--- license: apache-2.0 --- ### BioinspiredMixtral: Large Language Model for the Mechanics of Biological and Bio-Inspired Materials using Mixture-of-Experts To accelerate discovery and guide insights, we report an open-source autoregressive transformer large language model (LLM), trained on expert knowledge in the biological materials field, especially focused on mechanics and structural properties. The model is finetuned with a corpus of over a thousand peer-reviewed articles in the field of structural biological and bio-inspired materials and can be prompted to recall information, assist with research tasks, and function as an engine for creativity. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/K0GifLVENb8G0nERQAzeQ.png) This model is based on work reported in https://doi.org/10.1002/advs.202306724, but focused on the development of a mixture-of-experts strategy. The model is a fine-tuned version of mistralai/Mixtral-8x7B-Instruct-v0.1. ``` from llama_cpp import Llama model_path='lamm-mit/BioinspiredMixtral/ggml-model-q5_K_M.gguf' chat_format="mistral-instruct" llm = Llama(model_path=model_path, n_gpu_layers=-1,verbose= True, n_ctx=10000, #main_gpu=0, chat_format=chat_format, #split_mode=llama_cpp.LLAMA_SPLIT_LAYER ) ``` Or, download directly from Hugging Face: ``` from llama_cpp import Llama model_path='lamm-mit/BioinspiredMixtral/ggml-model-q5_K_M.gguf' chat_format="mistral-instruct" llm = Llama.from_pretrained( repo_id=model_path, filename="*q5_K_M.gguf", verbose=True, n_gpu_layers=-1, n_ctx=10000, #main_gpu=0, chat_format=chat_format, ) ``` For inference: ``` def generate_BioMixtral (system_prompt='You are an expert in biological materials, mechanics and related topics.', prompt="What is spider silk?", temperature=0.0, max_tokens=10000, ): if system_prompt==None: messages=[ {"role": "user", "content": prompt}, ] else: messages=[ {"role": "system", "content": system_prompt}, {"role": "user", "content": prompt}, ] result=llm.create_chat_completion( messages=messages, temperature=temperature, max_tokens=max_tokens, ) start_time = time.time() result=generate_BioMixtral(system_prompt='You respond accurately.', prompt="What is graphene? Answer with detail.", max_tokens=512, temperature=0.7, ) print (result) deltat=time.time() - start_time print("--- %s seconds ---" % deltat) toked=tokenizer(res) print ("Tokens per second (generation): ", len (toked['input_ids'])/deltat) ```