mjbuehler commited on
Commit
983cab1
·
verified ·
1 Parent(s): db40fad

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -11
README.md CHANGED
@@ -146,8 +146,7 @@ def is_url_or_filename(val) -> bool:
146
  return True
147
 
148
  def ask_about_image (model, processor, question, images_input=[], verbatim=False,temperature=0.1,show_image=False,
149
- system="You are a materials scientist. ", show_conversation=True,
150
- max_new_tokens=256, messages=[], images=[], use_Markdown=False):
151
 
152
  images_input=ensure_list(images_input)
153
  if len (images)==0:
@@ -196,15 +195,6 @@ def ask_about_image (model, processor, question, images_input=[], verbatim=Fals
196
 
197
  messages.append ( {"role": "assistant", "content": [ {"type": "text", "text": generated_texts}]} )
198
 
199
- formatted_conversation = format_conversation(messages, images)
200
-
201
- # Display the formatted conversation in Jupyter Notebook
202
- if show_conversation:
203
- if use_Markdown:
204
- display(Markdown(formatted_conversation))
205
- else:
206
- display(HTML(formatted_conversation))
207
-
208
  return generated_texts, messages, images
209
 
210
  question = """What is shown in this image, and what is the relevance for materials design? Include a discussion of multi-agent AI.
@@ -220,6 +210,8 @@ response, messages,images= ask_about_image ( model, processor, question,
220
  init_instr='You carefully study the image, and respond accurately, but succinctly. Think step-by-step.\n\n',
221
  show_conversation=True,
222
  max_new_tokens=512, messages=[], images=[])
 
 
223
  ```
224
 
225
  Sample output:
 
146
  return True
147
 
148
  def ask_about_image (model, processor, question, images_input=[], verbatim=False,temperature=0.1,show_image=False,
149
+ system="You are a materials scientist. ", max_new_tokens=256, messages=[], images=[], ):
 
150
 
151
  images_input=ensure_list(images_input)
152
  if len (images)==0:
 
195
 
196
  messages.append ( {"role": "assistant", "content": [ {"type": "text", "text": generated_texts}]} )
197
 
 
 
 
 
 
 
 
 
 
198
  return generated_texts, messages, images
199
 
200
  question = """What is shown in this image, and what is the relevance for materials design? Include a discussion of multi-agent AI.
 
210
  init_instr='You carefully study the image, and respond accurately, but succinctly. Think step-by-step.\n\n',
211
  show_conversation=True,
212
  max_new_tokens=512, messages=[], images=[])
213
+
214
+ print (response)
215
  ```
216
 
217
  Sample output: