File size: 14,121 Bytes
f1a03c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
# coding=utf-8
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import torch
import torch.nn as nn
from transformers import CLIPVisionModel, PretrainedConfig
from transformers import CLIPVisionConfig 
from transformers.utils import logging
from datetime import datetime 

logger = logging.get_logger(__name__)

CLIP_VIT_LARGE_PATCH14_336_CONFIG = CLIPVisionConfig(
  attention_dropout=0.0,
  dropout=0.0,
  hidden_act="quick_gelu",
  hidden_size=1024,
  image_size=336,
  initializer_factor=1.0,
  initializer_range=0.02,
  intermediate_size=4096,
  layer_norm_eps=1e-05,
  num_attention_heads=16,
  num_channels=3,
  num_hidden_layers=24,
  patch_size=14,
  projection_dim=768 
)

class Phi3ImageEmbedding(nn.Module):
    """Phi3 Image embedding."""

    def __init__(self, config: PretrainedConfig, wte=None, **kwargs) -> None:
        super().__init__()

        # n_embed or hidden_size
        hidden_size = config.n_embd if hasattr(config, 'n_embd') else config.hidden_size
        if hasattr(config, 'embd_pdrop') or hasattr(config, 'embed_pdrop'):
            embd_drop = config.embd_pdrop if hasattr(config, 'embd_pdrop') else config.embed_pdrop
            self.drop = nn.Dropout(embd_drop)
        else:
            self.drop = None

        self.wte = wte

        if isinstance(config.img_processor, dict) and config.img_processor.get('name', None) == 'clip_vision_model':
            assert 'model_name' in config.img_processor, 'model_name must be provided for CLIPVisionModel'
            assert 'image_dim_out' in config.img_processor, 'image_dim_out must be provided for CLIPVisionModel'
            assert 'num_img_tokens' in config.img_processor, 'num_img_tokens must be provided for CLIPVisionModel'
            assert config.img_processor['model_name'] == 'openai/clip-vit-large-patch14-336'
            clip_config = CLIP_VIT_LARGE_PATCH14_336_CONFIG
            self.img_processor = CLIPVisionModel(clip_config)
            image_dim_out = config.img_processor['image_dim_out']
            self.num_img_tokens = config.img_processor['num_img_tokens']
        else:
            raise NotImplementedError(f'img_processor = {config.img_processor}, not implemented')

        self.image_dim_out = image_dim_out
        self.img_sizes = None

        # global_gn and sub_gn for hd transform, serves as line separator
        self.use_hd_transform = kwargs.get('use_hd_transform', False)
        self.with_learnable_separator = kwargs.get('with_learnable_separator', False)
        self.hd_transform_order = kwargs.get('hd_transform_order', 'glb_sub')
        # with_hd_transform and with_learnable_separator should have same value
        assert self.use_hd_transform == self.with_learnable_separator, 'use_hd_transform and with_learnable_separator should have same value'
        if self.with_learnable_separator:
            assert self.use_hd_transform, 'learnable separator is only for hd transform'
            # 1024 * 4, merge spatial to channel dimension
            self.glb_GN = nn.Parameter(torch.zeros([1, 1, self.image_dim_out * 4]))
            self.sub_GN = nn.Parameter(torch.zeros([1, 1, 1, self.image_dim_out * 4]))
            logger.info(f'learnable separator enabled for hd transform, hd_transform_order = {self.hd_transform_order}')

        projection_cls = kwargs.get('projection_cls', 'linear')
        if projection_cls == 'linear':
            self.img_projection = nn.Linear(image_dim_out, hidden_size)
        elif projection_cls == 'mlp' and self.use_hd_transform:
            dim_projection = hidden_size
            depth = 2
            layers = [nn.Linear(image_dim_out * 4, dim_projection)]
            for _ in range(1, depth):
                layers.extend([nn.GELU(),
                                nn.Linear(dim_projection, dim_projection)])
            self.img_projection = nn.Sequential(*layers)
        elif projection_cls == 'mlp':
            dim_projection = hidden_size
            depth = 2
            layers = [nn.Linear(image_dim_out, dim_projection)]
            for _ in range(1, depth):
                layers.extend([nn.GELU(),
                                nn.Linear(dim_projection, dim_projection)])
            self.img_projection = nn.Sequential(*layers)
        else:
            raise NotImplementedError(f'projection_cls = {projection_cls}, not implemented')

        self.vocab_size = config.vocab_size
        self.img_features = None

        if isinstance(config.img_processor, dict):
            self.layer_idx = config.img_processor.get('layer_idx', -2)
            self.type_feature = config.img_processor.get('type_feature', 'patch')
        else:
            self.layer_idx = -2
            self.type_feature = 'patch'


    def set_img_features(self, img_features: torch.FloatTensor) -> None:
        self.img_features = img_features

    def set_img_sizes(self, img_sizes: torch.LongTensor) -> None:
        self.img_sizes = img_sizes

    def get_img_features(self, img_embeds: torch.FloatTensor) -> torch.FloatTensor:
        LAYER_IDX = self.layer_idx
        TYPE_FEATURE = self.type_feature

        img_processor_output = self.img_processor(img_embeds, output_hidden_states=True)
        img_feature = img_processor_output.hidden_states[LAYER_IDX]

        if TYPE_FEATURE == "patch":
            patch_feature = img_feature[:, 1:]
            return patch_feature

        if TYPE_FEATURE == "cls_patch":
            return img_feature

        raise NotImplementedError

    def forward(self, input_ids: torch.LongTensor, pixel_values: torch.FloatTensor, image_sizes=None) -> torch.FloatTensor:

        MAX_INPUT_ID = int(1e9)
        img_embeds = pixel_values
        img_sizes = image_sizes

        if self.img_features is not None:
            img_embeds = self.img_features.clone()
            self.img_features = None

        if self.img_sizes is not None:
            img_sizes = self.img_sizes

        input_shape = input_ids.size()
        input_ids = input_ids.view(-1, input_shape[-1])

        with torch.no_grad():
            positions = torch.nonzero((input_ids < 0) & (input_ids > -MAX_INPUT_ID), as_tuple=False)
        
        select = False

        if isinstance(self.img_projection, nn.Sequential):  
            target_device = self.img_projection[0].bias.device  
            target_dtype = self.img_projection[0].bias.dtype  
        else:  # It's a single nn.Linear layer  
            target_device = self.img_projection.bias.device  
            target_dtype = self.img_projection.bias.dtype  

        if len(positions.tolist()) > 0:
            with torch.no_grad():
                g_values = abs(input_ids[positions[:, 0], positions[:, 1]])

            if self.use_hd_transform and img_sizes is not None and len(img_sizes):
                hd_transform = True
                assert img_embeds.ndim == 5, f'img_embeds size: {img_embeds.size()}, expect 5D tensor for hd transform'
                # img_embeds: (num_images, max_num_crops, 3, H, W)
                # img_sizes: (num_images, 2).view(1, -1)

                start_time = datetime.now()
                bs = img_embeds.shape[0]
                # Nx(HW)xC
                img_features = self.get_img_features(img_embeds.flatten(0, 1))
                base_feat_height = base_feat_width = int(img_features.shape[1] ** 0.5)

                assert base_feat_height == 24 and base_feat_width == 24, f'base_feat_height: {base_feat_height}, base_feat_width: {base_feat_width}, expect 24x24 features for hd transform'

                # bs x max_num_crops x (24x24) x C
                img_features = img_features.view(bs, -1, base_feat_height * base_feat_width, self.image_dim_out)
                C = self.image_dim_out
                H = base_feat_height

                output_imgs = []
                output_len = []
                # training is tensor, inference is list
                if isinstance(img_sizes, torch.Tensor):
                    img_sizes = img_sizes.view(-1, 2)
                for _bs in range(bs):
                    h, w = img_sizes[_bs]
                    h = h // 336 
                    w = w // 336
                    B_ = h * w

                    # 1 x (24x24) x 1024
                    global_img_feature = img_features[_bs, :1]

                    # 1 x 12 x 12 x 4096
                    glb_img = global_img_feature.reshape(1,H,H,C).reshape(1,H//2,2,H//2,2,C).contiguous().permute(0,1,3,2,4,5).reshape(1,H//2,H//2,4*C).contiguous()
                    temp_glb_GN = self.sub_GN.repeat(1, H//2, 1, 1)

                    # 1 x 156 x 4096
                    glb_img = torch.cat([glb_img, temp_glb_GN], dim=2).reshape(1,-1,4*C)

                    # (max_num_crops-1) x (12x12) x C
                    sub_img = img_features[_bs, 1:]
                    # 16x574x1024
                    # get rid of padding sub_img
                    sub_img = sub_img[:B_]

                    # (num_crops, 12, 2, 12, 2, 1024) -> (num_crops, 12, 12, 2, 2, 1024) -> (num_crops, 12*12, 4*1024)
                    sub_img = sub_img.reshape(B_,H,H,C).reshape(B_,H//2,2,H//2,2,C).contiguous().permute(0,1,3,2,4,5).reshape(B_,-1,4*C).contiguous()
                    sub_img = sub_img.reshape(1, h, w, 12, 12, -1).permute(0,1,3,2,4,5).reshape(1,h*12,w*12,4*C)
                    temp_sub_GN = self.sub_GN.repeat(1, h*12, 1, 1)
                    sub_img = torch.cat([sub_img, temp_sub_GN], dim=2).reshape(1,-1,4*C)
                    # (1, num_img_tokens, 1024*4)

                    # glb + sub
                    if self.hd_transform_order == 'glb_sub':
                        output_imgs.append(torch.cat([glb_img, self.glb_GN, sub_img], dim=1))
                    elif self.hd_transform_order == 'sub_glb':
                        output_imgs.append(torch.cat([sub_img, self.glb_GN, glb_img], dim=1))
                    else:
                        raise NotImplementedError(f'hd_transform_order = {self.hd_transform_order}, not implemented')

                    temp_len = int((h*w+1)*144 + 1 + (h+1)*12)
                    assert temp_len == output_imgs[-1].shape[1], f'temp_len: {temp_len}, output_imgs[-1].shape[1]: {output_imgs[-1].shape[1]}'
                    output_len.append(temp_len)
                
                num_img_tokens = output_len
                img_set_tensor = []
                for _output_img in output_imgs:
                    img_feature_proj = self.img_projection(_output_img.to(target_device).to(target_dtype))
                    img_set_tensor.append(img_feature_proj)
                logger.info(f'img_embeds size: {img_embeds.size()}, image sizes: {img_sizes} loading time {datetime.now() - start_time}')
            elif img_embeds.ndim == 4:
                selected_g_values = g_values[::self.num_img_tokens]
                assert len(img_embeds) == len(selected_g_values), f'img_embeds size: {img_embeds.size()}, selected_g_values size: {len(selected_g_values)}, selected_g_value {selected_g_values}'
                start_time = datetime.now()
                tt = (
                    self.get_img_features(img_embeds)
                    .to(target_device)
                    .to(target_dtype)
                    .reshape(-1, self.image_dim_out)
                )
                logger.info(f'img_embeds size: {img_embeds.size()}, loading time {datetime.now() - start_time}')
                img_set_tensor = self.img_projection(tt)  # adapted visual features.
            elif img_embeds.ndim == 3:
                selected_g_values = g_values[::self.num_img_tokens]
                assert len(img_embeds) == len(selected_g_values), f'img_embeds size: {img_embeds.size()}, selected_g_values size: {len(selected_g_values)}, selected_g_value {selected_g_values}'
                tt = (
                    img_embeds
                    .to(target_device)
                    .to(target_dtype)
                    .view(-1, self.image_dim_out)
                )
                img_set_tensor = self.img_projection(tt)  # adapted visual features.
            else:
                raise NotImplementedError
            select = True
        
        with torch.no_grad():
            input_ids.clamp_min_(0).clamp_max_(self.vocab_size)
        
        hidden_states = self.wte(input_ids)

        if select:
            if hd_transform:
                idx = 0
                for i, cnt in enumerate(num_img_tokens):
                    hidden_states[positions[idx, 0], positions[idx, 1] : positions[idx, 1] + cnt] = (
                        img_set_tensor[i]
                        .to(hidden_states.dtype)
                        .to(hidden_states.device)
                        )
                    idx += cnt
            else:
                idx = 0
                assert len(selected_g_values) * self.num_img_tokens == len(img_set_tensor), f'len(selected_g_values) * self.num_img_tokens = {len(selected_g_values) * self.num_img_tokens}, len(img_set_tensor) = {len(img_set_tensor)}'
                for i, g in enumerate(selected_g_values):
                    cnt = self.num_img_tokens
                    hidden_states[positions[idx, 0], positions[idx, 1] : positions[idx, 1] + cnt] = (
                        img_set_tensor[i * cnt : (i + 1) * cnt]
                        .to(hidden_states.dtype)
                        .to(hidden_states.device)
                        )
                    idx += cnt

        if self.drop is not None:
            hidden_states = self.drop(hidden_states)

        return hidden_states