder output size: 512 [2024-11-09 15:37:17,970][00359] Policy head output size: 512 [2024-11-09 15:37:17,990][00359] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth... [2024-11-09 15:37:18,428][00359] Num frames 100... [2024-11-09 15:37:18,554][00359] Num frames 200... [2024-11-09 15:37:18,674][00359] Num frames 300... [2024-11-09 15:37:18,795][00359] Num frames 400... [2024-11-09 15:37:18,920][00359] Num frames 500... [2024-11-09 15:37:19,047][00359] Num frames 600... [2024-11-09 15:37:19,171][00359] Num frames 700... [2024-11-09 15:37:19,294][00359] Num frames 800... [2024-11-09 15:37:19,424][00359] Num frames 900... [2024-11-09 15:37:19,562][00359] Num frames 1000... [2024-11-09 15:37:19,695][00359] Avg episode rewards: #0: 22.590, true rewards: #0: 10.590 [2024-11-09 15:37:19,696][00359] Avg episode reward: 22.590, avg true_objective: 10.590 [2024-11-09 15:37:19,749][00359] Num frames 1100... [2024-11-09 15:37:19,872][00359] Num frames 1200... [2024-11-09 15:37:19,994][00359] Num frames 1300... [2024-11-09 15:37:20,116][00359] Num frames 1400... [2024-11-09 15:37:20,236][00359] Num frames 1500... [2024-11-09 15:37:20,361][00359] Num frames 1600... [2024-11-09 15:37:20,483][00359] Num frames 1700... [2024-11-09 15:37:20,653][00359] Avg episode rewards: #0: 19.475, true rewards: #0: 8.975 [2024-11-09 15:37:20,655][00359] Avg episode reward: 19.475, avg true_objective: 8.975 [2024-11-09 15:37:20,664][00359] Num frames 1800... [2024-11-09 15:37:20,787][00359] Num frames 1900... [2024-11-09 15:37:20,910][00359] Num frames 2000... [2024-11-09 15:37:21,029][00359] Num frames 2100... [2024-11-09 15:37:21,147][00359] Num frames 2200... [2024-11-09 15:37:21,265][00359] Num frames 2300... [2024-11-09 15:37:21,385][00359] Num frames 2400... [2024-11-09 15:37:21,518][00359] Avg episode rewards: #0: 16.557, true rewards: #0: 8.223 [2024-11-09 15:37:21,520][00359] Avg episode reward: 16.557, avg true_objective: 8.223 [2024-11-09 15:37:21,561][00359] Num frames 2500... [2024-11-09 15:37:21,681][00359] Num frames 2600... [2024-11-09 15:37:21,804][00359] Num frames 2700... [2024-11-09 15:37:21,927][00359] Num frames 2800... [2024-11-09 15:37:22,049][00359] Num frames 2900... [2024-11-09 15:37:22,170][00359] Num frames 3000... [2024-11-09 15:37:22,292][00359] Num frames 3100... [2024-11-09 15:37:22,414][00359] Num frames 3200... [2024-11-09 15:37:22,542][00359] Num frames 3300... [2024-11-09 15:37:22,665][00359] Num frames 3400... [2024-11-09 15:37:22,788][00359] Num frames 3500... [2024-11-09 15:37:22,909][00359] Num frames 3600... [2024-11-09 15:37:23,031][00359] Num frames 3700... [2024-11-09 15:37:23,153][00359] Num frames 3800... [2024-11-09 15:37:23,274][00359] Num frames 3900... [2024-11-09 15:37:23,393][00359] Num frames 4000... [2024-11-09 15:37:23,516][00359] Num frames 4100... [2024-11-09 15:37:23,639][00359] Num frames 4200... [2024-11-09 15:37:23,763][00359] Num frames 4300... [2024-11-09 15:37:23,857][00359] Avg episode rewards: #0: 26.080, true rewards: #0: 10.830 [2024-11-09 15:37:23,859][00359] Avg episode reward: 26.080, avg true_objective: 10.830 [2024-11-09 15:37:23,943][00359] Num frames 4400... [2024-11-09 15:37:24,064][00359] Num frames 4500... [2024-11-09 15:37:24,184][00359] Num frames 4600... [2024-11-09 15:37:24,307][00359] Num frames 4700... [2024-11-09 15:37:24,430][00359] Num frames 4800... [2024-11-09 15:37:24,517][00359] Avg episode rewards: #0: 22.452, true rewards: #0: 9.652 [2024-11-09 15:37:24,519][00359] Avg episode reward: 22.452, avg true_objective: 9.652 [2024-11-09 15:37:24,613][00359] Num frames 4900... [2024-11-09 15:37:24,731][00359] Num frames 5000... [2024-11-09 15:37:24,853][00359] Num frames 5100... [2024-11-09 15:37:24,973][00359] Num frames 5200... [2024-11-09 15:37:25,093][00359] Num frames 5300... [2024-11-09 15:37:25,214][00359] Num frames 5400... [2024-11-09 15:37:25,335][00359] Num frames 5500... [2024-11-09 15:37:25,455][00359] Num frames 5600... [2024-11-09 15:37:25,635][00359] Avg episode rewards: #0: 21.665, true rewards: #0: 9.498 [2024-11-09 15:37:25,637][00359] Avg episode reward: 21.665, avg true_objective: 9.498 [2024-11-09 15:37:25,640][00359] Num frames 5700... [2024-11-09 15:37:25,760][00359] Num frames 5800... [2024-11-09 15:37:25,884][00359] Num frames 5900... [2024-11-09 15:37:26,007][00359] Num frames 6000... [2024-11-09 15:37:26,127][00359] Num frames 6100... [2024-11-09 15:37:26,247][00359] Num frames 6200... [2024-11-09 15:37:26,368][00359] Num frames 6300... [2024-11-09 15:37:26,493][00359] Num frames 6400... [2024-11-09 15:37:26,614][00359] Num frames 6500... [2024-11-09 15:37:26,734][00359] Num frames 6600... [2024-11-09 15:37:26,858][00359] Num frames 6700... [2024-11-09 15:37:26,979][00359] Num frames 6800... [2024-11-09 15:37:27,100][00359] Num frames 6900... [2024-11-09 15:37:27,220][00359] Num frames 7000... [2024-11-09 15:37:27,378][00359] Avg episode rewards: #0: 23.981, true rewards: #0: 10.124 [2024-11-09 15:37:27,380][00359] Avg episode reward: 23.981, avg true_objective: 10.124 [2024-11-09 15:37:27,398][00359] Num frames 7100... [2024-11-09 15:37:27,524][00359] Num frames 7200... [2024-11-09 15:37:27,646][00359] Num frames 7300... [2024-11-09 15:37:27,764][00359] Num frames 7400... [2024-11-09 15:37:27,885][00359] Num frames 7500... [2024-11-09 15:37:27,945][00359] Avg episode rewards: #0: 21.629, true rewards: #0: 9.379 [2024-11-09 15:37:27,947][00359] Avg episode reward: 21.629, avg true_objective: 9.379 [2024-11-09 15:37:28,065][00359] Num frames 7600... [2024-11-09 15:37:28,184][00359] Num frames 7700... [2024-11-09 15:37:28,304][00359] Num frames 7800... [2024-11-09 15:37:28,426][00359] Num frames 7900... [2024-11-09 15:37:28,551][00359] Num frames 8000... [2024-11-09 15:37:28,680][00359] Num frames 8100... [2024-11-09 15:37:28,808][00359] Num frames 8200... [2024-11-09 15:37:28,938][00359] Num frames 8300... [2024-11-09 15:37:28,998][00359] Avg episode rewards: #0: 21.003, true rewards: #0: 9.226 [2024-11-09 15:37:28,999][00359] Avg episode reward: 21.003, avg true_objective: 9.226 [2024-11-09 15:37:29,120][00359] Num frames 8400... [2024-11-09 15:37:29,242][00359] Num frames 8500... [2024-11-09 15:37:29,363][00359] Num frames 8600... [2024-11-09 15:37:29,485][00359] Num frames 8700... [2024-11-09 15:37:29,605][00359] Num frames 8800... [2024-11-09 15:37:29,734][00359] Num frames 8900... [2024-11-09 15:37:29,861][00359] Num frames 9000... [2024-11-09 15:37:29,987][00359] Num frames 9100... [2024-11-09 15:37:30,113][00359] Num frames 9200... [2024-11-09 15:37:30,242][00359] Num frames 9300... [2024-11-09 15:37:30,371][00359] Num frames 9400... [2024-11-09 15:37:30,502][00359] Num frames 9500... [2024-11-09 15:37:30,631][00359] Num frames 9600... [2024-11-09 15:37:30,760][00359] Num frames 9700... [2024-11-09 15:37:30,889][00359] Num frames 9800... [2024-11-09 15:37:31,014][00359] Num frames 9900... [2024-11-09 15:37:31,104][00359] Avg episode rewards: #0: 23.328, true rewards: #0: 9.928 [2024-11-09 15:37:31,106][00359] Avg episode reward: 23.328, avg true_objective: 9.928 [2024-11-09 15:37:54,373][00359] Replay video saved to /content/train_dir/default_experiment/replay.mp4!