lambdaofgod commited on
Commit
4dc2811
·
1 Parent(s): bab6ed6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -16
README.md CHANGED
@@ -10,17 +10,14 @@ tags:
10
 
11
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 200 dimensional dense vector space and can be used for tasks like clustering or semantic search.
12
 
13
- <!--- Describe your model here -->
14
 
15
- ## Usage (Sentence-Transformers)
16
 
17
- Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
18
 
19
- ```
20
- pip install -U sentence-transformers
21
- ```
22
 
23
- Then you can use the model like this:
24
 
25
  ```python
26
  from sentence_transformers import SentenceTransformer
@@ -32,15 +29,6 @@ print(embeddings)
32
  ```
33
 
34
 
35
-
36
- ## Evaluation Results
37
-
38
- <!--- Describe how your model was evaluated -->
39
-
40
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=lambdaofgod/paperswithcode_word2vec)
41
-
42
-
43
-
44
  ## Full Model Architecture
45
  ```
46
  SentenceTransformer(
 
10
 
11
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 200 dimensional dense vector space and can be used for tasks like clustering or semantic search.
12
 
13
+ ## Training
14
 
15
+ This model was trained on PapersWithCode dataset on abstracts and READMEs using gensim.
16
 
17
+ <!--- Describe your model here -->
18
 
19
+ ## Usage (Sentence-Transformers)
 
 
20
 
 
21
 
22
  ```python
23
  from sentence_transformers import SentenceTransformer
 
29
  ```
30
 
31
 
 
 
 
 
 
 
 
 
 
32
  ## Full Model Architecture
33
  ```
34
  SentenceTransformer(