--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # lambdaofgod/paperswithcode_word2vec This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 200 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Training This model was trained on PapersWithCode dataset on abstracts and READMEs using gensim. ## Usage (Sentence-Transformers) ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('lambdaofgod/paperswithcode_word2vec') embeddings = model.encode(sentences) print(embeddings) ``` ## Full Model Architecture ``` SentenceTransformer( (0): WordEmbeddings( (emb_layer): Embedding(147043, 200) ) (1): Pooling({'word_embedding_dimension': 200, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors