File size: 7,193 Bytes
c602f24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": []
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "cells": [
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "WaYYbq814jEh"
      },
      "outputs": [],
      "source": [
        "!pip install tensorflow"
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "import numpy as np\n",
        "import tensorflow as tf\n",
        "from tensorflow.keras.models import Sequential\n",
        "from tensorflow.keras.layers import LSTM, Dense, Embedding\n"
      ],
      "metadata": {
        "id": "m1lkAOKh4nc_"
      },
      "execution_count": 2,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "alphabet = \"ABCDEFGHIJKLMNOPQRSTUVWXYZ\"\n",
        "\n",
        "# Convert alphabet to integers\n",
        "char_to_int = dict((c, i) for i, c in enumerate(alphabet))\n",
        "int_to_char = dict((i, c) for i, c in enumerate(alphabet))\n",
        "\n",
        "# Prepare dataset\n",
        "seq_length = 1\n",
        "dataX = []\n",
        "dataY = []\n",
        "for i in range(0, len(alphabet) - seq_length, 1):\n",
        "    seq_in = alphabet[i:i + seq_length]\n",
        "    seq_out = alphabet[i + seq_length]\n",
        "    dataX.append([char_to_int[char] for char in seq_in])\n",
        "    dataY.append(char_to_int[seq_out])\n",
        "\n",
        "X = np.reshape(dataX, (len(dataX), seq_length, 1))\n",
        "y = tf.keras.utils.to_categorical(dataY)\n"
      ],
      "metadata": {
        "id": "kjFJxMNV4oPv"
      },
      "execution_count": 3,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "model = Sequential()\n",
        "model.add(LSTM(32, input_shape=(X.shape[1], X.shape[2])))\n",
        "model.add(Dense(y.shape[1], activation='softmax'))\n",
        "model.compile(loss='categorical_crossentropy', optimizer='adam')\n"
      ],
      "metadata": {
        "id": "P9e2hWnD4pFY"
      },
      "execution_count": 4,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "model.fit(X, y, epochs=500, batch_size=1, verbose=2)\n"
      ],
      "metadata": {
        "id": "PO31MxKH4qGb"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "for pattern in dataX:\n",
        "    x = np.reshape(pattern, (1, len(pattern), 1))\n",
        "    prediction = model.predict(x, verbose=0)\n",
        "    index = np.argmax(prediction)\n",
        "    result = int_to_char[index]\n",
        "    seq_in = [int_to_char[value] for value in pattern]\n",
        "    print(seq_in, \"->\", result)\n"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "bozl3EuF4q8k",
        "outputId": "2cc54eed-8af5-4f06-d2c5-79d3ea2380f3"
      },
      "execution_count": 8,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "['A'] -> B\n",
            "['B'] -> C\n",
            "['C'] -> D\n",
            "['D'] -> E\n",
            "['E'] -> F\n",
            "['F'] -> G\n",
            "['G'] -> H\n",
            "['H'] -> I\n",
            "['I'] -> J\n",
            "['J'] -> K\n",
            "['K'] -> L\n",
            "['L'] -> M\n",
            "['M'] -> N\n",
            "['N'] -> O\n",
            "['O'] -> O\n",
            "['P'] -> P\n",
            "['Q'] -> R\n",
            "['R'] -> T\n",
            "['S'] -> T\n",
            "['T'] -> V\n",
            "['U'] -> V\n",
            "['V'] -> X\n",
            "['W'] -> Z\n",
            "['X'] -> Z\n",
            "['Y'] -> Z\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "model.save('alphabet_model.h5')\n",
        "from google.colab import files\n",
        "files.download('alphabet_model.h5')\n"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 17
        },
        "id": "FUCsjNyY8ZCs",
        "outputId": "496fd160-13f1-4af1-9ae3-ea6c89513adb"
      },
      "execution_count": 7,
      "outputs": [
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "<IPython.core.display.Javascript object>"
            ],
            "application/javascript": [
              "\n",
              "    async function download(id, filename, size) {\n",
              "      if (!google.colab.kernel.accessAllowed) {\n",
              "        return;\n",
              "      }\n",
              "      const div = document.createElement('div');\n",
              "      const label = document.createElement('label');\n",
              "      label.textContent = `Downloading \"${filename}\": `;\n",
              "      div.appendChild(label);\n",
              "      const progress = document.createElement('progress');\n",
              "      progress.max = size;\n",
              "      div.appendChild(progress);\n",
              "      document.body.appendChild(div);\n",
              "\n",
              "      const buffers = [];\n",
              "      let downloaded = 0;\n",
              "\n",
              "      const channel = await google.colab.kernel.comms.open(id);\n",
              "      // Send a message to notify the kernel that we're ready.\n",
              "      channel.send({})\n",
              "\n",
              "      for await (const message of channel.messages) {\n",
              "        // Send a message to notify the kernel that we're ready.\n",
              "        channel.send({})\n",
              "        if (message.buffers) {\n",
              "          for (const buffer of message.buffers) {\n",
              "            buffers.push(buffer);\n",
              "            downloaded += buffer.byteLength;\n",
              "            progress.value = downloaded;\n",
              "          }\n",
              "        }\n",
              "      }\n",
              "      const blob = new Blob(buffers, {type: 'application/binary'});\n",
              "      const a = document.createElement('a');\n",
              "      a.href = window.URL.createObjectURL(blob);\n",
              "      a.download = filename;\n",
              "      div.appendChild(a);\n",
              "      a.click();\n",
              "      div.remove();\n",
              "    }\n",
              "  "
            ]
          },
          "metadata": {}
        },
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "<IPython.core.display.Javascript object>"
            ],
            "application/javascript": [
              "download(\"download_10038af2-1923-4b7b-afba-d12d0f08f61e\", \"alphabet_model.h5\", 91488)"
            ]
          },
          "metadata": {}
        }
      ]
    }
  ]
}