Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,121 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
4 |
+
### BioinspiredMixtral: Large Language Model for the Mechanics of Biological and Bio-Inspired Materials using Mixture-of-Experts
|
5 |
+
|
6 |
+
To accelerate discovery and guide insights, we report an open-source autoregressive transformer large language model (LLM), trained on expert knowledge in the biological materials field, especially focused on mechanics and structural properties.
|
7 |
+
|
8 |
+
The model is finetuned with a corpus of over a thousand peer-reviewed articles in the field of structural biological and bio-inspired materials and can be prompted to recall information, assist with research tasks, and function as an engine for creativity.
|
9 |
+
|
10 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/K0GifLVENb8G0nERQAzeQ.png)
|
11 |
+
|
12 |
+
This model is based on work reported in https://doi.org/10.1002/advs.202306724, but focused on the development of a mixture-of-experts strategy.
|
13 |
+
|
14 |
+
The model is a fine-tuned version of mistralai/Mixtral-8x7B-Instruct-v0.1.
|
15 |
+
|
16 |
+
```
|
17 |
+
from llama_cpp import Llama
|
18 |
+
|
19 |
+
model_path='lamm-mit/BioinspiredMixtral/ggml-model-q5_K_M.gguf'
|
20 |
+
chat_format="mistral-instruct"
|
21 |
+
|
22 |
+
llm = Llama(model_path=model_path,
|
23 |
+
n_gpu_layers=-1,verbose= True,
|
24 |
+
n_ctx=10000,
|
25 |
+
#main_gpu=0,
|
26 |
+
chat_format=chat_format,
|
27 |
+
#split_mode=llama_cpp.LLAMA_SPLIT_LAYER
|
28 |
+
)
|
29 |
+
```
|
30 |
+
|
31 |
+
Or, download directly from Hugging Face:
|
32 |
+
|
33 |
+
```
|
34 |
+
from llama_cpp import Llama
|
35 |
+
|
36 |
+
model_path='lamm-mit/BioinspiredMixtral/ggml-model-q5_K_M.gguf'
|
37 |
+
chat_format="mistral-instruct"
|
38 |
+
|
39 |
+
llm = Llama.from_pretrained(
|
40 |
+
repo_id=model_path,
|
41 |
+
filename="*q5_K_M.gguf",
|
42 |
+
verbose=True,
|
43 |
+
n_gpu_layers=-1,
|
44 |
+
n_ctx=10000,
|
45 |
+
#main_gpu=0,
|
46 |
+
chat_format=chat_format,
|
47 |
+
)
|
48 |
+
```
|
49 |
+
For inference:
|
50 |
+
```
|
51 |
+
def generate_response (model,tokenizer,text_input="Biology offers amazing possibilities, especially for",
|
52 |
+
num_return_sequences=1,
|
53 |
+
temperature=1., #the higher the temperature, the more creative the model becomes
|
54 |
+
max_new_tokens=127,
|
55 |
+
num_beams=1,
|
56 |
+
top_k = 50,
|
57 |
+
top_p =0.9,repetition_penalty=1.,eos_token_id=2,verbatim=False,
|
58 |
+
exponential_decay_length_penalty_fac=None,add_special_tokens =True,
|
59 |
+
):
|
60 |
+
inputs = tokenizer(text_input, add_special_tokens = add_special_tokens, return_tensors ='pt').to(device)
|
61 |
+
|
62 |
+
with torch.no_grad():
|
63 |
+
|
64 |
+
outputs = model.generate (input_ids = inputs["input_ids"],
|
65 |
+
attention_mask = inputs["attention_mask"] , # This is usually done automatically by the tokenizer
|
66 |
+
max_new_tokens=max_new_tokens,
|
67 |
+
temperature=temperature, #value used to modulate the next token probabilities.
|
68 |
+
num_beams=num_beams,
|
69 |
+
top_k = top_k,
|
70 |
+
top_p = top_p,
|
71 |
+
num_return_sequences = num_return_sequences,
|
72 |
+
eos_token_id=eos_token_id,
|
73 |
+
pad_token_id = eos_token_id,
|
74 |
+
do_sample =True,#skip_prompt=True,
|
75 |
+
repetition_penalty=repetition_penalty,
|
76 |
+
)
|
77 |
+
|
78 |
+
return tokenizer.batch_decode(outputs[:,inputs["input_ids"].shape[1]:].detach().cpu().numpy(), skip_special_tokens=True)
|
79 |
+
|
80 |
+
def generate_BioMixtral (system_prompt='You a helpful assistant. You are familiar with materials science, especially biological and bioinspired materials. ',
|
81 |
+
prompt='What is spider silk in the context of bioinspired materials?',
|
82 |
+
repetition_penalty=1.,
|
83 |
+
top_p=0.9, top_k=256,
|
84 |
+
temperature=0.5, max_tokens=512, verbatim=False, eos_token=None,
|
85 |
+
prepend_response='',
|
86 |
+
):
|
87 |
+
|
88 |
+
if eos_token==None:
|
89 |
+
eos_token= tokenizer.eos_token_id
|
90 |
+
|
91 |
+
if system_prompt==None:
|
92 |
+
messages=[
|
93 |
+
{"role": "user", "content": prompt},
|
94 |
+
]
|
95 |
+
else:
|
96 |
+
messages=[
|
97 |
+
{"role": "system", "content": system_prompt},
|
98 |
+
{"role": "user", "content": prompt},
|
99 |
+
]
|
100 |
+
txt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True,
|
101 |
+
)
|
102 |
+
txt=txt+prepend_response
|
103 |
+
|
104 |
+
output_text=generate_response (model,tokenizer,text_input=txt,eos_token_id=eos_token,
|
105 |
+
num_return_sequences=1, repetition_penalty=repetition_penalty,
|
106 |
+
top_p=top_p, top_k=top_k,
|
107 |
+
temperature=temperature,max_new_tokens=max_tokens, verbatim=verbatim,
|
108 |
+
)
|
109 |
+
return output_text[0]
|
110 |
+
|
111 |
+
start_time = time.time()
|
112 |
+
result=generate_BioMixtral(system_prompt='You respond accurately.',
|
113 |
+
prompt="What is graphene? Answer with detail.",
|
114 |
+
max_tokens=512, temperature=0.7, )
|
115 |
+
|
116 |
+
print (result)
|
117 |
+
deltat=time.time() - start_time
|
118 |
+
print("--- %s seconds ---" % deltat)
|
119 |
+
toked=tokenizer(res)
|
120 |
+
print ("Tokens per second (generation): ", len (toked['input_ids'])/deltat)
|
121 |
+
```
|