mjbuehler commited on
Commit
97bb6a2
·
verified ·
1 Parent(s): 510e325

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +28 -10
README.md CHANGED
@@ -152,7 +152,23 @@ grid
152
 
153
  Download this script: [SDXL DreamBooth-LoRA_Fine-Tune.ipynb](https://huggingface.co/lamm-mit/SDXL-leaf-inspired/resolve/main/SDXL_DreamBooth_LoRA_Fine-Tune.ipynb)
154
 
155
- You need to create a local folder ```leaf_concept_dir_SDXL``` and add the leaf images (provided in this repository, see subfolder).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
156
 
157
  The code will automatically download the training script.
158
 
@@ -161,14 +177,16 @@ The training script can handle custom prompts associated with each image, which
161
  For instance, for the images used here, they are:
162
 
163
  ```raw
164
- ['<leaf microstructure>, a close up of a green plant with a lot of small holes',
165
- '<leaf microstructure>, a close up of a leaf with a small insect on it',
166
- '<leaf microstructure>, a close up of a plant with a lot of green leaves',
167
- '<leaf microstructure>, a close up of a green plant with a yellow light',
168
- '<leaf microstructure>, a close up of a green plant with a white center',
169
- '<leaf microstructure>, arafed leaf with a white line on the center',
170
- '<leaf microstructure>, a close up of a leaf with a yellow light shining through it',
171
- '<leaf microstructure>, arafed image of a green plant with a yellow cross']
 
 
172
  ```
173
 
174
  Training then proceeds as:
@@ -222,7 +240,7 @@ with open(f'{instance_data_dir}metadata.jsonl', 'w') as outfile:
222
  ```
223
  This produces a JSON file in the ```instance_data_dir``` directory:
224
 
225
- ```json
226
  {"file_name": "0.jpeg", "prompt": "<leaf microstructure>, a close up of a green plant with a lot of small holes"}
227
  {"file_name": "1.jpeg", "prompt": "<leaf microstructure>, a close up of a leaf with a small insect on it"}
228
  {"file_name": "2.jpeg", "prompt": "<leaf microstructure>, a close up of a plant with a lot of green leaves"}
 
152
 
153
  Download this script: [SDXL DreamBooth-LoRA_Fine-Tune.ipynb](https://huggingface.co/lamm-mit/SDXL-leaf-inspired/resolve/main/SDXL_DreamBooth_LoRA_Fine-Tune.ipynb)
154
 
155
+ You need to create a local folder ```leaf_concept_dir_SDXL``` and add the leaf images (provided in this repository, see subfolder), like so:
156
+
157
+ ```raw
158
+ mkdir leaf_concept_dir_SDXL
159
+ cd leaf_concept_dir_SDXL
160
+ wget https://huggingface.co/lamm-mit/SDXL-leaf-inspired/resolve/main/leaf_concept_dir_SDXL/0.jpeg
161
+ wget https://huggingface.co/lamm-mit/SDXL-leaf-inspired/resolve/main/leaf_concept_dir_SDXL/1.jpeg
162
+ wget https://huggingface.co/lamm-mit/SDXL-leaf-inspired/resolve/main/leaf_concept_dir_SDXL/2.jpeg
163
+ wget https://huggingface.co/lamm-mit/SDXL-leaf-inspired/resolve/main/leaf_concept_dir_SDXL/3.jpeg
164
+ wget https://huggingface.co/lamm-mit/SDXL-leaf-inspired/resolve/main/leaf_concept_dir_SDXL/87.jpg
165
+ wget https://huggingface.co/lamm-mit/SDXL-leaf-inspired/resolve/main/leaf_concept_dir_SDXL/87.jpg
166
+ wget https://huggingface.co/lamm-mit/SDXL-leaf-inspired/resolve/main/leaf_concept_dir_SDXL/88.jpg
167
+ wget https://huggingface.co/lamm-mit/SDXL-leaf-inspired/resolve/main/leaf_concept_dir_SDXL/90.jpg
168
+ wget https://huggingface.co/lamm-mit/SDXL-leaf-inspired/resolve/main/leaf_concept_dir_SDXL/91.jpg
169
+ wget https://huggingface.co/lamm-mit/SDXL-leaf-inspired/resolve/main/leaf_concept_dir_SDXL/94.jpg
170
+ cd ..
171
+ ```
172
 
173
  The code will automatically download the training script.
174
 
 
177
  For instance, for the images used here, they are:
178
 
179
  ```raw
180
+ {"file_name": "0.jpeg", "prompt": "<leaf microstructure>, a close up of a green plant with a lot of small holes"}
181
+ {"file_name": "1.jpeg", "prompt": "<leaf microstructure>, a close up of a leaf with a small insect on it"}
182
+ {"file_name": "2.jpeg", "prompt": "<leaf microstructure>, a close up of a plant with a lot of green leaves"}
183
+ {"file_name": "3.jpeg", "prompt": "<leaf microstructure>, a close up of a leaf with a yellow substance in it"}
184
+ {"file_name": "87.jpg", "prompt": "<leaf microstructure>, a close up of a green plant with a yellow light"}
185
+ {"file_name": "88.jpg", "prompt": "<leaf microstructure>, a close up of a green plant with a white center"}
186
+ {"file_name": "90.jpg", "prompt": "<leaf microstructure>, arafed leaf with a white line on the center"}
187
+ {"file_name": "91.jpg", "prompt": "<leaf microstructure>, arafed image of a green leaf with a white spot"}
188
+ {"file_name": "92.jpg", "prompt": "<leaf microstructure>, a close up of a leaf with a yellow light shining through it"}
189
+ {"file_name": "94.jpg", "prompt": "<leaf microstructure>, arafed image of a green plant with a yellow cross"}
190
  ```
191
 
192
  Training then proceeds as:
 
240
  ```
241
  This produces a JSON file in the ```instance_data_dir``` directory:
242
 
243
+ ```raw
244
  {"file_name": "0.jpeg", "prompt": "<leaf microstructure>, a close up of a green plant with a lot of small holes"}
245
  {"file_name": "1.jpeg", "prompt": "<leaf microstructure>, a close up of a leaf with a small insect on it"}
246
  {"file_name": "2.jpeg", "prompt": "<leaf microstructure>, a close up of a plant with a lot of green leaves"}