File size: 1,270 Bytes
11751af
 
aa32fbc
 
 
 
 
 
 
 
 
 
11751af
aa32fbc
 
 
6355dc8
aa32fbc
 
 
 
922ea02
aa32fbc
 
 
 
330dec3
6355dc8
aa32fbc
 
6355dc8
aa32fbc
 
 
 
21a4c3b
aa32fbc
 
 
 
21a4c3b
aa32fbc
21a4c3b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
---
license: apache-2.0
datasets:
- laion/Anh
library_name: transformers
pipeline_tag: text-generation
tags:
- pytorch
- casual-lm
- multilingual
- instruct
- xglm
---

### Model description

This model is [`xglm-7.5b`](https://huggingface.co/facebook/xglm-7.5B) model finetuned on instruct dataset `cross_lingual.jsonl` from [`laion/Anh`](https://huggingface.co/datasets/laion/Anh).


### How to use

anh-xglm-7.5b-cross-lingual model can be loaded and used via the following code:

```python
import re
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained(
    "laion/anh-xglm-7.5b-cross-lingual",
)
tokenizer = AutoTokenizer.from_pretrained(
    "laion/anh-xglm-7.5b-cross-lingual",
)
whitespace_tokens_map = {'\n': '<n>', '  ': '<w>'}
text = "User: Apa yang terjadi pada pertempuran Cannae? Jawab dalam bahasa China.\n"
for k, v in whitespace_tokens_map.items():
    text = text.replace(k, v)
inputs = tokenizer(text, return_tensors="pt")
tokens = model.generate(**inputs)
output = tokenizer.decode(tokens[0], skip_special_tokens=True)
for v in whitespace_tokens_map.values():
    output = re.sub(rf"{v}\s+(\S+)", rf"{v}\1", output)
for k, v in whitespace_tokens_map.items():
    output = output.replace(v, k)
```