File size: 3,688 Bytes
b2ecd51 e49b193 845f05f b2ecd51 aaafb7d fcb84f7 e49b193 5c251db b2ecd51 5c251db 878f4ac 59c5a49 878f4ac b2ecd51 ca209e8 b2ecd51 7a15c0e b2ecd51 7a15c0e b2ecd51 7a15c0e b2ecd51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
---
language:
- en
thumbnail: "https://staticassetbucket.s3.us-west-1.amazonaws.com/outputv2_grid.png"
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
datasets:
- lambdalabs/naruto-blip-captions
---
# Naruto diffusion
__Stable Diffusion fine tuned on Naruto by [Lambda Labs](https://lambdalabs.com/).__
__Try the live [text-to-naruto demo here](https://huggingface.co/spaces/lambdalabs/text-to-naruto)!__
If you want to find out how to train your own Stable Diffusion variants, see this [example](https://github.com/LambdaLabsML/examples/tree/main/stable-diffusion-finetuning) from Lambda.
## About
Put in a text prompt and generate your own Naruto style image!
![pk0.jpg](https://staticassetbucket.s3.us-west-1.amazonaws.com/outputv2_grid.png)
> "Bill Gates with a hoodie", "John Oliver with Naruto style", "Hello Kitty with Naruto style", "Lebron James with a hat", "Mickael Jackson as a ninja", "Banksy Street art of ninja"
![pk1.jpg](https://staticassetbucket.s3.us-west-1.amazonaws.com/marvel_grid.png)
## Prompt engineering matters
We find that prompt engineering does help produce compelling and consistent Naruto style portraits.
For example, writing prompts such as '<person_name> ninja portrait' or '<person_name> in the style of Naruto tends to produce results that are closer to the style of Naruto character with the characteristic headband and other elements of costume.
Here are a few examples of prompts with and without prompt engineering that will illustrate that point.
**Bill Gates:**
![pk2.jpg](https://staticassetbucket.s3.us-west-1.amazonaws.com/bill_gates_vanilla.png)
> Without prompt engineering
![pk3.jpg](https://staticassetbucket.s3.us-west-1.amazonaws.com/bill_gates_ninja.png)
> With prompt engineering
**A cute bunny:**
![pk4.jpg](https://staticassetbucket.s3.us-west-1.amazonaws.com/cute_bunny_vanilla.png)
> Without prompt engineering
![pk4.jpg](https://staticassetbucket.s3.us-west-1.amazonaws.com/cute_bunny_ninja.png)
> With prompt engineering
## Usage
To run model locally:
```bash
!pip install diffusers==0.3.0
!pip install transformers scipy ftfy
```
```python
import torch
from diffusers import StableDiffusionPipeline
from torch import autocast
pipe = StableDiffusionPipeline.from_pretrained("lambdalabs/sd-naruto-diffusers", torch_dtype=torch.float16)
pipe = pipe.to("cuda")
prompt = "Yoda"
scale = 10
n_samples = 4
# Sometimes the nsfw checker is confused by the Naruto images, you can disable
# it at your own risk here
disable_safety = False
if disable_safety:
def null_safety(images, **kwargs):
return images, False
pipe.safety_checker = null_safety
with autocast("cuda"):
images = pipe(n_samples*[prompt], guidance_scale=scale).images
for idx, im in enumerate(images):
im.save(f"{idx:06}.png")
```
## Model description
Trained on [BLIP captioned Naruto images](https://huggingface.co/datasets/lambdalabs/naruto-blip-captions) using 2xA6000 GPUs on [Lambda GPU Cloud](https://lambdalabs.com/service/gpu-cloud) for around 30,000 step (about 12 hours, at a cost of about $20).
## Links
- [Lambda Diffusers](https://github.com/LambdaLabsML/lambda-diffusers)
- [Captioned Naruto dataset](https://huggingface.co/datasets/lambdalabs/naruto-blip-captions)
- [Model weights in Diffusers format](https://huggingface.co/lambdalabs/sd-naruto-diffusers)
- [Original model weights](https://huggingface.co/justinpinkney/pokemon-stable-diffusion)
- [Naruto diffusers repo](https://github.com/eolecvk/naruto-sd)
Trained by Eole Cervenka after the work of [Justin Pinkney](justinpinkney.com) ([@Buntworthy](https://twitter.com/Buntworthy)) at [Lambda Labs](https://lambdalabs.com/). |