File size: 230,214 Bytes
2ade44e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2022-11-01 12:49:03,490 ----------------------------------------------------------------------------------------------------
2022-11-01 12:49:03,490 Model: "SequenceTagger(
  (embeddings): StackedEmbeddings(
    (list_embedding_0): FlairEmbeddings(
      (lm): LanguageModel(
        (drop): Dropout(p=0.1, inplace=False)
        (encoder): Embedding(962, 100)
        (rnn): LSTM(100, 1024)
        (decoder): Linear(in_features=1024, out_features=962, bias=True)
      )
    )
    (list_embedding_1): FlairEmbeddings(
      (lm): LanguageModel(
        (drop): Dropout(p=0.1, inplace=False)
        (encoder): Embedding(962, 100)
        (rnn): LSTM(100, 1024)
        (decoder): Linear(in_features=1024, out_features=962, bias=True)
      )
    )
  )
  (dropout): Dropout(p=0.3380078963015963, inplace=False)
  (word_dropout): WordDropout(p=0.05)
  (locked_dropout): LockedDropout(p=0.5)
  (embedding2nn): Linear(in_features=2048, out_features=2048, bias=True)
  (rnn): LSTM(2048, 128, num_layers=2, batch_first=True, dropout=0.5, bidirectional=True)
  (linear): Linear(in_features=256, out_features=19, bias=True)
  (loss_function): ViterbiLoss()
  (crf): CRF()
)"
2022-11-01 12:49:03,490 ----------------------------------------------------------------------------------------------------
2022-11-01 12:49:03,490 Corpus: "Corpus: 7886 train + 876 dev + 4045 test sentences"
2022-11-01 12:49:03,490 ----------------------------------------------------------------------------------------------------
2022-11-01 12:49:03,490 Parameters:
2022-11-01 12:49:03,490  - learning_rate: "0.100000"
2022-11-01 12:49:03,490  - mini_batch_size: "32"
2022-11-01 12:49:03,490  - patience: "3"
2022-11-01 12:49:03,490  - anneal_factor: "0.5"
2022-11-01 12:49:03,490  - max_epochs: "150"
2022-11-01 12:49:03,490  - shuffle: "True"
2022-11-01 12:49:03,490  - train_with_dev: "True"
2022-11-01 12:49:03,490  - batch_growth_annealing: "False"
2022-11-01 12:49:03,490 ----------------------------------------------------------------------------------------------------
2022-11-01 12:49:03,490 Model training base path: "ner-tests/uk.flairembeddings.champ"
2022-11-01 12:49:03,491 ----------------------------------------------------------------------------------------------------
2022-11-01 12:49:03,491 Device: cpu
2022-11-01 12:49:03,491 ----------------------------------------------------------------------------------------------------
2022-11-01 12:49:03,491 Embeddings storage mode: gpu
2022-11-01 12:49:03,491 ----------------------------------------------------------------------------------------------------
2022-11-01 12:50:09,565 epoch 1 - iter 27/274 - loss 0.61951446 - samples/sec: 13.08 - lr: 0.100000
2022-11-01 12:51:14,717 epoch 1 - iter 54/274 - loss 0.51046988 - samples/sec: 13.26 - lr: 0.100000
2022-11-01 12:52:22,958 epoch 1 - iter 81/274 - loss 0.40838070 - samples/sec: 12.66 - lr: 0.100000
2022-11-01 12:53:46,868 epoch 1 - iter 108/274 - loss 0.36574824 - samples/sec: 10.30 - lr: 0.100000
2022-11-01 12:54:38,313 epoch 1 - iter 135/274 - loss 0.32373590 - samples/sec: 16.80 - lr: 0.100000
2022-11-01 12:55:23,882 epoch 1 - iter 162/274 - loss 0.28818606 - samples/sec: 18.96 - lr: 0.100000
2022-11-01 12:56:20,788 epoch 1 - iter 189/274 - loss 0.25828452 - samples/sec: 15.18 - lr: 0.100000
2022-11-01 12:56:58,874 epoch 1 - iter 216/274 - loss 0.23950005 - samples/sec: 22.69 - lr: 0.100000
2022-11-01 12:57:50,282 epoch 1 - iter 243/274 - loss 0.22160623 - samples/sec: 16.81 - lr: 0.100000
2022-11-01 12:58:46,515 epoch 1 - iter 270/274 - loss 0.21126815 - samples/sec: 15.37 - lr: 0.100000
2022-11-01 12:58:55,152 ----------------------------------------------------------------------------------------------------
2022-11-01 12:58:55,153 EPOCH 1 done: loss 0.2089 - lr 0.100000
2022-11-01 13:03:03,629 Evaluating as a multi-label problem: False
2022-11-01 13:03:03,647 TEST : loss 0.13904191553592682 - f1-score (micro avg)  0.5512
2022-11-01 13:03:03,698 BAD EPOCHS (no improvement): 0
2022-11-01 13:03:03,756 ----------------------------------------------------------------------------------------------------
2022-11-01 13:03:15,574 epoch 2 - iter 27/274 - loss 0.10819005 - samples/sec: 73.14 - lr: 0.100000
2022-11-01 13:03:27,236 epoch 2 - iter 54/274 - loss 0.10311525 - samples/sec: 74.11 - lr: 0.100000
2022-11-01 13:03:39,859 epoch 2 - iter 81/274 - loss 0.10132389 - samples/sec: 68.46 - lr: 0.100000
2022-11-01 13:03:50,897 epoch 2 - iter 108/274 - loss 0.10064433 - samples/sec: 78.30 - lr: 0.100000
2022-11-01 13:04:02,826 epoch 2 - iter 135/274 - loss 0.10064467 - samples/sec: 72.45 - lr: 0.100000
2022-11-01 13:04:16,449 epoch 2 - iter 162/274 - loss 0.10836500 - samples/sec: 63.44 - lr: 0.100000
2022-11-01 13:04:28,828 epoch 2 - iter 189/274 - loss 0.10522271 - samples/sec: 69.81 - lr: 0.100000
2022-11-01 13:04:42,197 epoch 2 - iter 216/274 - loss 0.10281006 - samples/sec: 64.64 - lr: 0.100000
2022-11-01 13:04:54,240 epoch 2 - iter 243/274 - loss 0.10025360 - samples/sec: 71.77 - lr: 0.100000
2022-11-01 13:05:07,501 epoch 2 - iter 270/274 - loss 0.09897187 - samples/sec: 65.17 - lr: 0.100000
2022-11-01 13:05:10,043 ----------------------------------------------------------------------------------------------------
2022-11-01 13:05:10,043 EPOCH 2 done: loss 0.0992 - lr 0.100000
2022-11-01 13:05:35,346 Evaluating as a multi-label problem: False
2022-11-01 13:05:35,362 TEST : loss 0.08393135666847229 - f1-score (micro avg)  0.739
2022-11-01 13:05:35,413 BAD EPOCHS (no improvement): 0
2022-11-01 13:05:35,503 ----------------------------------------------------------------------------------------------------
2022-11-01 13:05:48,724 epoch 3 - iter 27/274 - loss 0.08097851 - samples/sec: 65.37 - lr: 0.100000
2022-11-01 13:06:01,967 epoch 3 - iter 54/274 - loss 0.07444780 - samples/sec: 65.26 - lr: 0.100000
2022-11-01 13:06:14,499 epoch 3 - iter 81/274 - loss 0.07164834 - samples/sec: 68.96 - lr: 0.100000
2022-11-01 13:06:26,228 epoch 3 - iter 108/274 - loss 0.07237300 - samples/sec: 73.68 - lr: 0.100000
2022-11-01 13:06:37,579 epoch 3 - iter 135/274 - loss 0.07152923 - samples/sec: 76.14 - lr: 0.100000
2022-11-01 13:06:50,615 epoch 3 - iter 162/274 - loss 0.07222106 - samples/sec: 66.30 - lr: 0.100000
2022-11-01 13:07:03,210 epoch 3 - iter 189/274 - loss 0.07203354 - samples/sec: 68.62 - lr: 0.100000
2022-11-01 13:07:16,259 epoch 3 - iter 216/274 - loss 0.07359814 - samples/sec: 66.23 - lr: 0.100000
2022-11-01 13:07:27,473 epoch 3 - iter 243/274 - loss 0.07244371 - samples/sec: 77.07 - lr: 0.100000
2022-11-01 13:07:39,487 epoch 3 - iter 270/274 - loss 0.07220347 - samples/sec: 71.94 - lr: 0.100000
2022-11-01 13:07:41,274 ----------------------------------------------------------------------------------------------------
2022-11-01 13:07:41,274 EPOCH 3 done: loss 0.0718 - lr 0.100000
2022-11-01 13:08:06,634 Evaluating as a multi-label problem: False
2022-11-01 13:08:06,649 TEST : loss 0.06586140394210815 - f1-score (micro avg)  0.7879
2022-11-01 13:08:06,702 BAD EPOCHS (no improvement): 0
2022-11-01 13:08:06,788 ----------------------------------------------------------------------------------------------------
2022-11-01 13:08:17,828 epoch 4 - iter 27/274 - loss 0.06119555 - samples/sec: 78.29 - lr: 0.100000
2022-11-01 13:08:30,426 epoch 4 - iter 54/274 - loss 0.06264965 - samples/sec: 68.60 - lr: 0.100000
2022-11-01 13:08:42,231 epoch 4 - iter 81/274 - loss 0.06322773 - samples/sec: 73.21 - lr: 0.100000
2022-11-01 13:08:53,700 epoch 4 - iter 108/274 - loss 0.06038977 - samples/sec: 75.35 - lr: 0.100000
2022-11-01 13:09:06,851 epoch 4 - iter 135/274 - loss 0.06248566 - samples/sec: 65.71 - lr: 0.100000
2022-11-01 13:09:19,477 epoch 4 - iter 162/274 - loss 0.06279878 - samples/sec: 68.45 - lr: 0.100000
2022-11-01 13:09:33,000 epoch 4 - iter 189/274 - loss 0.06245445 - samples/sec: 63.91 - lr: 0.100000
2022-11-01 13:09:45,946 epoch 4 - iter 216/274 - loss 0.06230904 - samples/sec: 66.76 - lr: 0.100000
2022-11-01 13:09:59,830 epoch 4 - iter 243/274 - loss 0.06128421 - samples/sec: 62.24 - lr: 0.100000
2022-11-01 13:10:11,584 epoch 4 - iter 270/274 - loss 0.06083109 - samples/sec: 73.53 - lr: 0.100000
2022-11-01 13:10:13,492 ----------------------------------------------------------------------------------------------------
2022-11-01 13:10:13,492 EPOCH 4 done: loss 0.0608 - lr 0.100000
2022-11-01 13:10:38,798 Evaluating as a multi-label problem: False
2022-11-01 13:10:38,813 TEST : loss 0.061087507754564285 - f1-score (micro avg)  0.7982
2022-11-01 13:10:38,866 BAD EPOCHS (no improvement): 0
2022-11-01 13:10:38,953 ----------------------------------------------------------------------------------------------------
2022-11-01 13:10:50,869 epoch 5 - iter 27/274 - loss 0.05534610 - samples/sec: 72.53 - lr: 0.100000
2022-11-01 13:11:02,268 epoch 5 - iter 54/274 - loss 0.05243949 - samples/sec: 75.82 - lr: 0.100000
2022-11-01 13:11:16,824 epoch 5 - iter 81/274 - loss 0.05033856 - samples/sec: 59.37 - lr: 0.100000
2022-11-01 13:11:29,824 epoch 5 - iter 108/274 - loss 0.05199909 - samples/sec: 66.48 - lr: 0.100000
2022-11-01 13:11:42,909 epoch 5 - iter 135/274 - loss 0.05390198 - samples/sec: 66.05 - lr: 0.100000
2022-11-01 13:11:54,210 epoch 5 - iter 162/274 - loss 0.05559011 - samples/sec: 76.47 - lr: 0.100000
2022-11-01 13:12:07,160 epoch 5 - iter 189/274 - loss 0.05545001 - samples/sec: 66.74 - lr: 0.100000
2022-11-01 13:12:18,635 epoch 5 - iter 216/274 - loss 0.05452558 - samples/sec: 75.32 - lr: 0.100000
2022-11-01 13:12:30,242 epoch 5 - iter 243/274 - loss 0.05387747 - samples/sec: 74.46 - lr: 0.100000
2022-11-01 13:12:43,258 epoch 5 - iter 270/274 - loss 0.05358782 - samples/sec: 66.40 - lr: 0.100000
2022-11-01 13:12:44,917 ----------------------------------------------------------------------------------------------------
2022-11-01 13:12:44,917 EPOCH 5 done: loss 0.0535 - lr 0.100000
2022-11-01 13:13:10,313 Evaluating as a multi-label problem: False
2022-11-01 13:13:10,329 TEST : loss 0.045144665986299515 - f1-score (micro avg)  0.8098
2022-11-01 13:13:10,381 BAD EPOCHS (no improvement): 0
2022-11-01 13:13:10,468 ----------------------------------------------------------------------------------------------------
2022-11-01 13:13:23,647 epoch 6 - iter 27/274 - loss 0.05037224 - samples/sec: 65.57 - lr: 0.100000
2022-11-01 13:13:36,723 epoch 6 - iter 54/274 - loss 0.04536131 - samples/sec: 66.09 - lr: 0.100000
2022-11-01 13:13:49,037 epoch 6 - iter 81/274 - loss 0.04718256 - samples/sec: 70.18 - lr: 0.100000
2022-11-01 13:14:01,344 epoch 6 - iter 108/274 - loss 0.04840201 - samples/sec: 70.22 - lr: 0.100000
2022-11-01 13:14:14,416 epoch 6 - iter 135/274 - loss 0.04792430 - samples/sec: 66.11 - lr: 0.100000
2022-11-01 13:14:26,815 epoch 6 - iter 162/274 - loss 0.04791153 - samples/sec: 69.70 - lr: 0.100000
2022-11-01 13:14:38,924 epoch 6 - iter 189/274 - loss 0.04811161 - samples/sec: 71.37 - lr: 0.100000
2022-11-01 13:14:50,571 epoch 6 - iter 216/274 - loss 0.04808548 - samples/sec: 74.20 - lr: 0.100000
2022-11-01 13:15:02,316 epoch 6 - iter 243/274 - loss 0.04851904 - samples/sec: 73.59 - lr: 0.100000
2022-11-01 13:15:15,000 epoch 6 - iter 270/274 - loss 0.04914944 - samples/sec: 68.13 - lr: 0.100000
2022-11-01 13:15:16,810 ----------------------------------------------------------------------------------------------------
2022-11-01 13:15:16,811 EPOCH 6 done: loss 0.0491 - lr 0.100000
2022-11-01 13:15:42,123 Evaluating as a multi-label problem: False
2022-11-01 13:15:42,139 TEST : loss 0.03993703052401543 - f1-score (micro avg)  0.8164
2022-11-01 13:15:42,191 BAD EPOCHS (no improvement): 0
2022-11-01 13:15:42,277 ----------------------------------------------------------------------------------------------------
2022-11-01 13:15:54,919 epoch 7 - iter 27/274 - loss 0.04702372 - samples/sec: 68.36 - lr: 0.100000
2022-11-01 13:16:08,351 epoch 7 - iter 54/274 - loss 0.04766522 - samples/sec: 64.34 - lr: 0.100000
2022-11-01 13:16:20,530 epoch 7 - iter 81/274 - loss 0.04786969 - samples/sec: 70.96 - lr: 0.100000
2022-11-01 13:16:33,124 epoch 7 - iter 108/274 - loss 0.04794053 - samples/sec: 68.62 - lr: 0.100000
2022-11-01 13:16:44,786 epoch 7 - iter 135/274 - loss 0.04732043 - samples/sec: 74.11 - lr: 0.100000
2022-11-01 13:16:56,876 epoch 7 - iter 162/274 - loss 0.04645068 - samples/sec: 71.48 - lr: 0.100000
2022-11-01 13:17:07,762 epoch 7 - iter 189/274 - loss 0.04566414 - samples/sec: 79.39 - lr: 0.100000
2022-11-01 13:17:20,361 epoch 7 - iter 216/274 - loss 0.04596395 - samples/sec: 68.59 - lr: 0.100000
2022-11-01 13:17:34,748 epoch 7 - iter 243/274 - loss 0.04585695 - samples/sec: 60.07 - lr: 0.100000
2022-11-01 13:17:46,833 epoch 7 - iter 270/274 - loss 0.04602936 - samples/sec: 71.51 - lr: 0.100000
2022-11-01 13:17:48,543 ----------------------------------------------------------------------------------------------------
2022-11-01 13:17:48,543 EPOCH 7 done: loss 0.0459 - lr 0.100000
2022-11-01 13:18:13,817 Evaluating as a multi-label problem: False
2022-11-01 13:18:13,832 TEST : loss 0.0414385087788105 - f1-score (micro avg)  0.8123
2022-11-01 13:18:13,885 BAD EPOCHS (no improvement): 0
2022-11-01 13:18:13,971 ----------------------------------------------------------------------------------------------------
2022-11-01 13:18:27,515 epoch 8 - iter 27/274 - loss 0.03864514 - samples/sec: 63.81 - lr: 0.100000
2022-11-01 13:18:40,798 epoch 8 - iter 54/274 - loss 0.04677644 - samples/sec: 65.07 - lr: 0.100000
2022-11-01 13:18:52,934 epoch 8 - iter 81/274 - loss 0.04564782 - samples/sec: 71.21 - lr: 0.100000
2022-11-01 13:19:04,156 epoch 8 - iter 108/274 - loss 0.04660204 - samples/sec: 77.01 - lr: 0.100000
2022-11-01 13:19:16,047 epoch 8 - iter 135/274 - loss 0.04492183 - samples/sec: 72.68 - lr: 0.100000
2022-11-01 13:19:28,142 epoch 8 - iter 162/274 - loss 0.04498433 - samples/sec: 71.45 - lr: 0.100000
2022-11-01 13:19:39,987 epoch 8 - iter 189/274 - loss 0.04445526 - samples/sec: 72.96 - lr: 0.100000
2022-11-01 13:19:53,894 epoch 8 - iter 216/274 - loss 0.04466556 - samples/sec: 62.14 - lr: 0.100000
2022-11-01 13:20:06,190 epoch 8 - iter 243/274 - loss 0.04424167 - samples/sec: 70.28 - lr: 0.100000
2022-11-01 13:20:18,046 epoch 8 - iter 270/274 - loss 0.04411825 - samples/sec: 72.90 - lr: 0.100000
2022-11-01 13:20:19,887 ----------------------------------------------------------------------------------------------------
2022-11-01 13:20:19,888 EPOCH 8 done: loss 0.0442 - lr 0.100000
2022-11-01 13:20:45,195 Evaluating as a multi-label problem: False
2022-11-01 13:20:45,210 TEST : loss 0.0352301225066185 - f1-score (micro avg)  0.8301
2022-11-01 13:20:45,262 BAD EPOCHS (no improvement): 0
2022-11-01 13:20:45,347 ----------------------------------------------------------------------------------------------------
2022-11-01 13:20:57,331 epoch 9 - iter 27/274 - loss 0.03421196 - samples/sec: 72.12 - lr: 0.100000
2022-11-01 13:21:11,143 epoch 9 - iter 54/274 - loss 0.03958776 - samples/sec: 62.57 - lr: 0.100000
2022-11-01 13:21:22,700 epoch 9 - iter 81/274 - loss 0.03861008 - samples/sec: 74.78 - lr: 0.100000
2022-11-01 13:21:34,844 epoch 9 - iter 108/274 - loss 0.03858464 - samples/sec: 71.16 - lr: 0.100000
2022-11-01 13:21:46,395 epoch 9 - iter 135/274 - loss 0.03857484 - samples/sec: 74.82 - lr: 0.100000
2022-11-01 13:21:58,479 epoch 9 - iter 162/274 - loss 0.03923221 - samples/sec: 71.51 - lr: 0.100000
2022-11-01 13:22:12,010 epoch 9 - iter 189/274 - loss 0.04032935 - samples/sec: 63.87 - lr: 0.100000
2022-11-01 13:22:24,283 epoch 9 - iter 216/274 - loss 0.03989000 - samples/sec: 70.42 - lr: 0.100000
2022-11-01 13:22:37,207 epoch 9 - iter 243/274 - loss 0.04033892 - samples/sec: 66.87 - lr: 0.100000
2022-11-01 13:22:49,535 epoch 9 - iter 270/274 - loss 0.04091413 - samples/sec: 70.11 - lr: 0.100000
2022-11-01 13:22:51,188 ----------------------------------------------------------------------------------------------------
2022-11-01 13:22:51,189 EPOCH 9 done: loss 0.0409 - lr 0.100000
2022-11-01 13:23:16,507 Evaluating as a multi-label problem: False
2022-11-01 13:23:16,522 TEST : loss 0.035973258316516876 - f1-score (micro avg)  0.8336
2022-11-01 13:23:16,574 BAD EPOCHS (no improvement): 0
2022-11-01 13:23:16,659 ----------------------------------------------------------------------------------------------------
2022-11-01 13:23:28,888 epoch 10 - iter 27/274 - loss 0.03551569 - samples/sec: 70.67 - lr: 0.100000
2022-11-01 13:23:40,651 epoch 10 - iter 54/274 - loss 0.03803901 - samples/sec: 73.47 - lr: 0.100000
2022-11-01 13:23:52,937 epoch 10 - iter 81/274 - loss 0.03866324 - samples/sec: 70.34 - lr: 0.100000
2022-11-01 13:24:04,214 epoch 10 - iter 108/274 - loss 0.03929714 - samples/sec: 76.64 - lr: 0.100000
2022-11-01 13:24:18,658 epoch 10 - iter 135/274 - loss 0.03798954 - samples/sec: 59.83 - lr: 0.100000
2022-11-01 13:24:31,144 epoch 10 - iter 162/274 - loss 0.03737353 - samples/sec: 69.21 - lr: 0.100000
2022-11-01 13:24:43,524 epoch 10 - iter 189/274 - loss 0.03819265 - samples/sec: 69.81 - lr: 0.100000
2022-11-01 13:24:55,975 epoch 10 - iter 216/274 - loss 0.03809318 - samples/sec: 69.41 - lr: 0.100000
2022-11-01 13:25:09,174 epoch 10 - iter 243/274 - loss 0.03795923 - samples/sec: 65.48 - lr: 0.100000
2022-11-01 13:25:21,702 epoch 10 - iter 270/274 - loss 0.03858601 - samples/sec: 68.98 - lr: 0.100000
2022-11-01 13:25:23,304 ----------------------------------------------------------------------------------------------------
2022-11-01 13:25:23,304 EPOCH 10 done: loss 0.0388 - lr 0.100000
2022-11-01 13:25:48,617 Evaluating as a multi-label problem: False
2022-11-01 13:25:48,633 TEST : loss 0.03315580636262894 - f1-score (micro avg)  0.8307
2022-11-01 13:25:48,683 BAD EPOCHS (no improvement): 0
2022-11-01 13:25:48,769 ----------------------------------------------------------------------------------------------------
2022-11-01 13:26:01,137 epoch 11 - iter 27/274 - loss 0.03336240 - samples/sec: 69.88 - lr: 0.100000
2022-11-01 13:26:14,421 epoch 11 - iter 54/274 - loss 0.03527565 - samples/sec: 65.06 - lr: 0.100000
2022-11-01 13:26:26,672 epoch 11 - iter 81/274 - loss 0.03575293 - samples/sec: 70.54 - lr: 0.100000
2022-11-01 13:26:39,936 epoch 11 - iter 108/274 - loss 0.03822032 - samples/sec: 65.15 - lr: 0.100000
2022-11-01 13:26:51,243 epoch 11 - iter 135/274 - loss 0.03800128 - samples/sec: 76.44 - lr: 0.100000
2022-11-01 13:27:03,276 epoch 11 - iter 162/274 - loss 0.03759663 - samples/sec: 71.82 - lr: 0.100000
2022-11-01 13:27:15,749 epoch 11 - iter 189/274 - loss 0.03792055 - samples/sec: 69.28 - lr: 0.100000
2022-11-01 13:27:28,611 epoch 11 - iter 216/274 - loss 0.03760377 - samples/sec: 67.19 - lr: 0.100000
2022-11-01 13:27:40,313 epoch 11 - iter 243/274 - loss 0.03749324 - samples/sec: 73.85 - lr: 0.100000
2022-11-01 13:27:53,182 epoch 11 - iter 270/274 - loss 0.03774304 - samples/sec: 67.15 - lr: 0.100000
2022-11-01 13:27:54,562 ----------------------------------------------------------------------------------------------------
2022-11-01 13:27:54,562 EPOCH 11 done: loss 0.0377 - lr 0.100000
2022-11-01 13:28:19,892 Evaluating as a multi-label problem: False
2022-11-01 13:28:19,908 TEST : loss 0.03283185511827469 - f1-score (micro avg)  0.8212
2022-11-01 13:28:19,960 BAD EPOCHS (no improvement): 0
2022-11-01 13:28:20,046 ----------------------------------------------------------------------------------------------------
2022-11-01 13:28:32,783 epoch 12 - iter 27/274 - loss 0.03750028 - samples/sec: 67.85 - lr: 0.100000
2022-11-01 13:28:45,843 epoch 12 - iter 54/274 - loss 0.03532475 - samples/sec: 66.17 - lr: 0.100000
2022-11-01 13:28:57,814 epoch 12 - iter 81/274 - loss 0.03713735 - samples/sec: 72.20 - lr: 0.100000
2022-11-01 13:29:09,768 epoch 12 - iter 108/274 - loss 0.03681510 - samples/sec: 72.30 - lr: 0.100000
2022-11-01 13:29:24,299 epoch 12 - iter 135/274 - loss 0.03831782 - samples/sec: 59.47 - lr: 0.100000
2022-11-01 13:29:35,963 epoch 12 - iter 162/274 - loss 0.03671352 - samples/sec: 74.10 - lr: 0.100000
2022-11-01 13:29:47,879 epoch 12 - iter 189/274 - loss 0.03644150 - samples/sec: 72.52 - lr: 0.100000
2022-11-01 13:30:01,084 epoch 12 - iter 216/274 - loss 0.03741624 - samples/sec: 65.45 - lr: 0.100000
2022-11-01 13:30:12,910 epoch 12 - iter 243/274 - loss 0.03760841 - samples/sec: 73.08 - lr: 0.100000
2022-11-01 13:30:24,282 epoch 12 - iter 270/274 - loss 0.03743746 - samples/sec: 76.00 - lr: 0.100000
2022-11-01 13:30:26,622 ----------------------------------------------------------------------------------------------------
2022-11-01 13:30:26,622 EPOCH 12 done: loss 0.0372 - lr 0.100000
2022-11-01 13:30:51,847 Evaluating as a multi-label problem: False
2022-11-01 13:30:51,862 TEST : loss 0.037361979484558105 - f1-score (micro avg)  0.8248
2022-11-01 13:30:51,915 BAD EPOCHS (no improvement): 0
2022-11-01 13:30:52,001 ----------------------------------------------------------------------------------------------------
2022-11-01 13:31:04,558 epoch 13 - iter 27/274 - loss 0.03512437 - samples/sec: 68.82 - lr: 0.100000
2022-11-01 13:31:15,671 epoch 13 - iter 54/274 - loss 0.03410457 - samples/sec: 77.77 - lr: 0.100000
2022-11-01 13:31:28,928 epoch 13 - iter 81/274 - loss 0.03664686 - samples/sec: 65.19 - lr: 0.100000
2022-11-01 13:31:41,194 epoch 13 - iter 108/274 - loss 0.03708780 - samples/sec: 70.46 - lr: 0.100000
2022-11-01 13:31:53,508 epoch 13 - iter 135/274 - loss 0.03597557 - samples/sec: 70.18 - lr: 0.100000
2022-11-01 13:32:05,194 epoch 13 - iter 162/274 - loss 0.03576194 - samples/sec: 73.95 - lr: 0.100000
2022-11-01 13:32:18,580 epoch 13 - iter 189/274 - loss 0.03517390 - samples/sec: 64.56 - lr: 0.100000
2022-11-01 13:32:31,865 epoch 13 - iter 216/274 - loss 0.03618700 - samples/sec: 65.05 - lr: 0.100000
2022-11-01 13:32:43,293 epoch 13 - iter 243/274 - loss 0.03653199 - samples/sec: 75.62 - lr: 0.100000
2022-11-01 13:32:55,873 epoch 13 - iter 270/274 - loss 0.03649977 - samples/sec: 68.70 - lr: 0.100000
2022-11-01 13:32:57,821 ----------------------------------------------------------------------------------------------------
2022-11-01 13:32:57,821 EPOCH 13 done: loss 0.0366 - lr 0.100000
2022-11-01 13:33:23,196 Evaluating as a multi-label problem: False
2022-11-01 13:33:23,211 TEST : loss 0.03093760274350643 - f1-score (micro avg)  0.8276
2022-11-01 13:33:23,262 BAD EPOCHS (no improvement): 0
2022-11-01 13:33:23,348 ----------------------------------------------------------------------------------------------------
2022-11-01 13:33:35,596 epoch 14 - iter 27/274 - loss 0.03587195 - samples/sec: 70.57 - lr: 0.100000
2022-11-01 13:33:47,961 epoch 14 - iter 54/274 - loss 0.03435583 - samples/sec: 69.89 - lr: 0.100000
2022-11-01 13:33:59,808 epoch 14 - iter 81/274 - loss 0.03350450 - samples/sec: 72.95 - lr: 0.100000
2022-11-01 13:34:11,390 epoch 14 - iter 108/274 - loss 0.03432252 - samples/sec: 74.62 - lr: 0.100000
2022-11-01 13:34:24,737 epoch 14 - iter 135/274 - loss 0.03559134 - samples/sec: 64.75 - lr: 0.100000
2022-11-01 13:34:37,434 epoch 14 - iter 162/274 - loss 0.03552331 - samples/sec: 68.06 - lr: 0.100000
2022-11-01 13:34:49,584 epoch 14 - iter 189/274 - loss 0.03506626 - samples/sec: 71.13 - lr: 0.100000
2022-11-01 13:35:03,212 epoch 14 - iter 216/274 - loss 0.03444676 - samples/sec: 63.41 - lr: 0.100000
2022-11-01 13:35:15,032 epoch 14 - iter 243/274 - loss 0.03434282 - samples/sec: 73.12 - lr: 0.100000
2022-11-01 13:35:27,648 epoch 14 - iter 270/274 - loss 0.03420688 - samples/sec: 68.50 - lr: 0.100000
2022-11-01 13:35:29,536 ----------------------------------------------------------------------------------------------------
2022-11-01 13:35:29,536 EPOCH 14 done: loss 0.0341 - lr 0.100000
2022-11-01 13:35:54,970 Evaluating as a multi-label problem: False
2022-11-01 13:35:54,985 TEST : loss 0.032740455120801926 - f1-score (micro avg)  0.8382
2022-11-01 13:35:55,038 BAD EPOCHS (no improvement): 0
2022-11-01 13:35:55,124 ----------------------------------------------------------------------------------------------------
2022-11-01 13:36:06,207 epoch 15 - iter 27/274 - loss 0.02621004 - samples/sec: 77.98 - lr: 0.100000
2022-11-01 13:36:18,117 epoch 15 - iter 54/274 - loss 0.03148500 - samples/sec: 72.56 - lr: 0.100000
2022-11-01 13:36:32,408 epoch 15 - iter 81/274 - loss 0.03283017 - samples/sec: 60.47 - lr: 0.100000
2022-11-01 13:36:44,413 epoch 15 - iter 108/274 - loss 0.03269024 - samples/sec: 72.00 - lr: 0.100000
2022-11-01 13:36:57,549 epoch 15 - iter 135/274 - loss 0.03234032 - samples/sec: 65.79 - lr: 0.100000
2022-11-01 13:37:09,569 epoch 15 - iter 162/274 - loss 0.03236532 - samples/sec: 71.90 - lr: 0.100000
2022-11-01 13:37:21,479 epoch 15 - iter 189/274 - loss 0.03211454 - samples/sec: 72.56 - lr: 0.100000
2022-11-01 13:37:33,192 epoch 15 - iter 216/274 - loss 0.03241047 - samples/sec: 73.78 - lr: 0.100000
2022-11-01 13:37:46,183 epoch 15 - iter 243/274 - loss 0.03314606 - samples/sec: 66.53 - lr: 0.100000
2022-11-01 13:37:58,664 epoch 15 - iter 270/274 - loss 0.03257262 - samples/sec: 69.24 - lr: 0.100000
2022-11-01 13:38:00,237 ----------------------------------------------------------------------------------------------------
2022-11-01 13:38:00,237 EPOCH 15 done: loss 0.0325 - lr 0.100000
2022-11-01 13:38:25,551 Evaluating as a multi-label problem: False
2022-11-01 13:38:25,566 TEST : loss 0.03659946471452713 - f1-score (micro avg)  0.8396
2022-11-01 13:38:25,619 BAD EPOCHS (no improvement): 0
2022-11-01 13:38:25,708 ----------------------------------------------------------------------------------------------------
2022-11-01 13:38:38,868 epoch 16 - iter 27/274 - loss 0.04310501 - samples/sec: 65.67 - lr: 0.100000
2022-11-01 13:38:51,141 epoch 16 - iter 54/274 - loss 0.03821968 - samples/sec: 70.42 - lr: 0.100000
2022-11-01 13:39:03,213 epoch 16 - iter 81/274 - loss 0.03601832 - samples/sec: 71.59 - lr: 0.100000
2022-11-01 13:39:15,515 epoch 16 - iter 108/274 - loss 0.03464665 - samples/sec: 70.25 - lr: 0.100000
2022-11-01 13:39:28,495 epoch 16 - iter 135/274 - loss 0.03385713 - samples/sec: 66.58 - lr: 0.100000
2022-11-01 13:39:42,428 epoch 16 - iter 162/274 - loss 0.03355248 - samples/sec: 62.02 - lr: 0.100000
2022-11-01 13:39:55,016 epoch 16 - iter 189/274 - loss 0.03305979 - samples/sec: 68.66 - lr: 0.100000
2022-11-01 13:40:06,660 epoch 16 - iter 216/274 - loss 0.03245928 - samples/sec: 74.22 - lr: 0.100000
2022-11-01 13:40:18,569 epoch 16 - iter 243/274 - loss 0.03229054 - samples/sec: 72.57 - lr: 0.100000
2022-11-01 13:40:29,519 epoch 16 - iter 270/274 - loss 0.03266463 - samples/sec: 78.93 - lr: 0.100000
2022-11-01 13:40:31,278 ----------------------------------------------------------------------------------------------------
2022-11-01 13:40:31,279 EPOCH 16 done: loss 0.0324 - lr 0.100000
2022-11-01 13:40:56,563 Evaluating as a multi-label problem: False
2022-11-01 13:40:56,579 TEST : loss 0.03419892117381096 - f1-score (micro avg)  0.8414
2022-11-01 13:40:56,630 BAD EPOCHS (no improvement): 0
2022-11-01 13:40:56,716 ----------------------------------------------------------------------------------------------------
2022-11-01 13:41:08,628 epoch 17 - iter 27/274 - loss 0.03131168 - samples/sec: 72.55 - lr: 0.100000
2022-11-01 13:41:20,642 epoch 17 - iter 54/274 - loss 0.03329973 - samples/sec: 71.94 - lr: 0.100000
2022-11-01 13:41:33,558 epoch 17 - iter 81/274 - loss 0.03205309 - samples/sec: 66.91 - lr: 0.100000
2022-11-01 13:41:46,746 epoch 17 - iter 108/274 - loss 0.03106228 - samples/sec: 65.53 - lr: 0.100000
2022-11-01 13:41:59,456 epoch 17 - iter 135/274 - loss 0.03205977 - samples/sec: 68.00 - lr: 0.100000
2022-11-01 13:42:10,814 epoch 17 - iter 162/274 - loss 0.03230744 - samples/sec: 76.09 - lr: 0.100000
2022-11-01 13:42:22,736 epoch 17 - iter 189/274 - loss 0.03217993 - samples/sec: 72.49 - lr: 0.100000
2022-11-01 13:42:35,185 epoch 17 - iter 216/274 - loss 0.03154261 - samples/sec: 69.42 - lr: 0.100000
2022-11-01 13:42:48,451 epoch 17 - iter 243/274 - loss 0.03218871 - samples/sec: 65.14 - lr: 0.100000
2022-11-01 13:43:00,903 epoch 17 - iter 270/274 - loss 0.03216961 - samples/sec: 69.40 - lr: 0.100000
2022-11-01 13:43:02,520 ----------------------------------------------------------------------------------------------------
2022-11-01 13:43:02,520 EPOCH 17 done: loss 0.0324 - lr 0.100000
2022-11-01 13:43:27,903 Evaluating as a multi-label problem: False
2022-11-01 13:43:27,919 TEST : loss 0.032121315598487854 - f1-score (micro avg)  0.8142
2022-11-01 13:43:27,973 BAD EPOCHS (no improvement): 0
2022-11-01 13:43:28,061 ----------------------------------------------------------------------------------------------------
2022-11-01 13:43:39,245 epoch 18 - iter 27/274 - loss 0.02828295 - samples/sec: 77.28 - lr: 0.100000
2022-11-01 13:43:51,970 epoch 18 - iter 54/274 - loss 0.02821400 - samples/sec: 67.91 - lr: 0.100000
2022-11-01 13:44:04,671 epoch 18 - iter 81/274 - loss 0.02895659 - samples/sec: 68.04 - lr: 0.100000
2022-11-01 13:44:17,750 epoch 18 - iter 108/274 - loss 0.02937219 - samples/sec: 66.08 - lr: 0.100000
2022-11-01 13:44:29,293 epoch 18 - iter 135/274 - loss 0.02969136 - samples/sec: 74.87 - lr: 0.100000
2022-11-01 13:44:41,423 epoch 18 - iter 162/274 - loss 0.03044366 - samples/sec: 71.25 - lr: 0.100000
2022-11-01 13:44:53,180 epoch 18 - iter 189/274 - loss 0.03033224 - samples/sec: 73.51 - lr: 0.100000
2022-11-01 13:45:05,434 epoch 18 - iter 216/274 - loss 0.03010129 - samples/sec: 70.52 - lr: 0.100000
2022-11-01 13:45:17,103 epoch 18 - iter 243/274 - loss 0.03031468 - samples/sec: 74.07 - lr: 0.100000
2022-11-01 13:45:31,926 epoch 18 - iter 270/274 - loss 0.03086624 - samples/sec: 58.30 - lr: 0.100000
2022-11-01 13:45:33,720 ----------------------------------------------------------------------------------------------------
2022-11-01 13:45:33,720 EPOCH 18 done: loss 0.0309 - lr 0.100000
2022-11-01 13:45:59,011 Evaluating as a multi-label problem: False
2022-11-01 13:45:59,027 TEST : loss 0.03097383677959442 - f1-score (micro avg)  0.8361
2022-11-01 13:45:59,081 BAD EPOCHS (no improvement): 0
2022-11-01 13:45:59,150 ----------------------------------------------------------------------------------------------------
2022-11-01 13:46:12,115 epoch 19 - iter 27/274 - loss 0.03291951 - samples/sec: 66.66 - lr: 0.100000
2022-11-01 13:46:24,726 epoch 19 - iter 54/274 - loss 0.03100127 - samples/sec: 68.53 - lr: 0.100000
2022-11-01 13:46:36,908 epoch 19 - iter 81/274 - loss 0.03008968 - samples/sec: 70.95 - lr: 0.100000
2022-11-01 13:46:49,567 epoch 19 - iter 108/274 - loss 0.02850661 - samples/sec: 68.36 - lr: 0.100000
2022-11-01 13:47:03,710 epoch 19 - iter 135/274 - loss 0.02973182 - samples/sec: 61.10 - lr: 0.100000
2022-11-01 13:47:15,650 epoch 19 - iter 162/274 - loss 0.03029075 - samples/sec: 72.38 - lr: 0.100000
2022-11-01 13:47:27,204 epoch 19 - iter 189/274 - loss 0.03061716 - samples/sec: 74.80 - lr: 0.100000
2022-11-01 13:47:39,709 epoch 19 - iter 216/274 - loss 0.03024609 - samples/sec: 69.11 - lr: 0.100000
2022-11-01 13:47:52,438 epoch 19 - iter 243/274 - loss 0.03075993 - samples/sec: 67.89 - lr: 0.100000
2022-11-01 13:48:04,395 epoch 19 - iter 270/274 - loss 0.03035569 - samples/sec: 72.28 - lr: 0.100000
2022-11-01 13:48:06,254 ----------------------------------------------------------------------------------------------------
2022-11-01 13:48:06,254 EPOCH 19 done: loss 0.0304 - lr 0.100000
2022-11-01 13:48:31,545 Evaluating as a multi-label problem: False
2022-11-01 13:48:31,560 TEST : loss 0.031058575958013535 - f1-score (micro avg)  0.8361
2022-11-01 13:48:31,612 BAD EPOCHS (no improvement): 0
2022-11-01 13:48:31,701 ----------------------------------------------------------------------------------------------------
2022-11-01 13:48:43,605 epoch 20 - iter 27/274 - loss 0.03341089 - samples/sec: 72.61 - lr: 0.100000
2022-11-01 13:48:56,331 epoch 20 - iter 54/274 - loss 0.02965002 - samples/sec: 67.91 - lr: 0.100000
2022-11-01 13:49:08,466 epoch 20 - iter 81/274 - loss 0.02936467 - samples/sec: 71.22 - lr: 0.100000
2022-11-01 13:49:20,359 epoch 20 - iter 108/274 - loss 0.02967577 - samples/sec: 72.67 - lr: 0.100000
2022-11-01 13:49:31,703 epoch 20 - iter 135/274 - loss 0.02962385 - samples/sec: 76.18 - lr: 0.100000
2022-11-01 13:49:45,689 epoch 20 - iter 162/274 - loss 0.03002445 - samples/sec: 61.79 - lr: 0.100000
2022-11-01 13:49:59,016 epoch 20 - iter 189/274 - loss 0.02979085 - samples/sec: 64.85 - lr: 0.100000
2022-11-01 13:50:11,482 epoch 20 - iter 216/274 - loss 0.03016882 - samples/sec: 69.33 - lr: 0.100000
2022-11-01 13:50:23,142 epoch 20 - iter 243/274 - loss 0.03053355 - samples/sec: 74.12 - lr: 0.100000
2022-11-01 13:50:35,085 epoch 20 - iter 270/274 - loss 0.03054658 - samples/sec: 72.37 - lr: 0.100000
2022-11-01 13:50:36,716 ----------------------------------------------------------------------------------------------------
2022-11-01 13:50:36,716 EPOCH 20 done: loss 0.0304 - lr 0.100000
2022-11-01 13:51:01,815 Evaluating as a multi-label problem: False
2022-11-01 13:51:01,830 TEST : loss 0.035328544676303864 - f1-score (micro avg)  0.8392
2022-11-01 13:51:01,882 BAD EPOCHS (no improvement): 1
2022-11-01 13:51:01,968 ----------------------------------------------------------------------------------------------------
2022-11-01 13:51:16,421 epoch 21 - iter 27/274 - loss 0.03241261 - samples/sec: 59.79 - lr: 0.100000
2022-11-01 13:51:28,464 epoch 21 - iter 54/274 - loss 0.03286965 - samples/sec: 71.76 - lr: 0.100000
2022-11-01 13:51:40,060 epoch 21 - iter 81/274 - loss 0.03240940 - samples/sec: 74.53 - lr: 0.100000
2022-11-01 13:51:52,405 epoch 21 - iter 108/274 - loss 0.03079412 - samples/sec: 70.01 - lr: 0.100000
2022-11-01 13:52:04,384 epoch 21 - iter 135/274 - loss 0.02985053 - samples/sec: 72.15 - lr: 0.100000
2022-11-01 13:52:16,601 epoch 21 - iter 162/274 - loss 0.02987171 - samples/sec: 70.74 - lr: 0.100000
2022-11-01 13:52:28,629 epoch 21 - iter 189/274 - loss 0.03085183 - samples/sec: 71.85 - lr: 0.100000
2022-11-01 13:52:40,275 epoch 21 - iter 216/274 - loss 0.03117974 - samples/sec: 74.21 - lr: 0.100000
2022-11-01 13:52:53,944 epoch 21 - iter 243/274 - loss 0.03112541 - samples/sec: 63.22 - lr: 0.100000
2022-11-01 13:53:05,688 epoch 21 - iter 270/274 - loss 0.03062103 - samples/sec: 73.59 - lr: 0.100000
2022-11-01 13:53:07,553 ----------------------------------------------------------------------------------------------------
2022-11-01 13:53:07,554 EPOCH 21 done: loss 0.0308 - lr 0.100000
2022-11-01 13:53:32,862 Evaluating as a multi-label problem: False
2022-11-01 13:53:32,877 TEST : loss 0.029285110533237457 - f1-score (micro avg)  0.8396
2022-11-01 13:53:32,929 BAD EPOCHS (no improvement): 2
2022-11-01 13:53:33,017 ----------------------------------------------------------------------------------------------------
2022-11-01 13:53:44,810 epoch 22 - iter 27/274 - loss 0.02903520 - samples/sec: 73.29 - lr: 0.100000
2022-11-01 13:53:57,359 epoch 22 - iter 54/274 - loss 0.02877626 - samples/sec: 68.87 - lr: 0.100000
2022-11-01 13:54:09,305 epoch 22 - iter 81/274 - loss 0.02903053 - samples/sec: 72.34 - lr: 0.100000
2022-11-01 13:54:22,177 epoch 22 - iter 108/274 - loss 0.02918162 - samples/sec: 67.14 - lr: 0.100000
2022-11-01 13:54:34,724 epoch 22 - iter 135/274 - loss 0.03022362 - samples/sec: 68.88 - lr: 0.100000
2022-11-01 13:54:47,100 epoch 22 - iter 162/274 - loss 0.02921564 - samples/sec: 69.83 - lr: 0.100000
2022-11-01 13:54:58,855 epoch 22 - iter 189/274 - loss 0.02907579 - samples/sec: 73.52 - lr: 0.100000
2022-11-01 13:55:11,841 epoch 22 - iter 216/274 - loss 0.02880394 - samples/sec: 66.55 - lr: 0.100000
2022-11-01 13:55:24,785 epoch 22 - iter 243/274 - loss 0.02882432 - samples/sec: 66.76 - lr: 0.100000
2022-11-01 13:55:35,994 epoch 22 - iter 270/274 - loss 0.02922647 - samples/sec: 77.11 - lr: 0.100000
2022-11-01 13:55:37,631 ----------------------------------------------------------------------------------------------------
2022-11-01 13:55:37,631 EPOCH 22 done: loss 0.0293 - lr 0.100000
2022-11-01 13:56:02,870 Evaluating as a multi-label problem: False
2022-11-01 13:56:02,885 TEST : loss 0.031731970608234406 - f1-score (micro avg)  0.8458
2022-11-01 13:56:02,937 BAD EPOCHS (no improvement): 0
2022-11-01 13:56:03,023 ----------------------------------------------------------------------------------------------------
2022-11-01 13:56:15,323 epoch 23 - iter 27/274 - loss 0.02954803 - samples/sec: 70.27 - lr: 0.100000
2022-11-01 13:56:27,494 epoch 23 - iter 54/274 - loss 0.02818459 - samples/sec: 71.01 - lr: 0.100000
2022-11-01 13:56:38,573 epoch 23 - iter 81/274 - loss 0.02966005 - samples/sec: 78.01 - lr: 0.100000
2022-11-01 13:56:52,151 epoch 23 - iter 108/274 - loss 0.02929197 - samples/sec: 63.65 - lr: 0.100000
2022-11-01 13:57:03,768 epoch 23 - iter 135/274 - loss 0.02938255 - samples/sec: 74.40 - lr: 0.100000
2022-11-01 13:57:16,576 epoch 23 - iter 162/274 - loss 0.02905523 - samples/sec: 67.48 - lr: 0.100000
2022-11-01 13:57:28,040 epoch 23 - iter 189/274 - loss 0.02845779 - samples/sec: 75.38 - lr: 0.100000
2022-11-01 13:57:41,003 epoch 23 - iter 216/274 - loss 0.02851665 - samples/sec: 66.67 - lr: 0.100000
2022-11-01 13:57:52,675 epoch 23 - iter 243/274 - loss 0.02836095 - samples/sec: 74.04 - lr: 0.100000
2022-11-01 13:58:05,834 epoch 23 - iter 270/274 - loss 0.02879719 - samples/sec: 65.68 - lr: 0.100000
2022-11-01 13:58:07,795 ----------------------------------------------------------------------------------------------------
2022-11-01 13:58:07,795 EPOCH 23 done: loss 0.0292 - lr 0.100000
2022-11-01 13:58:33,309 Evaluating as a multi-label problem: False
2022-11-01 13:58:33,324 TEST : loss 0.029490221291780472 - f1-score (micro avg)  0.8464
2022-11-01 13:58:33,376 BAD EPOCHS (no improvement): 0
2022-11-01 13:58:33,466 ----------------------------------------------------------------------------------------------------
2022-11-01 13:58:47,010 epoch 24 - iter 27/274 - loss 0.03114330 - samples/sec: 63.81 - lr: 0.100000
2022-11-01 13:58:57,750 epoch 24 - iter 54/274 - loss 0.02934230 - samples/sec: 80.47 - lr: 0.100000
2022-11-01 13:59:10,428 epoch 24 - iter 81/274 - loss 0.02821868 - samples/sec: 68.17 - lr: 0.100000
2022-11-01 13:59:22,831 epoch 24 - iter 108/274 - loss 0.02736854 - samples/sec: 69.68 - lr: 0.100000
2022-11-01 13:59:34,154 epoch 24 - iter 135/274 - loss 0.02744987 - samples/sec: 76.33 - lr: 0.100000
2022-11-01 13:59:47,845 epoch 24 - iter 162/274 - loss 0.02721262 - samples/sec: 63.12 - lr: 0.100000
2022-11-01 14:00:00,436 epoch 24 - iter 189/274 - loss 0.02819192 - samples/sec: 68.64 - lr: 0.100000
2022-11-01 14:00:12,356 epoch 24 - iter 216/274 - loss 0.02808668 - samples/sec: 72.50 - lr: 0.100000
2022-11-01 14:00:24,554 epoch 24 - iter 243/274 - loss 0.02787150 - samples/sec: 70.85 - lr: 0.100000
2022-11-01 14:00:36,399 epoch 24 - iter 270/274 - loss 0.02806091 - samples/sec: 72.96 - lr: 0.100000
2022-11-01 14:00:38,397 ----------------------------------------------------------------------------------------------------
2022-11-01 14:00:38,397 EPOCH 24 done: loss 0.0281 - lr 0.100000
2022-11-01 14:01:03,905 Evaluating as a multi-label problem: False
2022-11-01 14:01:03,920 TEST : loss 0.03052011877298355 - f1-score (micro avg)  0.8427
2022-11-01 14:01:03,971 BAD EPOCHS (no improvement): 0
2022-11-01 14:01:04,039 ----------------------------------------------------------------------------------------------------
2022-11-01 14:01:15,033 epoch 25 - iter 27/274 - loss 0.02254447 - samples/sec: 78.61 - lr: 0.100000
2022-11-01 14:01:27,113 epoch 25 - iter 54/274 - loss 0.02958591 - samples/sec: 71.54 - lr: 0.100000
2022-11-01 14:01:39,053 epoch 25 - iter 81/274 - loss 0.02847044 - samples/sec: 72.39 - lr: 0.100000
2022-11-01 14:01:50,919 epoch 25 - iter 108/274 - loss 0.02739965 - samples/sec: 72.83 - lr: 0.100000
2022-11-01 14:02:02,867 epoch 25 - iter 135/274 - loss 0.02744808 - samples/sec: 72.33 - lr: 0.100000
2022-11-01 14:02:15,744 epoch 25 - iter 162/274 - loss 0.02698485 - samples/sec: 67.12 - lr: 0.100000
2022-11-01 14:02:27,495 epoch 25 - iter 189/274 - loss 0.02731846 - samples/sec: 73.54 - lr: 0.100000
2022-11-01 14:02:40,427 epoch 25 - iter 216/274 - loss 0.02843243 - samples/sec: 66.83 - lr: 0.100000
2022-11-01 14:02:54,788 epoch 25 - iter 243/274 - loss 0.02862498 - samples/sec: 60.18 - lr: 0.100000
2022-11-01 14:03:08,086 epoch 25 - iter 270/274 - loss 0.02826127 - samples/sec: 64.99 - lr: 0.100000
2022-11-01 14:03:09,433 ----------------------------------------------------------------------------------------------------
2022-11-01 14:03:09,434 EPOCH 25 done: loss 0.0284 - lr 0.100000
2022-11-01 14:03:34,594 Evaluating as a multi-label problem: False
2022-11-01 14:03:34,610 TEST : loss 0.029107416048645973 - f1-score (micro avg)  0.8389
2022-11-01 14:03:34,662 BAD EPOCHS (no improvement): 1
2022-11-01 14:03:34,750 ----------------------------------------------------------------------------------------------------
2022-11-01 14:03:46,841 epoch 26 - iter 27/274 - loss 0.02811300 - samples/sec: 71.48 - lr: 0.100000
2022-11-01 14:03:59,602 epoch 26 - iter 54/274 - loss 0.02743337 - samples/sec: 67.72 - lr: 0.100000
2022-11-01 14:04:11,887 epoch 26 - iter 81/274 - loss 0.02763661 - samples/sec: 70.35 - lr: 0.100000
2022-11-01 14:04:25,712 epoch 26 - iter 108/274 - loss 0.02912647 - samples/sec: 62.51 - lr: 0.100000
2022-11-01 14:04:37,325 epoch 26 - iter 135/274 - loss 0.02824420 - samples/sec: 74.42 - lr: 0.100000
2022-11-01 14:04:50,074 epoch 26 - iter 162/274 - loss 0.02814963 - samples/sec: 67.79 - lr: 0.100000
2022-11-01 14:05:02,658 epoch 26 - iter 189/274 - loss 0.02796098 - samples/sec: 68.68 - lr: 0.100000
2022-11-01 14:05:15,161 epoch 26 - iter 216/274 - loss 0.02806696 - samples/sec: 69.12 - lr: 0.100000
2022-11-01 14:05:26,292 epoch 26 - iter 243/274 - loss 0.02822794 - samples/sec: 77.65 - lr: 0.100000
2022-11-01 14:05:38,777 epoch 26 - iter 270/274 - loss 0.02796632 - samples/sec: 69.22 - lr: 0.100000
2022-11-01 14:05:40,413 ----------------------------------------------------------------------------------------------------
2022-11-01 14:05:40,413 EPOCH 26 done: loss 0.0280 - lr 0.100000
2022-11-01 14:06:05,568 Evaluating as a multi-label problem: False
2022-11-01 14:06:05,583 TEST : loss 0.028921490535140038 - f1-score (micro avg)  0.8499
2022-11-01 14:06:05,635 BAD EPOCHS (no improvement): 0
2022-11-01 14:06:05,720 ----------------------------------------------------------------------------------------------------
2022-11-01 14:06:17,118 epoch 27 - iter 27/274 - loss 0.03035630 - samples/sec: 75.83 - lr: 0.100000
2022-11-01 14:06:28,418 epoch 27 - iter 54/274 - loss 0.02636220 - samples/sec: 76.48 - lr: 0.100000
2022-11-01 14:06:40,920 epoch 27 - iter 81/274 - loss 0.02716773 - samples/sec: 69.13 - lr: 0.100000
2022-11-01 14:06:53,020 epoch 27 - iter 108/274 - loss 0.02817490 - samples/sec: 71.43 - lr: 0.100000
2022-11-01 14:07:06,130 epoch 27 - iter 135/274 - loss 0.02905628 - samples/sec: 65.92 - lr: 0.100000
2022-11-01 14:07:19,646 epoch 27 - iter 162/274 - loss 0.02789546 - samples/sec: 63.94 - lr: 0.100000
2022-11-01 14:07:31,413 epoch 27 - iter 189/274 - loss 0.02750674 - samples/sec: 73.44 - lr: 0.100000
2022-11-01 14:07:43,807 epoch 27 - iter 216/274 - loss 0.02740534 - samples/sec: 69.73 - lr: 0.100000
2022-11-01 14:07:57,071 epoch 27 - iter 243/274 - loss 0.02788272 - samples/sec: 65.15 - lr: 0.100000
2022-11-01 14:08:09,097 epoch 27 - iter 270/274 - loss 0.02804086 - samples/sec: 71.86 - lr: 0.100000
2022-11-01 14:08:10,721 ----------------------------------------------------------------------------------------------------
2022-11-01 14:08:10,721 EPOCH 27 done: loss 0.0279 - lr 0.100000
2022-11-01 14:08:35,996 Evaluating as a multi-label problem: False
2022-11-01 14:08:36,011 TEST : loss 0.02727373316884041 - f1-score (micro avg)  0.8495
2022-11-01 14:08:36,063 BAD EPOCHS (no improvement): 0
2022-11-01 14:08:36,151 ----------------------------------------------------------------------------------------------------
2022-11-01 14:08:48,729 epoch 28 - iter 27/274 - loss 0.02792706 - samples/sec: 68.72 - lr: 0.100000
2022-11-01 14:09:00,474 epoch 28 - iter 54/274 - loss 0.02712818 - samples/sec: 73.58 - lr: 0.100000
2022-11-01 14:09:13,998 epoch 28 - iter 81/274 - loss 0.02881006 - samples/sec: 63.90 - lr: 0.100000
2022-11-01 14:09:26,897 epoch 28 - iter 108/274 - loss 0.02790622 - samples/sec: 66.99 - lr: 0.100000
2022-11-01 14:09:39,353 epoch 28 - iter 135/274 - loss 0.02765454 - samples/sec: 69.38 - lr: 0.100000
2022-11-01 14:09:51,992 epoch 28 - iter 162/274 - loss 0.02686081 - samples/sec: 68.38 - lr: 0.100000
2022-11-01 14:10:05,064 epoch 28 - iter 189/274 - loss 0.02634890 - samples/sec: 66.11 - lr: 0.100000
2022-11-01 14:10:16,714 epoch 28 - iter 216/274 - loss 0.02655923 - samples/sec: 74.18 - lr: 0.100000
2022-11-01 14:10:29,815 epoch 28 - iter 243/274 - loss 0.02663561 - samples/sec: 65.96 - lr: 0.100000
2022-11-01 14:10:41,079 epoch 28 - iter 270/274 - loss 0.02647144 - samples/sec: 76.72 - lr: 0.100000
2022-11-01 14:10:42,579 ----------------------------------------------------------------------------------------------------
2022-11-01 14:10:42,580 EPOCH 28 done: loss 0.0267 - lr 0.100000
2022-11-01 14:11:07,885 Evaluating as a multi-label problem: False
2022-11-01 14:11:07,901 TEST : loss 0.029852760955691338 - f1-score (micro avg)  0.8372
2022-11-01 14:11:07,953 BAD EPOCHS (no improvement): 0
2022-11-01 14:11:08,041 ----------------------------------------------------------------------------------------------------
2022-11-01 14:11:20,409 epoch 29 - iter 27/274 - loss 0.02518790 - samples/sec: 69.88 - lr: 0.100000
2022-11-01 14:11:32,626 epoch 29 - iter 54/274 - loss 0.02805683 - samples/sec: 70.74 - lr: 0.100000
2022-11-01 14:11:45,533 epoch 29 - iter 81/274 - loss 0.02825807 - samples/sec: 66.96 - lr: 0.100000
2022-11-01 14:11:57,137 epoch 29 - iter 108/274 - loss 0.02799206 - samples/sec: 74.48 - lr: 0.100000
2022-11-01 14:12:08,601 epoch 29 - iter 135/274 - loss 0.02755879 - samples/sec: 75.38 - lr: 0.100000
2022-11-01 14:12:21,338 epoch 29 - iter 162/274 - loss 0.02685576 - samples/sec: 67.85 - lr: 0.100000
2022-11-01 14:12:33,835 epoch 29 - iter 189/274 - loss 0.02594996 - samples/sec: 69.16 - lr: 0.100000
2022-11-01 14:12:46,797 epoch 29 - iter 216/274 - loss 0.02550550 - samples/sec: 66.67 - lr: 0.100000
2022-11-01 14:12:59,038 epoch 29 - iter 243/274 - loss 0.02644877 - samples/sec: 70.60 - lr: 0.100000
2022-11-01 14:13:12,139 epoch 29 - iter 270/274 - loss 0.02627661 - samples/sec: 65.96 - lr: 0.100000
2022-11-01 14:13:13,801 ----------------------------------------------------------------------------------------------------
2022-11-01 14:13:13,801 EPOCH 29 done: loss 0.0265 - lr 0.100000
2022-11-01 14:13:39,155 Evaluating as a multi-label problem: False
2022-11-01 14:13:39,171 TEST : loss 0.02927403524518013 - f1-score (micro avg)  0.8443
2022-11-01 14:13:39,223 BAD EPOCHS (no improvement): 0
2022-11-01 14:13:39,311 ----------------------------------------------------------------------------------------------------
2022-11-01 14:13:51,641 epoch 30 - iter 27/274 - loss 0.02423251 - samples/sec: 70.10 - lr: 0.100000
2022-11-01 14:14:05,415 epoch 30 - iter 54/274 - loss 0.02348831 - samples/sec: 62.74 - lr: 0.100000
2022-11-01 14:14:18,177 epoch 30 - iter 81/274 - loss 0.02264011 - samples/sec: 67.72 - lr: 0.100000
2022-11-01 14:14:29,311 epoch 30 - iter 108/274 - loss 0.02290510 - samples/sec: 77.62 - lr: 0.100000
2022-11-01 14:14:40,278 epoch 30 - iter 135/274 - loss 0.02305872 - samples/sec: 78.81 - lr: 0.100000
2022-11-01 14:14:52,410 epoch 30 - iter 162/274 - loss 0.02371256 - samples/sec: 71.23 - lr: 0.100000
2022-11-01 14:15:05,697 epoch 30 - iter 189/274 - loss 0.02443210 - samples/sec: 65.04 - lr: 0.100000
2022-11-01 14:15:18,878 epoch 30 - iter 216/274 - loss 0.02487402 - samples/sec: 65.56 - lr: 0.100000
2022-11-01 14:15:31,181 epoch 30 - iter 243/274 - loss 0.02547667 - samples/sec: 70.25 - lr: 0.100000
2022-11-01 14:15:44,553 epoch 30 - iter 270/274 - loss 0.02573419 - samples/sec: 64.63 - lr: 0.100000
2022-11-01 14:15:46,184 ----------------------------------------------------------------------------------------------------
2022-11-01 14:15:46,184 EPOCH 30 done: loss 0.0257 - lr 0.100000
2022-11-01 14:16:11,386 Evaluating as a multi-label problem: False
2022-11-01 14:16:11,401 TEST : loss 0.030005231499671936 - f1-score (micro avg)  0.8523
2022-11-01 14:16:11,453 BAD EPOCHS (no improvement): 0
2022-11-01 14:16:11,541 ----------------------------------------------------------------------------------------------------
2022-11-01 14:16:23,665 epoch 31 - iter 27/274 - loss 0.02769051 - samples/sec: 71.29 - lr: 0.100000
2022-11-01 14:16:35,224 epoch 31 - iter 54/274 - loss 0.02615510 - samples/sec: 74.77 - lr: 0.100000
2022-11-01 14:16:46,401 epoch 31 - iter 81/274 - loss 0.02630420 - samples/sec: 77.32 - lr: 0.100000
2022-11-01 14:16:59,281 epoch 31 - iter 108/274 - loss 0.02469976 - samples/sec: 67.10 - lr: 0.100000
2022-11-01 14:17:11,971 epoch 31 - iter 135/274 - loss 0.02533977 - samples/sec: 68.10 - lr: 0.100000
2022-11-01 14:17:25,008 epoch 31 - iter 162/274 - loss 0.02569860 - samples/sec: 66.29 - lr: 0.100000
2022-11-01 14:17:38,425 epoch 31 - iter 189/274 - loss 0.02582364 - samples/sec: 64.41 - lr: 0.100000
2022-11-01 14:17:50,083 epoch 31 - iter 216/274 - loss 0.02617259 - samples/sec: 74.13 - lr: 0.100000
2022-11-01 14:18:02,399 epoch 31 - iter 243/274 - loss 0.02593181 - samples/sec: 70.17 - lr: 0.100000
2022-11-01 14:18:14,787 epoch 31 - iter 270/274 - loss 0.02601068 - samples/sec: 69.77 - lr: 0.100000
2022-11-01 14:18:16,416 ----------------------------------------------------------------------------------------------------
2022-11-01 14:18:16,416 EPOCH 31 done: loss 0.0260 - lr 0.100000
2022-11-01 14:18:41,696 Evaluating as a multi-label problem: False
2022-11-01 14:18:41,712 TEST : loss 0.029843807220458984 - f1-score (micro avg)  0.8272
2022-11-01 14:18:41,764 BAD EPOCHS (no improvement): 1
2022-11-01 14:18:41,849 ----------------------------------------------------------------------------------------------------
2022-11-01 14:18:54,631 epoch 32 - iter 27/274 - loss 0.02580945 - samples/sec: 67.62 - lr: 0.100000
2022-11-01 14:19:05,986 epoch 32 - iter 54/274 - loss 0.02640680 - samples/sec: 76.11 - lr: 0.100000
2022-11-01 14:19:18,468 epoch 32 - iter 81/274 - loss 0.02720723 - samples/sec: 69.24 - lr: 0.100000
2022-11-01 14:19:31,021 epoch 32 - iter 108/274 - loss 0.02758148 - samples/sec: 68.85 - lr: 0.100000
2022-11-01 14:19:42,993 epoch 32 - iter 135/274 - loss 0.02673017 - samples/sec: 72.19 - lr: 0.100000
2022-11-01 14:19:54,726 epoch 32 - iter 162/274 - loss 0.02549280 - samples/sec: 73.66 - lr: 0.100000
2022-11-01 14:20:07,180 epoch 32 - iter 189/274 - loss 0.02547213 - samples/sec: 69.39 - lr: 0.100000
2022-11-01 14:20:19,997 epoch 32 - iter 216/274 - loss 0.02544760 - samples/sec: 67.43 - lr: 0.100000
2022-11-01 14:20:32,141 epoch 32 - iter 243/274 - loss 0.02578350 - samples/sec: 71.16 - lr: 0.100000
2022-11-01 14:20:45,434 epoch 32 - iter 270/274 - loss 0.02555593 - samples/sec: 65.02 - lr: 0.100000
2022-11-01 14:20:47,150 ----------------------------------------------------------------------------------------------------
2022-11-01 14:20:47,150 EPOCH 32 done: loss 0.0256 - lr 0.100000
2022-11-01 14:21:12,438 Evaluating as a multi-label problem: False
2022-11-01 14:21:12,453 TEST : loss 0.032904475927352905 - f1-score (micro avg)  0.8416
2022-11-01 14:21:12,505 BAD EPOCHS (no improvement): 0
2022-11-01 14:21:12,594 ----------------------------------------------------------------------------------------------------
2022-11-01 14:21:24,196 epoch 33 - iter 27/274 - loss 0.02139107 - samples/sec: 74.49 - lr: 0.100000
2022-11-01 14:21:35,808 epoch 33 - iter 54/274 - loss 0.02249589 - samples/sec: 74.43 - lr: 0.100000
2022-11-01 14:21:48,551 epoch 33 - iter 81/274 - loss 0.02273499 - samples/sec: 67.82 - lr: 0.100000
2022-11-01 14:22:00,045 epoch 33 - iter 108/274 - loss 0.02313428 - samples/sec: 75.19 - lr: 0.100000
2022-11-01 14:22:12,913 epoch 33 - iter 135/274 - loss 0.02465351 - samples/sec: 67.16 - lr: 0.100000
2022-11-01 14:22:25,998 epoch 33 - iter 162/274 - loss 0.02561604 - samples/sec: 66.04 - lr: 0.100000
2022-11-01 14:22:39,478 epoch 33 - iter 189/274 - loss 0.02617891 - samples/sec: 64.11 - lr: 0.100000
2022-11-01 14:22:52,040 epoch 33 - iter 216/274 - loss 0.02625557 - samples/sec: 68.80 - lr: 0.100000
2022-11-01 14:23:05,286 epoch 33 - iter 243/274 - loss 0.02610092 - samples/sec: 65.24 - lr: 0.100000
2022-11-01 14:23:17,260 epoch 33 - iter 270/274 - loss 0.02604854 - samples/sec: 72.18 - lr: 0.100000
2022-11-01 14:23:18,711 ----------------------------------------------------------------------------------------------------
2022-11-01 14:23:18,711 EPOCH 33 done: loss 0.0261 - lr 0.100000
2022-11-01 14:23:44,069 Evaluating as a multi-label problem: False
2022-11-01 14:23:44,084 TEST : loss 0.028233280405402184 - f1-score (micro avg)  0.8391
2022-11-01 14:23:44,136 BAD EPOCHS (no improvement): 1
2022-11-01 14:23:44,226 ----------------------------------------------------------------------------------------------------
2022-11-01 14:23:56,465 epoch 34 - iter 27/274 - loss 0.02246222 - samples/sec: 70.62 - lr: 0.100000
2022-11-01 14:24:07,833 epoch 34 - iter 54/274 - loss 0.02635074 - samples/sec: 76.03 - lr: 0.100000
2022-11-01 14:24:20,691 epoch 34 - iter 81/274 - loss 0.02508465 - samples/sec: 67.21 - lr: 0.100000
2022-11-01 14:24:33,435 epoch 34 - iter 108/274 - loss 0.02542733 - samples/sec: 67.81 - lr: 0.100000
2022-11-01 14:24:45,896 epoch 34 - iter 135/274 - loss 0.02499971 - samples/sec: 69.35 - lr: 0.100000
2022-11-01 14:24:59,505 epoch 34 - iter 162/274 - loss 0.02484198 - samples/sec: 63.50 - lr: 0.100000
2022-11-01 14:25:11,652 epoch 34 - iter 189/274 - loss 0.02512618 - samples/sec: 71.14 - lr: 0.100000
2022-11-01 14:25:22,940 epoch 34 - iter 216/274 - loss 0.02466030 - samples/sec: 76.57 - lr: 0.100000
2022-11-01 14:25:35,198 epoch 34 - iter 243/274 - loss 0.02485847 - samples/sec: 70.50 - lr: 0.100000
2022-11-01 14:25:47,307 epoch 34 - iter 270/274 - loss 0.02483982 - samples/sec: 71.37 - lr: 0.100000
2022-11-01 14:25:49,659 ----------------------------------------------------------------------------------------------------
2022-11-01 14:25:49,660 EPOCH 34 done: loss 0.0251 - lr 0.100000
2022-11-01 14:26:14,991 Evaluating as a multi-label problem: False
2022-11-01 14:26:15,007 TEST : loss 0.03128255903720856 - f1-score (micro avg)  0.8362
2022-11-01 14:26:15,058 BAD EPOCHS (no improvement): 0
2022-11-01 14:26:15,146 ----------------------------------------------------------------------------------------------------
2022-11-01 14:26:27,562 epoch 35 - iter 27/274 - loss 0.02694894 - samples/sec: 69.61 - lr: 0.100000
2022-11-01 14:26:40,795 epoch 35 - iter 54/274 - loss 0.02622403 - samples/sec: 65.31 - lr: 0.100000
2022-11-01 14:26:53,932 epoch 35 - iter 81/274 - loss 0.02467823 - samples/sec: 65.78 - lr: 0.100000
2022-11-01 14:27:08,552 epoch 35 - iter 108/274 - loss 0.02345882 - samples/sec: 59.11 - lr: 0.100000
2022-11-01 14:27:21,143 epoch 35 - iter 135/274 - loss 0.02558701 - samples/sec: 68.63 - lr: 0.100000
2022-11-01 14:27:33,403 epoch 35 - iter 162/274 - loss 0.02581309 - samples/sec: 70.49 - lr: 0.100000
2022-11-01 14:27:45,796 epoch 35 - iter 189/274 - loss 0.02556739 - samples/sec: 69.73 - lr: 0.100000
2022-11-01 14:27:57,067 epoch 35 - iter 216/274 - loss 0.02550404 - samples/sec: 76.68 - lr: 0.100000
2022-11-01 14:28:08,594 epoch 35 - iter 243/274 - loss 0.02550350 - samples/sec: 74.98 - lr: 0.100000
2022-11-01 14:28:20,638 epoch 35 - iter 270/274 - loss 0.02552577 - samples/sec: 71.76 - lr: 0.100000
2022-11-01 14:28:22,286 ----------------------------------------------------------------------------------------------------
2022-11-01 14:28:22,286 EPOCH 35 done: loss 0.0256 - lr 0.100000
2022-11-01 14:28:47,480 Evaluating as a multi-label problem: False
2022-11-01 14:28:47,496 TEST : loss 0.02886551432311535 - f1-score (micro avg)  0.839
2022-11-01 14:28:47,547 BAD EPOCHS (no improvement): 1
2022-11-01 14:28:47,616 ----------------------------------------------------------------------------------------------------
2022-11-01 14:28:58,605 epoch 36 - iter 27/274 - loss 0.02300676 - samples/sec: 78.66 - lr: 0.100000
2022-11-01 14:29:11,051 epoch 36 - iter 54/274 - loss 0.02499267 - samples/sec: 69.43 - lr: 0.100000
2022-11-01 14:29:23,960 epoch 36 - iter 81/274 - loss 0.02491617 - samples/sec: 66.95 - lr: 0.100000
2022-11-01 14:29:35,980 epoch 36 - iter 108/274 - loss 0.02491462 - samples/sec: 71.90 - lr: 0.100000
2022-11-01 14:29:48,361 epoch 36 - iter 135/274 - loss 0.02460620 - samples/sec: 69.80 - lr: 0.100000
2022-11-01 14:30:00,925 epoch 36 - iter 162/274 - loss 0.02530639 - samples/sec: 68.78 - lr: 0.100000
2022-11-01 14:30:13,191 epoch 36 - iter 189/274 - loss 0.02488329 - samples/sec: 70.46 - lr: 0.100000
2022-11-01 14:30:26,975 epoch 36 - iter 216/274 - loss 0.02498352 - samples/sec: 62.70 - lr: 0.100000
2022-11-01 14:30:39,154 epoch 36 - iter 243/274 - loss 0.02518749 - samples/sec: 70.96 - lr: 0.100000
2022-11-01 14:30:51,430 epoch 36 - iter 270/274 - loss 0.02540258 - samples/sec: 70.40 - lr: 0.100000
2022-11-01 14:30:53,449 ----------------------------------------------------------------------------------------------------
2022-11-01 14:30:53,449 EPOCH 36 done: loss 0.0254 - lr 0.100000
2022-11-01 14:31:18,697 Evaluating as a multi-label problem: False
2022-11-01 14:31:18,712 TEST : loss 0.02905181795358658 - f1-score (micro avg)  0.8424
2022-11-01 14:31:18,763 BAD EPOCHS (no improvement): 2
2022-11-01 14:31:18,855 ----------------------------------------------------------------------------------------------------
2022-11-01 14:31:31,289 epoch 37 - iter 27/274 - loss 0.02678495 - samples/sec: 69.51 - lr: 0.100000
2022-11-01 14:31:43,065 epoch 37 - iter 54/274 - loss 0.02523053 - samples/sec: 73.39 - lr: 0.100000
2022-11-01 14:31:55,883 epoch 37 - iter 81/274 - loss 0.02558693 - samples/sec: 67.42 - lr: 0.100000
2022-11-01 14:32:07,760 epoch 37 - iter 108/274 - loss 0.02555196 - samples/sec: 72.76 - lr: 0.100000
2022-11-01 14:32:19,739 epoch 37 - iter 135/274 - loss 0.02508545 - samples/sec: 72.15 - lr: 0.100000
2022-11-01 14:32:33,968 epoch 37 - iter 162/274 - loss 0.02481853 - samples/sec: 60.74 - lr: 0.100000
2022-11-01 14:32:45,715 epoch 37 - iter 189/274 - loss 0.02523619 - samples/sec: 73.57 - lr: 0.100000
2022-11-01 14:32:58,842 epoch 37 - iter 216/274 - loss 0.02533995 - samples/sec: 65.84 - lr: 0.100000
2022-11-01 14:33:09,872 epoch 37 - iter 243/274 - loss 0.02496223 - samples/sec: 78.35 - lr: 0.100000
2022-11-01 14:33:22,337 epoch 37 - iter 270/274 - loss 0.02494492 - samples/sec: 69.33 - lr: 0.100000
2022-11-01 14:33:23,784 ----------------------------------------------------------------------------------------------------
2022-11-01 14:33:23,784 EPOCH 37 done: loss 0.0248 - lr 0.100000
2022-11-01 14:33:49,123 Evaluating as a multi-label problem: False
2022-11-01 14:33:49,139 TEST : loss 0.03083939664065838 - f1-score (micro avg)  0.8404
2022-11-01 14:33:49,191 BAD EPOCHS (no improvement): 0
2022-11-01 14:33:49,284 ----------------------------------------------------------------------------------------------------
2022-11-01 14:34:01,480 epoch 38 - iter 27/274 - loss 0.02325190 - samples/sec: 70.86 - lr: 0.100000
2022-11-01 14:34:15,709 epoch 38 - iter 54/274 - loss 0.02240111 - samples/sec: 60.73 - lr: 0.100000
2022-11-01 14:34:28,421 epoch 38 - iter 81/274 - loss 0.02339176 - samples/sec: 67.99 - lr: 0.100000
2022-11-01 14:34:40,651 epoch 38 - iter 108/274 - loss 0.02383358 - samples/sec: 70.66 - lr: 0.100000
2022-11-01 14:34:52,869 epoch 38 - iter 135/274 - loss 0.02355411 - samples/sec: 70.74 - lr: 0.100000
2022-11-01 14:35:05,634 epoch 38 - iter 162/274 - loss 0.02436854 - samples/sec: 67.70 - lr: 0.100000
2022-11-01 14:35:18,016 epoch 38 - iter 189/274 - loss 0.02461991 - samples/sec: 69.80 - lr: 0.100000
2022-11-01 14:35:30,070 epoch 38 - iter 216/274 - loss 0.02434924 - samples/sec: 71.70 - lr: 0.100000
2022-11-01 14:35:40,955 epoch 38 - iter 243/274 - loss 0.02462337 - samples/sec: 79.39 - lr: 0.100000
2022-11-01 14:35:53,586 epoch 38 - iter 270/274 - loss 0.02484028 - samples/sec: 68.42 - lr: 0.100000
2022-11-01 14:35:55,289 ----------------------------------------------------------------------------------------------------
2022-11-01 14:35:55,289 EPOCH 38 done: loss 0.0247 - lr 0.100000
2022-11-01 14:36:20,583 Evaluating as a multi-label problem: False
2022-11-01 14:36:20,598 TEST : loss 0.029346710070967674 - f1-score (micro avg)  0.8482
2022-11-01 14:36:20,650 BAD EPOCHS (no improvement): 0
2022-11-01 14:36:20,721 ----------------------------------------------------------------------------------------------------
2022-11-01 14:36:32,585 epoch 39 - iter 27/274 - loss 0.02562557 - samples/sec: 72.85 - lr: 0.100000
2022-11-01 14:36:43,852 epoch 39 - iter 54/274 - loss 0.02372105 - samples/sec: 76.71 - lr: 0.100000
2022-11-01 14:36:57,929 epoch 39 - iter 81/274 - loss 0.02352530 - samples/sec: 61.39 - lr: 0.100000
2022-11-01 14:37:11,034 epoch 39 - iter 108/274 - loss 0.02507286 - samples/sec: 65.95 - lr: 0.100000
2022-11-01 14:37:22,672 epoch 39 - iter 135/274 - loss 0.02526471 - samples/sec: 74.26 - lr: 0.100000
2022-11-01 14:37:35,165 epoch 39 - iter 162/274 - loss 0.02549320 - samples/sec: 69.18 - lr: 0.100000
2022-11-01 14:37:46,859 epoch 39 - iter 189/274 - loss 0.02480664 - samples/sec: 73.90 - lr: 0.100000
2022-11-01 14:37:58,698 epoch 39 - iter 216/274 - loss 0.02442860 - samples/sec: 73.00 - lr: 0.100000
2022-11-01 14:38:11,976 epoch 39 - iter 243/274 - loss 0.02518608 - samples/sec: 65.09 - lr: 0.100000
2022-11-01 14:38:23,528 epoch 39 - iter 270/274 - loss 0.02512607 - samples/sec: 74.82 - lr: 0.100000
2022-11-01 14:38:25,272 ----------------------------------------------------------------------------------------------------
2022-11-01 14:38:25,272 EPOCH 39 done: loss 0.0252 - lr 0.100000
2022-11-01 14:38:50,637 Evaluating as a multi-label problem: False
2022-11-01 14:38:50,652 TEST : loss 0.030634140595793724 - f1-score (micro avg)  0.8477
2022-11-01 14:38:50,704 BAD EPOCHS (no improvement): 1
2022-11-01 14:38:50,781 ----------------------------------------------------------------------------------------------------
2022-11-01 14:39:02,083 epoch 40 - iter 27/274 - loss 0.02303791 - samples/sec: 76.47 - lr: 0.100000
2022-11-01 14:39:15,907 epoch 40 - iter 54/274 - loss 0.02221891 - samples/sec: 62.52 - lr: 0.100000
2022-11-01 14:39:27,953 epoch 40 - iter 81/274 - loss 0.02304378 - samples/sec: 71.74 - lr: 0.100000
2022-11-01 14:39:40,530 epoch 40 - iter 108/274 - loss 0.02335194 - samples/sec: 68.72 - lr: 0.100000
2022-11-01 14:39:52,052 epoch 40 - iter 135/274 - loss 0.02327292 - samples/sec: 75.01 - lr: 0.100000
2022-11-01 14:40:04,816 epoch 40 - iter 162/274 - loss 0.02340847 - samples/sec: 67.71 - lr: 0.100000
2022-11-01 14:40:17,337 epoch 40 - iter 189/274 - loss 0.02348761 - samples/sec: 69.02 - lr: 0.100000
2022-11-01 14:40:30,638 epoch 40 - iter 216/274 - loss 0.02364579 - samples/sec: 64.97 - lr: 0.100000
2022-11-01 14:40:41,862 epoch 40 - iter 243/274 - loss 0.02363918 - samples/sec: 77.00 - lr: 0.100000
2022-11-01 14:40:54,205 epoch 40 - iter 270/274 - loss 0.02364620 - samples/sec: 70.02 - lr: 0.100000
2022-11-01 14:40:56,428 ----------------------------------------------------------------------------------------------------
2022-11-01 14:40:56,428 EPOCH 40 done: loss 0.0239 - lr 0.100000
2022-11-01 14:41:21,842 Evaluating as a multi-label problem: False
2022-11-01 14:41:21,858 TEST : loss 0.02772146463394165 - f1-score (micro avg)  0.8367
2022-11-01 14:41:21,910 BAD EPOCHS (no improvement): 0
2022-11-01 14:41:21,980 ----------------------------------------------------------------------------------------------------
2022-11-01 14:41:34,373 epoch 41 - iter 27/274 - loss 0.02218261 - samples/sec: 69.74 - lr: 0.100000
2022-11-01 14:41:46,713 epoch 41 - iter 54/274 - loss 0.02452946 - samples/sec: 70.04 - lr: 0.100000
2022-11-01 14:42:00,067 epoch 41 - iter 81/274 - loss 0.02464984 - samples/sec: 64.71 - lr: 0.100000
2022-11-01 14:42:13,175 epoch 41 - iter 108/274 - loss 0.02478733 - samples/sec: 65.93 - lr: 0.100000
2022-11-01 14:42:24,582 epoch 41 - iter 135/274 - loss 0.02416254 - samples/sec: 75.77 - lr: 0.100000
2022-11-01 14:42:37,182 epoch 41 - iter 162/274 - loss 0.02418863 - samples/sec: 68.59 - lr: 0.100000
2022-11-01 14:42:48,979 epoch 41 - iter 189/274 - loss 0.02391712 - samples/sec: 73.26 - lr: 0.100000
2022-11-01 14:43:01,479 epoch 41 - iter 216/274 - loss 0.02390674 - samples/sec: 69.14 - lr: 0.100000
2022-11-01 14:43:13,157 epoch 41 - iter 243/274 - loss 0.02392243 - samples/sec: 74.01 - lr: 0.100000
2022-11-01 14:43:25,639 epoch 41 - iter 270/274 - loss 0.02412327 - samples/sec: 69.24 - lr: 0.100000
2022-11-01 14:43:27,265 ----------------------------------------------------------------------------------------------------
2022-11-01 14:43:27,265 EPOCH 41 done: loss 0.0239 - lr 0.100000
2022-11-01 14:43:52,553 Evaluating as a multi-label problem: False
2022-11-01 14:43:52,568 TEST : loss 0.03169442340731621 - f1-score (micro avg)  0.8514
2022-11-01 14:43:52,619 BAD EPOCHS (no improvement): 0
2022-11-01 14:43:52,707 ----------------------------------------------------------------------------------------------------
2022-11-01 14:44:04,877 epoch 42 - iter 27/274 - loss 0.02433022 - samples/sec: 71.02 - lr: 0.100000
2022-11-01 14:44:17,429 epoch 42 - iter 54/274 - loss 0.02389634 - samples/sec: 68.85 - lr: 0.100000
2022-11-01 14:44:29,618 epoch 42 - iter 81/274 - loss 0.02250941 - samples/sec: 70.90 - lr: 0.100000
2022-11-01 14:44:41,866 epoch 42 - iter 108/274 - loss 0.02211868 - samples/sec: 70.56 - lr: 0.100000
2022-11-01 14:44:55,665 epoch 42 - iter 135/274 - loss 0.02233769 - samples/sec: 62.63 - lr: 0.100000
2022-11-01 14:45:07,849 epoch 42 - iter 162/274 - loss 0.02328487 - samples/sec: 70.93 - lr: 0.100000
2022-11-01 14:45:18,733 epoch 42 - iter 189/274 - loss 0.02313874 - samples/sec: 79.41 - lr: 0.100000
2022-11-01 14:45:31,192 epoch 42 - iter 216/274 - loss 0.02357150 - samples/sec: 69.37 - lr: 0.100000
2022-11-01 14:45:44,209 epoch 42 - iter 243/274 - loss 0.02391369 - samples/sec: 66.39 - lr: 0.100000
2022-11-01 14:45:55,304 epoch 42 - iter 270/274 - loss 0.02365274 - samples/sec: 77.90 - lr: 0.100000
2022-11-01 14:45:57,120 ----------------------------------------------------------------------------------------------------
2022-11-01 14:45:57,120 EPOCH 42 done: loss 0.0235 - lr 0.100000
2022-11-01 14:46:22,560 Evaluating as a multi-label problem: False
2022-11-01 14:46:22,576 TEST : loss 0.03278948739171028 - f1-score (micro avg)  0.8516
2022-11-01 14:46:22,628 BAD EPOCHS (no improvement): 0
2022-11-01 14:46:22,717 ----------------------------------------------------------------------------------------------------
2022-11-01 14:46:38,002 epoch 43 - iter 27/274 - loss 0.02368651 - samples/sec: 56.54 - lr: 0.100000
2022-11-01 14:46:49,976 epoch 43 - iter 54/274 - loss 0.02517416 - samples/sec: 72.18 - lr: 0.100000
2022-11-01 14:47:01,138 epoch 43 - iter 81/274 - loss 0.02256523 - samples/sec: 77.43 - lr: 0.100000
2022-11-01 14:47:14,006 epoch 43 - iter 108/274 - loss 0.02355001 - samples/sec: 67.16 - lr: 0.100000
2022-11-01 14:47:26,796 epoch 43 - iter 135/274 - loss 0.02396305 - samples/sec: 67.57 - lr: 0.100000
2022-11-01 14:47:40,342 epoch 43 - iter 162/274 - loss 0.02362844 - samples/sec: 63.80 - lr: 0.100000
2022-11-01 14:47:51,127 epoch 43 - iter 189/274 - loss 0.02289074 - samples/sec: 80.14 - lr: 0.100000
2022-11-01 14:48:04,379 epoch 43 - iter 216/274 - loss 0.02336316 - samples/sec: 65.21 - lr: 0.100000
2022-11-01 14:48:16,059 epoch 43 - iter 243/274 - loss 0.02362543 - samples/sec: 73.99 - lr: 0.100000
2022-11-01 14:48:28,117 epoch 43 - iter 270/274 - loss 0.02350817 - samples/sec: 71.67 - lr: 0.100000
2022-11-01 14:48:29,903 ----------------------------------------------------------------------------------------------------
2022-11-01 14:48:29,903 EPOCH 43 done: loss 0.0235 - lr 0.100000
2022-11-01 14:48:55,144 Evaluating as a multi-label problem: False
2022-11-01 14:48:55,160 TEST : loss 0.032541219145059586 - f1-score (micro avg)  0.8499
2022-11-01 14:48:55,213 BAD EPOCHS (no improvement): 0
2022-11-01 14:48:55,302 ----------------------------------------------------------------------------------------------------
2022-11-01 14:49:08,036 epoch 44 - iter 27/274 - loss 0.02069038 - samples/sec: 67.87 - lr: 0.100000
2022-11-01 14:49:20,182 epoch 44 - iter 54/274 - loss 0.02151187 - samples/sec: 71.15 - lr: 0.100000
2022-11-01 14:49:30,865 epoch 44 - iter 81/274 - loss 0.02143477 - samples/sec: 80.90 - lr: 0.100000
2022-11-01 14:49:42,537 epoch 44 - iter 108/274 - loss 0.02245272 - samples/sec: 74.05 - lr: 0.100000
2022-11-01 14:49:54,536 epoch 44 - iter 135/274 - loss 0.02279972 - samples/sec: 72.02 - lr: 0.100000
2022-11-01 14:50:05,597 epoch 44 - iter 162/274 - loss 0.02322081 - samples/sec: 78.14 - lr: 0.100000
2022-11-01 14:50:18,330 epoch 44 - iter 189/274 - loss 0.02353130 - samples/sec: 67.87 - lr: 0.100000
2022-11-01 14:50:32,304 epoch 44 - iter 216/274 - loss 0.02377507 - samples/sec: 61.84 - lr: 0.100000
2022-11-01 14:50:44,805 epoch 44 - iter 243/274 - loss 0.02373147 - samples/sec: 69.13 - lr: 0.100000
2022-11-01 14:50:57,854 epoch 44 - iter 270/274 - loss 0.02373160 - samples/sec: 66.31 - lr: 0.100000
2022-11-01 14:50:59,998 ----------------------------------------------------------------------------------------------------
2022-11-01 14:50:59,998 EPOCH 44 done: loss 0.0238 - lr 0.100000
2022-11-01 14:51:26,134 Evaluating as a multi-label problem: False
2022-11-01 14:51:26,149 TEST : loss 0.02845124527812004 - f1-score (micro avg)  0.8465
2022-11-01 14:51:26,200 BAD EPOCHS (no improvement): 1
2022-11-01 14:51:26,269 ----------------------------------------------------------------------------------------------------
2022-11-01 14:51:39,451 epoch 45 - iter 27/274 - loss 0.02757102 - samples/sec: 65.56 - lr: 0.100000
2022-11-01 14:51:52,057 epoch 45 - iter 54/274 - loss 0.02555338 - samples/sec: 68.56 - lr: 0.100000
2022-11-01 14:52:03,835 epoch 45 - iter 81/274 - loss 0.02440811 - samples/sec: 73.38 - lr: 0.100000
2022-11-01 14:52:15,975 epoch 45 - iter 108/274 - loss 0.02504033 - samples/sec: 71.19 - lr: 0.100000
2022-11-01 14:52:28,608 epoch 45 - iter 135/274 - loss 0.02481827 - samples/sec: 68.41 - lr: 0.100000
2022-11-01 14:52:40,182 epoch 45 - iter 162/274 - loss 0.02464289 - samples/sec: 74.67 - lr: 0.100000
2022-11-01 14:52:53,060 epoch 45 - iter 189/274 - loss 0.02493790 - samples/sec: 67.11 - lr: 0.100000
2022-11-01 14:53:05,153 epoch 45 - iter 216/274 - loss 0.02455552 - samples/sec: 71.47 - lr: 0.100000
2022-11-01 14:53:17,930 epoch 45 - iter 243/274 - loss 0.02398309 - samples/sec: 67.64 - lr: 0.100000
2022-11-01 14:53:30,733 epoch 45 - iter 270/274 - loss 0.02374604 - samples/sec: 67.50 - lr: 0.100000
2022-11-01 14:53:33,008 ----------------------------------------------------------------------------------------------------
2022-11-01 14:53:33,008 EPOCH 45 done: loss 0.0238 - lr 0.100000
2022-11-01 14:53:58,283 Evaluating as a multi-label problem: False
2022-11-01 14:53:58,299 TEST : loss 0.029735716059803963 - f1-score (micro avg)  0.8508
2022-11-01 14:53:58,351 BAD EPOCHS (no improvement): 2
2022-11-01 14:53:58,435 ----------------------------------------------------------------------------------------------------
2022-11-01 14:54:09,817 epoch 46 - iter 27/274 - loss 0.02467951 - samples/sec: 75.94 - lr: 0.100000
2022-11-01 14:54:21,873 epoch 46 - iter 54/274 - loss 0.02596354 - samples/sec: 71.69 - lr: 0.100000
2022-11-01 14:54:34,441 epoch 46 - iter 81/274 - loss 0.02400549 - samples/sec: 68.76 - lr: 0.100000
2022-11-01 14:54:47,134 epoch 46 - iter 108/274 - loss 0.02389095 - samples/sec: 68.09 - lr: 0.100000
2022-11-01 14:55:01,103 epoch 46 - iter 135/274 - loss 0.02373190 - samples/sec: 61.87 - lr: 0.100000
2022-11-01 14:55:13,471 epoch 46 - iter 162/274 - loss 0.02343819 - samples/sec: 69.88 - lr: 0.100000
2022-11-01 14:55:25,101 epoch 46 - iter 189/274 - loss 0.02343376 - samples/sec: 74.31 - lr: 0.100000
2022-11-01 14:55:38,007 epoch 46 - iter 216/274 - loss 0.02403790 - samples/sec: 66.96 - lr: 0.100000
2022-11-01 14:55:50,576 epoch 46 - iter 243/274 - loss 0.02399389 - samples/sec: 68.76 - lr: 0.100000
2022-11-01 14:56:02,258 epoch 46 - iter 270/274 - loss 0.02418122 - samples/sec: 73.98 - lr: 0.100000
2022-11-01 14:56:04,273 ----------------------------------------------------------------------------------------------------
2022-11-01 14:56:04,274 EPOCH 46 done: loss 0.0243 - lr 0.100000
2022-11-01 14:56:29,683 Evaluating as a multi-label problem: False
2022-11-01 14:56:29,698 TEST : loss 0.028860261663794518 - f1-score (micro avg)  0.8483
2022-11-01 14:56:29,751 BAD EPOCHS (no improvement): 3
2022-11-01 14:56:29,837 ----------------------------------------------------------------------------------------------------
2022-11-01 14:56:42,570 epoch 47 - iter 27/274 - loss 0.03313505 - samples/sec: 67.88 - lr: 0.100000
2022-11-01 14:56:54,775 epoch 47 - iter 54/274 - loss 0.02904664 - samples/sec: 70.81 - lr: 0.100000
2022-11-01 14:57:07,973 epoch 47 - iter 81/274 - loss 0.02655091 - samples/sec: 65.48 - lr: 0.100000
2022-11-01 14:57:20,344 epoch 47 - iter 108/274 - loss 0.02502254 - samples/sec: 69.86 - lr: 0.100000
2022-11-01 14:57:33,689 epoch 47 - iter 135/274 - loss 0.02387354 - samples/sec: 64.76 - lr: 0.100000
2022-11-01 14:57:47,202 epoch 47 - iter 162/274 - loss 0.02337203 - samples/sec: 63.96 - lr: 0.100000
2022-11-01 14:57:59,283 epoch 47 - iter 189/274 - loss 0.02311901 - samples/sec: 71.53 - lr: 0.100000
2022-11-01 14:58:10,345 epoch 47 - iter 216/274 - loss 0.02312254 - samples/sec: 78.13 - lr: 0.100000
2022-11-01 14:58:22,536 epoch 47 - iter 243/274 - loss 0.02276797 - samples/sec: 70.89 - lr: 0.100000
2022-11-01 14:58:35,257 epoch 47 - iter 270/274 - loss 0.02288939 - samples/sec: 67.94 - lr: 0.100000
2022-11-01 14:58:36,750 ----------------------------------------------------------------------------------------------------
2022-11-01 14:58:36,750 EPOCH 47 done: loss 0.0228 - lr 0.100000
2022-11-01 14:59:01,933 Evaluating as a multi-label problem: False
2022-11-01 14:59:01,949 TEST : loss 0.02934456616640091 - f1-score (micro avg)  0.85
2022-11-01 14:59:02,000 BAD EPOCHS (no improvement): 0
2022-11-01 14:59:02,087 ----------------------------------------------------------------------------------------------------
2022-11-01 14:59:14,890 epoch 48 - iter 27/274 - loss 0.02641052 - samples/sec: 67.51 - lr: 0.100000
2022-11-01 14:59:27,300 epoch 48 - iter 54/274 - loss 0.02458621 - samples/sec: 69.64 - lr: 0.100000
2022-11-01 14:59:41,623 epoch 48 - iter 81/274 - loss 0.02492918 - samples/sec: 60.34 - lr: 0.100000
2022-11-01 14:59:53,214 epoch 48 - iter 108/274 - loss 0.02434256 - samples/sec: 74.56 - lr: 0.100000
2022-11-01 15:00:05,218 epoch 48 - iter 135/274 - loss 0.02440883 - samples/sec: 72.00 - lr: 0.100000
2022-11-01 15:00:17,655 epoch 48 - iter 162/274 - loss 0.02434351 - samples/sec: 69.49 - lr: 0.100000
2022-11-01 15:00:29,358 epoch 48 - iter 189/274 - loss 0.02453602 - samples/sec: 73.85 - lr: 0.100000
2022-11-01 15:00:41,290 epoch 48 - iter 216/274 - loss 0.02403384 - samples/sec: 72.43 - lr: 0.100000
2022-11-01 15:00:52,879 epoch 48 - iter 243/274 - loss 0.02357749 - samples/sec: 74.57 - lr: 0.100000
2022-11-01 15:01:06,810 epoch 48 - iter 270/274 - loss 0.02325659 - samples/sec: 62.04 - lr: 0.100000
2022-11-01 15:01:08,920 ----------------------------------------------------------------------------------------------------
2022-11-01 15:01:08,921 EPOCH 48 done: loss 0.0233 - lr 0.100000
2022-11-01 15:01:34,433 Evaluating as a multi-label problem: False
2022-11-01 15:01:34,449 TEST : loss 0.027938606217503548 - f1-score (micro avg)  0.8443
2022-11-01 15:01:34,500 BAD EPOCHS (no improvement): 1
2022-11-01 15:01:34,588 ----------------------------------------------------------------------------------------------------
2022-11-01 15:01:46,854 epoch 49 - iter 27/274 - loss 0.01956175 - samples/sec: 70.46 - lr: 0.100000
2022-11-01 15:01:59,605 epoch 49 - iter 54/274 - loss 0.02219700 - samples/sec: 67.78 - lr: 0.100000
2022-11-01 15:02:11,513 epoch 49 - iter 81/274 - loss 0.02216077 - samples/sec: 72.57 - lr: 0.100000
2022-11-01 15:02:23,884 epoch 49 - iter 108/274 - loss 0.02166043 - samples/sec: 69.86 - lr: 0.100000
2022-11-01 15:02:35,018 epoch 49 - iter 135/274 - loss 0.02214609 - samples/sec: 77.62 - lr: 0.100000
2022-11-01 15:02:47,703 epoch 49 - iter 162/274 - loss 0.02230819 - samples/sec: 68.13 - lr: 0.100000
2022-11-01 15:03:00,160 epoch 49 - iter 189/274 - loss 0.02220722 - samples/sec: 69.38 - lr: 0.100000
2022-11-01 15:03:13,972 epoch 49 - iter 216/274 - loss 0.02222522 - samples/sec: 62.57 - lr: 0.100000
2022-11-01 15:03:26,882 epoch 49 - iter 243/274 - loss 0.02219608 - samples/sec: 66.94 - lr: 0.100000
2022-11-01 15:03:38,015 epoch 49 - iter 270/274 - loss 0.02232361 - samples/sec: 77.63 - lr: 0.100000
2022-11-01 15:03:39,771 ----------------------------------------------------------------------------------------------------
2022-11-01 15:03:39,772 EPOCH 49 done: loss 0.0224 - lr 0.100000
2022-11-01 15:04:05,093 Evaluating as a multi-label problem: False
2022-11-01 15:04:05,108 TEST : loss 0.02850373275578022 - f1-score (micro avg)  0.8468
2022-11-01 15:04:05,160 BAD EPOCHS (no improvement): 0
2022-11-01 15:04:05,249 ----------------------------------------------------------------------------------------------------
2022-11-01 15:04:19,274 epoch 50 - iter 27/274 - loss 0.02281989 - samples/sec: 61.62 - lr: 0.100000
2022-11-01 15:04:32,085 epoch 50 - iter 54/274 - loss 0.02177090 - samples/sec: 67.46 - lr: 0.100000
2022-11-01 15:04:44,255 epoch 50 - iter 81/274 - loss 0.02148794 - samples/sec: 71.01 - lr: 0.100000
2022-11-01 15:04:55,864 epoch 50 - iter 108/274 - loss 0.02172616 - samples/sec: 74.44 - lr: 0.100000
2022-11-01 15:05:08,711 epoch 50 - iter 135/274 - loss 0.02248392 - samples/sec: 67.27 - lr: 0.100000
2022-11-01 15:05:19,943 epoch 50 - iter 162/274 - loss 0.02202995 - samples/sec: 76.95 - lr: 0.100000
2022-11-01 15:05:31,349 epoch 50 - iter 189/274 - loss 0.02290603 - samples/sec: 75.77 - lr: 0.100000
2022-11-01 15:05:43,290 epoch 50 - iter 216/274 - loss 0.02253406 - samples/sec: 72.38 - lr: 0.100000
2022-11-01 15:05:54,958 epoch 50 - iter 243/274 - loss 0.02223297 - samples/sec: 74.07 - lr: 0.100000
2022-11-01 15:06:08,209 epoch 50 - iter 270/274 - loss 0.02262291 - samples/sec: 65.22 - lr: 0.100000
2022-11-01 15:06:10,014 ----------------------------------------------------------------------------------------------------
2022-11-01 15:06:10,015 EPOCH 50 done: loss 0.0226 - lr 0.100000
2022-11-01 15:06:34,955 Evaluating as a multi-label problem: False
2022-11-01 15:06:34,970 TEST : loss 0.028627894818782806 - f1-score (micro avg)  0.8454
2022-11-01 15:06:35,022 BAD EPOCHS (no improvement): 1
2022-11-01 15:06:35,107 ----------------------------------------------------------------------------------------------------
2022-11-01 15:06:48,507 epoch 51 - iter 27/274 - loss 0.02238933 - samples/sec: 64.49 - lr: 0.100000
2022-11-01 15:07:02,021 epoch 51 - iter 54/274 - loss 0.02462189 - samples/sec: 63.95 - lr: 0.100000
2022-11-01 15:07:14,430 epoch 51 - iter 81/274 - loss 0.02400550 - samples/sec: 69.65 - lr: 0.100000
2022-11-01 15:07:26,726 epoch 51 - iter 108/274 - loss 0.02311522 - samples/sec: 70.29 - lr: 0.100000
2022-11-01 15:07:37,629 epoch 51 - iter 135/274 - loss 0.02300795 - samples/sec: 79.27 - lr: 0.100000
2022-11-01 15:07:50,615 epoch 51 - iter 162/274 - loss 0.02348605 - samples/sec: 66.55 - lr: 0.100000
2022-11-01 15:08:02,430 epoch 51 - iter 189/274 - loss 0.02283313 - samples/sec: 73.15 - lr: 0.100000
2022-11-01 15:08:14,790 epoch 51 - iter 216/274 - loss 0.02245246 - samples/sec: 69.92 - lr: 0.100000
2022-11-01 15:08:26,827 epoch 51 - iter 243/274 - loss 0.02276332 - samples/sec: 71.80 - lr: 0.100000
2022-11-01 15:08:40,356 epoch 51 - iter 270/274 - loss 0.02279572 - samples/sec: 63.88 - lr: 0.100000
2022-11-01 15:08:41,992 ----------------------------------------------------------------------------------------------------
2022-11-01 15:08:41,992 EPOCH 51 done: loss 0.0228 - lr 0.100000
2022-11-01 15:09:07,240 Evaluating as a multi-label problem: False
2022-11-01 15:09:07,255 TEST : loss 0.030040256679058075 - f1-score (micro avg)  0.8562
2022-11-01 15:09:07,307 BAD EPOCHS (no improvement): 2
2022-11-01 15:09:07,396 ----------------------------------------------------------------------------------------------------
2022-11-01 15:09:19,681 epoch 52 - iter 27/274 - loss 0.02043969 - samples/sec: 70.35 - lr: 0.100000
2022-11-01 15:09:34,320 epoch 52 - iter 54/274 - loss 0.02200447 - samples/sec: 59.03 - lr: 0.100000
2022-11-01 15:09:47,331 epoch 52 - iter 81/274 - loss 0.02239819 - samples/sec: 66.42 - lr: 0.100000
2022-11-01 15:10:00,542 epoch 52 - iter 108/274 - loss 0.02195955 - samples/sec: 65.41 - lr: 0.100000
2022-11-01 15:10:12,733 epoch 52 - iter 135/274 - loss 0.02255437 - samples/sec: 70.89 - lr: 0.100000
2022-11-01 15:10:24,202 epoch 52 - iter 162/274 - loss 0.02364029 - samples/sec: 75.36 - lr: 0.100000
2022-11-01 15:10:35,444 epoch 52 - iter 189/274 - loss 0.02373332 - samples/sec: 76.87 - lr: 0.100000
2022-11-01 15:10:47,265 epoch 52 - iter 216/274 - loss 0.02396143 - samples/sec: 73.11 - lr: 0.100000
2022-11-01 15:10:59,460 epoch 52 - iter 243/274 - loss 0.02381229 - samples/sec: 70.87 - lr: 0.100000
2022-11-01 15:11:12,304 epoch 52 - iter 270/274 - loss 0.02388624 - samples/sec: 67.28 - lr: 0.100000
2022-11-01 15:11:13,703 ----------------------------------------------------------------------------------------------------
2022-11-01 15:11:13,703 EPOCH 52 done: loss 0.0240 - lr 0.100000
2022-11-01 15:11:38,949 Evaluating as a multi-label problem: False
2022-11-01 15:11:38,965 TEST : loss 0.02899007685482502 - f1-score (micro avg)  0.8496
2022-11-01 15:11:39,015 BAD EPOCHS (no improvement): 3
2022-11-01 15:11:39,107 ----------------------------------------------------------------------------------------------------
2022-11-01 15:11:50,967 epoch 53 - iter 27/274 - loss 0.02453654 - samples/sec: 72.87 - lr: 0.100000
2022-11-01 15:12:06,441 epoch 53 - iter 54/274 - loss 0.02250028 - samples/sec: 55.85 - lr: 0.100000
2022-11-01 15:12:18,855 epoch 53 - iter 81/274 - loss 0.02251377 - samples/sec: 69.62 - lr: 0.100000
2022-11-01 15:12:31,007 epoch 53 - iter 108/274 - loss 0.02219599 - samples/sec: 71.12 - lr: 0.100000
2022-11-01 15:12:43,529 epoch 53 - iter 135/274 - loss 0.02197082 - samples/sec: 69.02 - lr: 0.100000
2022-11-01 15:12:55,036 epoch 53 - iter 162/274 - loss 0.02234258 - samples/sec: 75.11 - lr: 0.100000
2022-11-01 15:13:06,569 epoch 53 - iter 189/274 - loss 0.02253575 - samples/sec: 74.94 - lr: 0.100000
2022-11-01 15:13:17,608 epoch 53 - iter 216/274 - loss 0.02244875 - samples/sec: 78.29 - lr: 0.100000
2022-11-01 15:13:30,157 epoch 53 - iter 243/274 - loss 0.02246492 - samples/sec: 68.87 - lr: 0.100000
2022-11-01 15:13:43,481 epoch 53 - iter 270/274 - loss 0.02199013 - samples/sec: 64.86 - lr: 0.100000
2022-11-01 15:13:45,316 ----------------------------------------------------------------------------------------------------
2022-11-01 15:13:45,317 EPOCH 53 done: loss 0.0219 - lr 0.100000
2022-11-01 15:14:10,521 Evaluating as a multi-label problem: False
2022-11-01 15:14:10,536 TEST : loss 0.031025480479002 - f1-score (micro avg)  0.8497
2022-11-01 15:14:10,589 BAD EPOCHS (no improvement): 0
2022-11-01 15:14:10,684 ----------------------------------------------------------------------------------------------------
2022-11-01 15:14:23,106 epoch 54 - iter 27/274 - loss 0.02366044 - samples/sec: 69.58 - lr: 0.100000
2022-11-01 15:14:35,723 epoch 54 - iter 54/274 - loss 0.02131955 - samples/sec: 68.50 - lr: 0.100000
2022-11-01 15:14:47,667 epoch 54 - iter 81/274 - loss 0.02241648 - samples/sec: 72.36 - lr: 0.100000
2022-11-01 15:15:01,117 epoch 54 - iter 108/274 - loss 0.02264243 - samples/sec: 64.25 - lr: 0.100000
2022-11-01 15:15:13,721 epoch 54 - iter 135/274 - loss 0.02298791 - samples/sec: 68.57 - lr: 0.100000
2022-11-01 15:15:25,955 epoch 54 - iter 162/274 - loss 0.02242851 - samples/sec: 70.64 - lr: 0.100000
2022-11-01 15:15:38,384 epoch 54 - iter 189/274 - loss 0.02235910 - samples/sec: 69.54 - lr: 0.100000
2022-11-01 15:15:50,640 epoch 54 - iter 216/274 - loss 0.02201195 - samples/sec: 70.51 - lr: 0.100000
2022-11-01 15:16:03,803 epoch 54 - iter 243/274 - loss 0.02225472 - samples/sec: 65.66 - lr: 0.100000
2022-11-01 15:16:15,823 epoch 54 - iter 270/274 - loss 0.02218903 - samples/sec: 71.90 - lr: 0.100000
2022-11-01 15:16:17,612 ----------------------------------------------------------------------------------------------------
2022-11-01 15:16:17,612 EPOCH 54 done: loss 0.0222 - lr 0.100000
2022-11-01 15:16:42,914 Evaluating as a multi-label problem: False
2022-11-01 15:16:42,930 TEST : loss 0.030233900994062424 - f1-score (micro avg)  0.8454
2022-11-01 15:16:42,983 BAD EPOCHS (no improvement): 1
2022-11-01 15:16:43,079 ----------------------------------------------------------------------------------------------------
2022-11-01 15:16:55,349 epoch 55 - iter 27/274 - loss 0.02055602 - samples/sec: 70.44 - lr: 0.100000
2022-11-01 15:17:08,468 epoch 55 - iter 54/274 - loss 0.01923870 - samples/sec: 65.88 - lr: 0.100000
2022-11-01 15:17:23,027 epoch 55 - iter 81/274 - loss 0.02096547 - samples/sec: 59.36 - lr: 0.100000
2022-11-01 15:17:34,938 epoch 55 - iter 108/274 - loss 0.02099036 - samples/sec: 72.56 - lr: 0.100000
2022-11-01 15:17:47,602 epoch 55 - iter 135/274 - loss 0.02078503 - samples/sec: 68.24 - lr: 0.100000
2022-11-01 15:17:59,080 epoch 55 - iter 162/274 - loss 0.02148538 - samples/sec: 75.30 - lr: 0.100000
2022-11-01 15:18:11,657 epoch 55 - iter 189/274 - loss 0.02214461 - samples/sec: 68.71 - lr: 0.100000
2022-11-01 15:18:23,508 epoch 55 - iter 216/274 - loss 0.02190890 - samples/sec: 72.93 - lr: 0.100000
2022-11-01 15:18:36,762 epoch 55 - iter 243/274 - loss 0.02249219 - samples/sec: 65.20 - lr: 0.100000
2022-11-01 15:18:48,843 epoch 55 - iter 270/274 - loss 0.02234599 - samples/sec: 71.54 - lr: 0.100000
2022-11-01 15:18:50,379 ----------------------------------------------------------------------------------------------------
2022-11-01 15:18:50,379 EPOCH 55 done: loss 0.0224 - lr 0.100000
2022-11-01 15:19:15,651 Evaluating as a multi-label problem: False
2022-11-01 15:19:15,666 TEST : loss 0.02768951654434204 - f1-score (micro avg)  0.856
2022-11-01 15:19:15,719 BAD EPOCHS (no improvement): 2
2022-11-01 15:19:15,811 ----------------------------------------------------------------------------------------------------
2022-11-01 15:19:28,337 epoch 56 - iter 27/274 - loss 0.01954876 - samples/sec: 69.00 - lr: 0.100000
2022-11-01 15:19:40,046 epoch 56 - iter 54/274 - loss 0.02032311 - samples/sec: 73.81 - lr: 0.100000
2022-11-01 15:19:52,765 epoch 56 - iter 81/274 - loss 0.02087417 - samples/sec: 67.95 - lr: 0.100000
2022-11-01 15:20:04,834 epoch 56 - iter 108/274 - loss 0.02048386 - samples/sec: 71.61 - lr: 0.100000
2022-11-01 15:20:17,273 epoch 56 - iter 135/274 - loss 0.02064770 - samples/sec: 69.47 - lr: 0.100000
2022-11-01 15:20:28,798 epoch 56 - iter 162/274 - loss 0.02112385 - samples/sec: 74.99 - lr: 0.100000
2022-11-01 15:20:40,648 epoch 56 - iter 189/274 - loss 0.02075702 - samples/sec: 72.93 - lr: 0.100000
2022-11-01 15:20:53,632 epoch 56 - iter 216/274 - loss 0.02239268 - samples/sec: 66.56 - lr: 0.100000
2022-11-01 15:21:06,045 epoch 56 - iter 243/274 - loss 0.02240334 - samples/sec: 69.62 - lr: 0.100000
2022-11-01 15:21:18,551 epoch 56 - iter 270/274 - loss 0.02264396 - samples/sec: 69.11 - lr: 0.100000
2022-11-01 15:21:19,946 ----------------------------------------------------------------------------------------------------
2022-11-01 15:21:19,946 EPOCH 56 done: loss 0.0228 - lr 0.100000
2022-11-01 15:21:45,321 Evaluating as a multi-label problem: False
2022-11-01 15:21:45,337 TEST : loss 0.0304726455360651 - f1-score (micro avg)  0.8554
2022-11-01 15:21:45,388 BAD EPOCHS (no improvement): 3
2022-11-01 15:21:45,480 ----------------------------------------------------------------------------------------------------
2022-11-01 15:21:59,285 epoch 57 - iter 27/274 - loss 0.01858226 - samples/sec: 62.60 - lr: 0.100000
2022-11-01 15:22:12,050 epoch 57 - iter 54/274 - loss 0.02101951 - samples/sec: 67.70 - lr: 0.100000
2022-11-01 15:22:23,465 epoch 57 - iter 81/274 - loss 0.02165109 - samples/sec: 75.71 - lr: 0.100000
2022-11-01 15:22:37,035 epoch 57 - iter 108/274 - loss 0.02113920 - samples/sec: 63.68 - lr: 0.100000
2022-11-01 15:22:49,205 epoch 57 - iter 135/274 - loss 0.02123264 - samples/sec: 71.01 - lr: 0.100000
2022-11-01 15:23:01,492 epoch 57 - iter 162/274 - loss 0.02134561 - samples/sec: 70.34 - lr: 0.100000
2022-11-01 15:23:12,834 epoch 57 - iter 189/274 - loss 0.02164682 - samples/sec: 76.20 - lr: 0.100000
2022-11-01 15:23:25,219 epoch 57 - iter 216/274 - loss 0.02181912 - samples/sec: 69.78 - lr: 0.100000
2022-11-01 15:23:37,457 epoch 57 - iter 243/274 - loss 0.02190306 - samples/sec: 70.62 - lr: 0.100000
2022-11-01 15:23:49,705 epoch 57 - iter 270/274 - loss 0.02153457 - samples/sec: 70.56 - lr: 0.100000
2022-11-01 15:23:51,568 ----------------------------------------------------------------------------------------------------
2022-11-01 15:23:51,569 EPOCH 57 done: loss 0.0218 - lr 0.100000
2022-11-01 15:24:16,774 Evaluating as a multi-label problem: False
2022-11-01 15:24:16,790 TEST : loss 0.029483051970601082 - f1-score (micro avg)  0.851
2022-11-01 15:24:16,842 BAD EPOCHS (no improvement): 0
2022-11-01 15:24:16,934 ----------------------------------------------------------------------------------------------------
2022-11-01 15:24:27,696 epoch 58 - iter 27/274 - loss 0.01840180 - samples/sec: 80.31 - lr: 0.100000
2022-11-01 15:24:40,903 epoch 58 - iter 54/274 - loss 0.01832122 - samples/sec: 65.43 - lr: 0.100000
2022-11-01 15:24:53,761 epoch 58 - iter 81/274 - loss 0.02185904 - samples/sec: 67.21 - lr: 0.100000
2022-11-01 15:25:06,320 epoch 58 - iter 108/274 - loss 0.02212350 - samples/sec: 68.81 - lr: 0.100000
2022-11-01 15:25:17,127 epoch 58 - iter 135/274 - loss 0.02206877 - samples/sec: 79.97 - lr: 0.100000
2022-11-01 15:25:28,855 epoch 58 - iter 162/274 - loss 0.02272453 - samples/sec: 73.69 - lr: 0.100000
2022-11-01 15:25:42,309 epoch 58 - iter 189/274 - loss 0.02193286 - samples/sec: 64.23 - lr: 0.100000
2022-11-01 15:25:56,457 epoch 58 - iter 216/274 - loss 0.02243499 - samples/sec: 61.08 - lr: 0.100000
2022-11-01 15:26:08,686 epoch 58 - iter 243/274 - loss 0.02276000 - samples/sec: 70.67 - lr: 0.100000
2022-11-01 15:26:21,274 epoch 58 - iter 270/274 - loss 0.02265005 - samples/sec: 68.65 - lr: 0.100000
2022-11-01 15:26:22,976 ----------------------------------------------------------------------------------------------------
2022-11-01 15:26:22,976 EPOCH 58 done: loss 0.0227 - lr 0.100000
2022-11-01 15:26:48,369 Evaluating as a multi-label problem: False
2022-11-01 15:26:48,384 TEST : loss 0.03021113947033882 - f1-score (micro avg)  0.8549
2022-11-01 15:26:48,438 BAD EPOCHS (no improvement): 1
2022-11-01 15:26:48,531 ----------------------------------------------------------------------------------------------------
2022-11-01 15:26:59,892 epoch 59 - iter 27/274 - loss 0.02035532 - samples/sec: 76.07 - lr: 0.100000
2022-11-01 15:27:11,943 epoch 59 - iter 54/274 - loss 0.02086338 - samples/sec: 71.71 - lr: 0.100000
2022-11-01 15:27:25,608 epoch 59 - iter 81/274 - loss 0.02163636 - samples/sec: 63.24 - lr: 0.100000
2022-11-01 15:27:37,361 epoch 59 - iter 108/274 - loss 0.02209525 - samples/sec: 73.53 - lr: 0.100000
2022-11-01 15:27:50,299 epoch 59 - iter 135/274 - loss 0.02206673 - samples/sec: 66.80 - lr: 0.100000
2022-11-01 15:28:03,802 epoch 59 - iter 162/274 - loss 0.02266218 - samples/sec: 64.00 - lr: 0.100000
2022-11-01 15:28:17,186 epoch 59 - iter 189/274 - loss 0.02225368 - samples/sec: 64.57 - lr: 0.100000
2022-11-01 15:28:28,801 epoch 59 - iter 216/274 - loss 0.02210266 - samples/sec: 74.40 - lr: 0.100000
2022-11-01 15:28:41,114 epoch 59 - iter 243/274 - loss 0.02192757 - samples/sec: 70.19 - lr: 0.100000
2022-11-01 15:28:53,424 epoch 59 - iter 270/274 - loss 0.02161121 - samples/sec: 70.20 - lr: 0.100000
2022-11-01 15:28:54,871 ----------------------------------------------------------------------------------------------------
2022-11-01 15:28:54,871 EPOCH 59 done: loss 0.0217 - lr 0.100000
2022-11-01 15:29:20,109 Evaluating as a multi-label problem: False
2022-11-01 15:29:20,124 TEST : loss 0.03019784763455391 - f1-score (micro avg)  0.8518
2022-11-01 15:29:20,177 BAD EPOCHS (no improvement): 0
2022-11-01 15:29:20,268 ----------------------------------------------------------------------------------------------------
2022-11-01 15:29:33,582 epoch 60 - iter 27/274 - loss 0.02266229 - samples/sec: 64.91 - lr: 0.100000
2022-11-01 15:29:44,822 epoch 60 - iter 54/274 - loss 0.02097862 - samples/sec: 76.89 - lr: 0.100000
2022-11-01 15:29:58,299 epoch 60 - iter 81/274 - loss 0.02103717 - samples/sec: 64.12 - lr: 0.100000
2022-11-01 15:30:10,428 epoch 60 - iter 108/274 - loss 0.02157194 - samples/sec: 71.25 - lr: 0.100000
2022-11-01 15:30:23,316 epoch 60 - iter 135/274 - loss 0.02176278 - samples/sec: 67.06 - lr: 0.100000
2022-11-01 15:30:35,025 epoch 60 - iter 162/274 - loss 0.02124505 - samples/sec: 73.81 - lr: 0.100000
2022-11-01 15:30:47,845 epoch 60 - iter 189/274 - loss 0.02133995 - samples/sec: 67.41 - lr: 0.100000
2022-11-01 15:31:00,017 epoch 60 - iter 216/274 - loss 0.02152520 - samples/sec: 71.00 - lr: 0.100000
2022-11-01 15:31:12,827 epoch 60 - iter 243/274 - loss 0.02134036 - samples/sec: 67.46 - lr: 0.100000
2022-11-01 15:31:24,440 epoch 60 - iter 270/274 - loss 0.02164276 - samples/sec: 74.42 - lr: 0.100000
2022-11-01 15:31:25,992 ----------------------------------------------------------------------------------------------------
2022-11-01 15:31:25,992 EPOCH 60 done: loss 0.0216 - lr 0.100000
2022-11-01 15:31:51,314 Evaluating as a multi-label problem: False
2022-11-01 15:31:51,329 TEST : loss 0.030309708788990974 - f1-score (micro avg)  0.8446
2022-11-01 15:31:51,382 BAD EPOCHS (no improvement): 0
2022-11-01 15:31:51,474 ----------------------------------------------------------------------------------------------------
2022-11-01 15:32:04,475 epoch 61 - iter 27/274 - loss 0.02131620 - samples/sec: 66.48 - lr: 0.100000
2022-11-01 15:32:16,775 epoch 61 - iter 54/274 - loss 0.01755958 - samples/sec: 70.26 - lr: 0.100000
2022-11-01 15:32:29,944 epoch 61 - iter 81/274 - loss 0.01785219 - samples/sec: 65.63 - lr: 0.100000
2022-11-01 15:32:42,291 epoch 61 - iter 108/274 - loss 0.01927462 - samples/sec: 69.99 - lr: 0.100000
2022-11-01 15:32:53,782 epoch 61 - iter 135/274 - loss 0.01932511 - samples/sec: 75.21 - lr: 0.100000
2022-11-01 15:33:05,138 epoch 61 - iter 162/274 - loss 0.02022663 - samples/sec: 76.10 - lr: 0.100000
2022-11-01 15:33:18,348 epoch 61 - iter 189/274 - loss 0.02152986 - samples/sec: 65.42 - lr: 0.100000
2022-11-01 15:33:30,173 epoch 61 - iter 216/274 - loss 0.02153104 - samples/sec: 73.08 - lr: 0.100000
2022-11-01 15:33:42,662 epoch 61 - iter 243/274 - loss 0.02155148 - samples/sec: 69.20 - lr: 0.100000
2022-11-01 15:33:54,579 epoch 61 - iter 270/274 - loss 0.02144034 - samples/sec: 72.53 - lr: 0.100000
2022-11-01 15:33:56,381 ----------------------------------------------------------------------------------------------------
2022-11-01 15:33:56,381 EPOCH 61 done: loss 0.0215 - lr 0.100000
2022-11-01 15:34:21,677 Evaluating as a multi-label problem: False
2022-11-01 15:34:21,693 TEST : loss 0.028495075181126595 - f1-score (micro avg)  0.8491
2022-11-01 15:34:21,745 BAD EPOCHS (no improvement): 0
2022-11-01 15:34:21,837 ----------------------------------------------------------------------------------------------------
2022-11-01 15:34:34,938 epoch 62 - iter 27/274 - loss 0.01744152 - samples/sec: 65.97 - lr: 0.100000
2022-11-01 15:34:47,972 epoch 62 - iter 54/274 - loss 0.02095425 - samples/sec: 66.30 - lr: 0.100000
2022-11-01 15:35:00,121 epoch 62 - iter 81/274 - loss 0.02182806 - samples/sec: 71.14 - lr: 0.100000
2022-11-01 15:35:12,065 epoch 62 - iter 108/274 - loss 0.02200592 - samples/sec: 72.36 - lr: 0.100000
2022-11-01 15:35:24,838 epoch 62 - iter 135/274 - loss 0.02188164 - samples/sec: 67.66 - lr: 0.100000
2022-11-01 15:35:36,484 epoch 62 - iter 162/274 - loss 0.02140413 - samples/sec: 74.21 - lr: 0.100000
2022-11-01 15:35:49,425 epoch 62 - iter 189/274 - loss 0.02147430 - samples/sec: 66.78 - lr: 0.100000
2022-11-01 15:36:01,416 epoch 62 - iter 216/274 - loss 0.02079022 - samples/sec: 72.07 - lr: 0.100000
2022-11-01 15:36:14,073 epoch 62 - iter 243/274 - loss 0.02100848 - samples/sec: 68.28 - lr: 0.100000
2022-11-01 15:36:25,958 epoch 62 - iter 270/274 - loss 0.02117302 - samples/sec: 72.71 - lr: 0.100000
2022-11-01 15:36:27,489 ----------------------------------------------------------------------------------------------------
2022-11-01 15:36:27,489 EPOCH 62 done: loss 0.0211 - lr 0.100000
2022-11-01 15:36:52,787 Evaluating as a multi-label problem: False
2022-11-01 15:36:52,803 TEST : loss 0.03227972984313965 - f1-score (micro avg)  0.8455
2022-11-01 15:36:52,856 BAD EPOCHS (no improvement): 0
2022-11-01 15:36:52,948 ----------------------------------------------------------------------------------------------------
2022-11-01 15:37:04,831 epoch 63 - iter 27/274 - loss 0.02126119 - samples/sec: 72.73 - lr: 0.100000
2022-11-01 15:37:18,535 epoch 63 - iter 54/274 - loss 0.01942961 - samples/sec: 63.06 - lr: 0.100000
2022-11-01 15:37:31,254 epoch 63 - iter 81/274 - loss 0.02012420 - samples/sec: 67.94 - lr: 0.100000
2022-11-01 15:37:42,705 epoch 63 - iter 108/274 - loss 0.02029080 - samples/sec: 75.48 - lr: 0.100000
2022-11-01 15:37:55,699 epoch 63 - iter 135/274 - loss 0.02042011 - samples/sec: 66.51 - lr: 0.100000
2022-11-01 15:38:08,123 epoch 63 - iter 162/274 - loss 0.02065848 - samples/sec: 69.56 - lr: 0.100000
2022-11-01 15:38:19,533 epoch 63 - iter 189/274 - loss 0.02095013 - samples/sec: 75.74 - lr: 0.100000
2022-11-01 15:38:33,075 epoch 63 - iter 216/274 - loss 0.02097885 - samples/sec: 63.82 - lr: 0.100000
2022-11-01 15:38:45,108 epoch 63 - iter 243/274 - loss 0.02113682 - samples/sec: 71.82 - lr: 0.100000
2022-11-01 15:38:57,147 epoch 63 - iter 270/274 - loss 0.02136165 - samples/sec: 71.79 - lr: 0.100000
2022-11-01 15:38:58,754 ----------------------------------------------------------------------------------------------------
2022-11-01 15:38:58,754 EPOCH 63 done: loss 0.0214 - lr 0.100000
2022-11-01 15:39:24,602 Evaluating as a multi-label problem: False
2022-11-01 15:39:24,617 TEST : loss 0.029485132545232773 - f1-score (micro avg)  0.8442
2022-11-01 15:39:24,671 BAD EPOCHS (no improvement): 1
2022-11-01 15:39:24,745 ----------------------------------------------------------------------------------------------------
2022-11-01 15:39:35,637 epoch 64 - iter 27/274 - loss 0.01890757 - samples/sec: 79.35 - lr: 0.100000
2022-11-01 15:39:49,308 epoch 64 - iter 54/274 - loss 0.01938230 - samples/sec: 63.21 - lr: 0.100000
2022-11-01 15:40:02,928 epoch 64 - iter 81/274 - loss 0.02217057 - samples/sec: 63.45 - lr: 0.100000
2022-11-01 15:40:15,391 epoch 64 - iter 108/274 - loss 0.02165389 - samples/sec: 69.34 - lr: 0.100000
2022-11-01 15:40:26,951 epoch 64 - iter 135/274 - loss 0.02168174 - samples/sec: 74.76 - lr: 0.100000
2022-11-01 15:40:38,848 epoch 64 - iter 162/274 - loss 0.02134826 - samples/sec: 72.64 - lr: 0.100000
2022-11-01 15:40:50,875 epoch 64 - iter 189/274 - loss 0.02080389 - samples/sec: 71.86 - lr: 0.100000
2022-11-01 15:41:03,888 epoch 64 - iter 216/274 - loss 0.02074878 - samples/sec: 66.41 - lr: 0.100000
2022-11-01 15:41:16,800 epoch 64 - iter 243/274 - loss 0.02043543 - samples/sec: 66.93 - lr: 0.100000
2022-11-01 15:41:29,886 epoch 64 - iter 270/274 - loss 0.02087130 - samples/sec: 66.04 - lr: 0.100000
2022-11-01 15:41:31,399 ----------------------------------------------------------------------------------------------------
2022-11-01 15:41:31,399 EPOCH 64 done: loss 0.0209 - lr 0.100000
2022-11-01 15:41:56,819 Evaluating as a multi-label problem: False
2022-11-01 15:41:56,835 TEST : loss 0.030096804723143578 - f1-score (micro avg)  0.8446
2022-11-01 15:41:56,887 BAD EPOCHS (no improvement): 0
2022-11-01 15:41:56,980 ----------------------------------------------------------------------------------------------------
2022-11-01 15:42:11,007 epoch 65 - iter 27/274 - loss 0.02540958 - samples/sec: 61.61 - lr: 0.100000
2022-11-01 15:42:23,241 epoch 65 - iter 54/274 - loss 0.02236285 - samples/sec: 70.64 - lr: 0.100000
2022-11-01 15:42:35,599 epoch 65 - iter 81/274 - loss 0.02219879 - samples/sec: 69.93 - lr: 0.100000
2022-11-01 15:42:47,630 epoch 65 - iter 108/274 - loss 0.02127425 - samples/sec: 71.83 - lr: 0.100000
2022-11-01 15:43:00,252 epoch 65 - iter 135/274 - loss 0.02210803 - samples/sec: 68.47 - lr: 0.100000
2022-11-01 15:43:12,079 epoch 65 - iter 162/274 - loss 0.02161108 - samples/sec: 73.07 - lr: 0.100000
2022-11-01 15:43:23,801 epoch 65 - iter 189/274 - loss 0.02206507 - samples/sec: 73.73 - lr: 0.100000
2022-11-01 15:43:34,832 epoch 65 - iter 216/274 - loss 0.02203354 - samples/sec: 78.35 - lr: 0.100000
2022-11-01 15:43:47,550 epoch 65 - iter 243/274 - loss 0.02200313 - samples/sec: 67.95 - lr: 0.100000
2022-11-01 15:44:00,620 epoch 65 - iter 270/274 - loss 0.02150743 - samples/sec: 66.12 - lr: 0.100000
2022-11-01 15:44:02,372 ----------------------------------------------------------------------------------------------------
2022-11-01 15:44:02,372 EPOCH 65 done: loss 0.0214 - lr 0.100000
2022-11-01 15:44:28,137 Evaluating as a multi-label problem: False
2022-11-01 15:44:28,153 TEST : loss 0.02994183637201786 - f1-score (micro avg)  0.8534
2022-11-01 15:44:28,205 BAD EPOCHS (no improvement): 1
2022-11-01 15:44:28,291 ----------------------------------------------------------------------------------------------------
2022-11-01 15:44:40,467 epoch 66 - iter 27/274 - loss 0.01805836 - samples/sec: 70.98 - lr: 0.100000
2022-11-01 15:44:53,328 epoch 66 - iter 54/274 - loss 0.01872092 - samples/sec: 67.20 - lr: 0.100000
2022-11-01 15:45:06,350 epoch 66 - iter 81/274 - loss 0.02087662 - samples/sec: 66.37 - lr: 0.100000
2022-11-01 15:45:17,576 epoch 66 - iter 108/274 - loss 0.02057641 - samples/sec: 76.99 - lr: 0.100000
2022-11-01 15:45:29,056 epoch 66 - iter 135/274 - loss 0.01985161 - samples/sec: 75.28 - lr: 0.100000
2022-11-01 15:45:42,760 epoch 66 - iter 162/274 - loss 0.02047046 - samples/sec: 63.06 - lr: 0.100000
2022-11-01 15:45:56,009 epoch 66 - iter 189/274 - loss 0.02016785 - samples/sec: 65.23 - lr: 0.100000
2022-11-01 15:46:07,489 epoch 66 - iter 216/274 - loss 0.02021241 - samples/sec: 75.28 - lr: 0.100000
2022-11-01 15:46:19,392 epoch 66 - iter 243/274 - loss 0.02018700 - samples/sec: 72.61 - lr: 0.100000
2022-11-01 15:46:32,830 epoch 66 - iter 270/274 - loss 0.02057448 - samples/sec: 64.31 - lr: 0.100000
2022-11-01 15:46:34,491 ----------------------------------------------------------------------------------------------------
2022-11-01 15:46:34,491 EPOCH 66 done: loss 0.0205 - lr 0.100000
2022-11-01 15:46:59,926 Evaluating as a multi-label problem: False
2022-11-01 15:46:59,942 TEST : loss 0.02977355383336544 - f1-score (micro avg)  0.8492
2022-11-01 15:46:59,994 BAD EPOCHS (no improvement): 0
2022-11-01 15:47:00,080 ----------------------------------------------------------------------------------------------------
2022-11-01 15:47:12,481 epoch 67 - iter 27/274 - loss 0.02224031 - samples/sec: 69.69 - lr: 0.100000
2022-11-01 15:47:26,274 epoch 67 - iter 54/274 - loss 0.01948851 - samples/sec: 62.66 - lr: 0.100000
2022-11-01 15:47:37,830 epoch 67 - iter 81/274 - loss 0.02039320 - samples/sec: 74.79 - lr: 0.100000
2022-11-01 15:47:49,569 epoch 67 - iter 108/274 - loss 0.02151655 - samples/sec: 73.62 - lr: 0.100000
2022-11-01 15:48:01,705 epoch 67 - iter 135/274 - loss 0.02094293 - samples/sec: 71.21 - lr: 0.100000
2022-11-01 15:48:14,965 epoch 67 - iter 162/274 - loss 0.02077230 - samples/sec: 65.18 - lr: 0.100000
2022-11-01 15:48:27,654 epoch 67 - iter 189/274 - loss 0.02084305 - samples/sec: 68.11 - lr: 0.100000
2022-11-01 15:48:39,855 epoch 67 - iter 216/274 - loss 0.02079591 - samples/sec: 70.83 - lr: 0.100000
2022-11-01 15:48:51,410 epoch 67 - iter 243/274 - loss 0.02046085 - samples/sec: 74.80 - lr: 0.100000
2022-11-01 15:49:05,305 epoch 67 - iter 270/274 - loss 0.02023832 - samples/sec: 62.19 - lr: 0.100000
2022-11-01 15:49:07,162 ----------------------------------------------------------------------------------------------------
2022-11-01 15:49:07,162 EPOCH 67 done: loss 0.0203 - lr 0.100000
2022-11-01 15:49:32,558 Evaluating as a multi-label problem: False
2022-11-01 15:49:32,574 TEST : loss 0.030972706153988838 - f1-score (micro avg)  0.8543
2022-11-01 15:49:32,627 BAD EPOCHS (no improvement): 0
2022-11-01 15:49:32,723 ----------------------------------------------------------------------------------------------------
2022-11-01 15:49:46,088 epoch 68 - iter 27/274 - loss 0.02133801 - samples/sec: 64.67 - lr: 0.100000
2022-11-01 15:49:58,017 epoch 68 - iter 54/274 - loss 0.02034460 - samples/sec: 72.45 - lr: 0.100000
2022-11-01 15:50:11,523 epoch 68 - iter 81/274 - loss 0.02022263 - samples/sec: 63.98 - lr: 0.100000
2022-11-01 15:50:24,462 epoch 68 - iter 108/274 - loss 0.02108536 - samples/sec: 66.79 - lr: 0.100000
2022-11-01 15:50:37,223 epoch 68 - iter 135/274 - loss 0.02035431 - samples/sec: 67.73 - lr: 0.100000
2022-11-01 15:50:49,548 epoch 68 - iter 162/274 - loss 0.02128033 - samples/sec: 70.12 - lr: 0.100000
2022-11-01 15:51:01,472 epoch 68 - iter 189/274 - loss 0.02080314 - samples/sec: 72.48 - lr: 0.100000
2022-11-01 15:51:13,417 epoch 68 - iter 216/274 - loss 0.02127075 - samples/sec: 72.35 - lr: 0.100000
2022-11-01 15:51:25,660 epoch 68 - iter 243/274 - loss 0.02066568 - samples/sec: 70.59 - lr: 0.100000
2022-11-01 15:51:37,327 epoch 68 - iter 270/274 - loss 0.02080117 - samples/sec: 74.07 - lr: 0.100000
2022-11-01 15:51:38,889 ----------------------------------------------------------------------------------------------------
2022-11-01 15:51:38,889 EPOCH 68 done: loss 0.0208 - lr 0.100000
2022-11-01 15:52:04,255 Evaluating as a multi-label problem: False
2022-11-01 15:52:04,271 TEST : loss 0.030792292207479477 - f1-score (micro avg)  0.8528
2022-11-01 15:52:04,323 BAD EPOCHS (no improvement): 1
2022-11-01 15:52:04,414 ----------------------------------------------------------------------------------------------------
2022-11-01 15:52:16,801 epoch 69 - iter 27/274 - loss 0.02075958 - samples/sec: 69.77 - lr: 0.100000
2022-11-01 15:52:28,377 epoch 69 - iter 54/274 - loss 0.02100983 - samples/sec: 74.66 - lr: 0.100000
2022-11-01 15:52:40,744 epoch 69 - iter 81/274 - loss 0.01987977 - samples/sec: 69.88 - lr: 0.100000
2022-11-01 15:52:52,969 epoch 69 - iter 108/274 - loss 0.01993851 - samples/sec: 70.70 - lr: 0.100000
2022-11-01 15:53:04,669 epoch 69 - iter 135/274 - loss 0.01973035 - samples/sec: 73.87 - lr: 0.100000
2022-11-01 15:53:16,071 epoch 69 - iter 162/274 - loss 0.01921936 - samples/sec: 75.80 - lr: 0.100000
2022-11-01 15:53:27,126 epoch 69 - iter 189/274 - loss 0.01975087 - samples/sec: 78.17 - lr: 0.100000
2022-11-01 15:53:39,655 epoch 69 - iter 216/274 - loss 0.02017193 - samples/sec: 68.98 - lr: 0.100000
2022-11-01 15:53:53,330 epoch 69 - iter 243/274 - loss 0.01998366 - samples/sec: 63.19 - lr: 0.100000
2022-11-01 15:54:06,348 epoch 69 - iter 270/274 - loss 0.01994459 - samples/sec: 66.39 - lr: 0.100000
2022-11-01 15:54:08,088 ----------------------------------------------------------------------------------------------------
2022-11-01 15:54:08,088 EPOCH 69 done: loss 0.0199 - lr 0.100000
2022-11-01 15:54:33,789 Evaluating as a multi-label problem: False
2022-11-01 15:54:33,804 TEST : loss 0.031563375145196915 - f1-score (micro avg)  0.8505
2022-11-01 15:54:33,856 BAD EPOCHS (no improvement): 0
2022-11-01 15:54:33,947 ----------------------------------------------------------------------------------------------------
2022-11-01 15:54:47,227 epoch 70 - iter 27/274 - loss 0.01858086 - samples/sec: 65.08 - lr: 0.100000
2022-11-01 15:54:58,681 epoch 70 - iter 54/274 - loss 0.01935509 - samples/sec: 75.45 - lr: 0.100000
2022-11-01 15:55:10,707 epoch 70 - iter 81/274 - loss 0.01941681 - samples/sec: 71.87 - lr: 0.100000
2022-11-01 15:55:24,092 epoch 70 - iter 108/274 - loss 0.02029023 - samples/sec: 64.56 - lr: 0.100000
2022-11-01 15:55:36,306 epoch 70 - iter 135/274 - loss 0.02080017 - samples/sec: 70.76 - lr: 0.100000
2022-11-01 15:55:48,483 epoch 70 - iter 162/274 - loss 0.02105265 - samples/sec: 70.97 - lr: 0.100000
2022-11-01 15:56:01,367 epoch 70 - iter 189/274 - loss 0.02042653 - samples/sec: 67.08 - lr: 0.100000
2022-11-01 15:56:13,179 epoch 70 - iter 216/274 - loss 0.02107873 - samples/sec: 73.17 - lr: 0.100000
2022-11-01 15:56:26,980 epoch 70 - iter 243/274 - loss 0.02108922 - samples/sec: 62.62 - lr: 0.100000
2022-11-01 15:56:40,787 epoch 70 - iter 270/274 - loss 0.02127791 - samples/sec: 62.59 - lr: 0.100000
2022-11-01 15:56:42,391 ----------------------------------------------------------------------------------------------------
2022-11-01 15:56:42,391 EPOCH 70 done: loss 0.0212 - lr 0.100000
2022-11-01 15:57:07,366 Evaluating as a multi-label problem: False
2022-11-01 15:57:07,382 TEST : loss 0.03166978433728218 - f1-score (micro avg)  0.8539
2022-11-01 15:57:07,435 BAD EPOCHS (no improvement): 1
2022-11-01 15:57:07,525 ----------------------------------------------------------------------------------------------------
2022-11-01 15:57:18,588 epoch 71 - iter 27/274 - loss 0.02212426 - samples/sec: 78.12 - lr: 0.100000
2022-11-01 15:57:30,305 epoch 71 - iter 54/274 - loss 0.02025799 - samples/sec: 73.76 - lr: 0.100000
2022-11-01 15:57:42,033 epoch 71 - iter 81/274 - loss 0.02065372 - samples/sec: 73.69 - lr: 0.100000
2022-11-01 15:57:54,142 epoch 71 - iter 108/274 - loss 0.02128302 - samples/sec: 71.37 - lr: 0.100000
2022-11-01 15:58:07,073 epoch 71 - iter 135/274 - loss 0.02181676 - samples/sec: 66.83 - lr: 0.100000
2022-11-01 15:58:20,111 epoch 71 - iter 162/274 - loss 0.02132020 - samples/sec: 66.28 - lr: 0.100000
2022-11-01 15:58:32,485 epoch 71 - iter 189/274 - loss 0.02050799 - samples/sec: 69.84 - lr: 0.100000
2022-11-01 15:58:43,824 epoch 71 - iter 216/274 - loss 0.01992917 - samples/sec: 76.22 - lr: 0.100000
2022-11-01 15:58:56,979 epoch 71 - iter 243/274 - loss 0.02030662 - samples/sec: 65.69 - lr: 0.100000
2022-11-01 15:59:09,144 epoch 71 - iter 270/274 - loss 0.02021591 - samples/sec: 71.04 - lr: 0.100000
2022-11-01 15:59:11,568 ----------------------------------------------------------------------------------------------------
2022-11-01 15:59:11,568 EPOCH 71 done: loss 0.0204 - lr 0.100000
2022-11-01 15:59:37,390 Evaluating as a multi-label problem: False
2022-11-01 15:59:37,406 TEST : loss 0.03054458275437355 - f1-score (micro avg)  0.854
2022-11-01 15:59:37,458 BAD EPOCHS (no improvement): 2
2022-11-01 15:59:37,554 ----------------------------------------------------------------------------------------------------
2022-11-01 15:59:49,256 epoch 72 - iter 27/274 - loss 0.02002288 - samples/sec: 73.86 - lr: 0.100000
2022-11-01 16:00:01,291 epoch 72 - iter 54/274 - loss 0.01804290 - samples/sec: 71.81 - lr: 0.100000
2022-11-01 16:00:13,882 epoch 72 - iter 81/274 - loss 0.01876863 - samples/sec: 68.63 - lr: 0.100000
2022-11-01 16:00:25,965 epoch 72 - iter 108/274 - loss 0.01891240 - samples/sec: 71.53 - lr: 0.100000
2022-11-01 16:00:39,081 epoch 72 - iter 135/274 - loss 0.01882314 - samples/sec: 65.89 - lr: 0.100000
2022-11-01 16:00:51,215 epoch 72 - iter 162/274 - loss 0.01888338 - samples/sec: 71.23 - lr: 0.100000
2022-11-01 16:01:02,822 epoch 72 - iter 189/274 - loss 0.01859963 - samples/sec: 74.45 - lr: 0.100000
2022-11-01 16:01:15,001 epoch 72 - iter 216/274 - loss 0.01894609 - samples/sec: 70.96 - lr: 0.100000
2022-11-01 16:01:28,410 epoch 72 - iter 243/274 - loss 0.01937545 - samples/sec: 64.45 - lr: 0.100000
2022-11-01 16:01:42,428 epoch 72 - iter 270/274 - loss 0.02020000 - samples/sec: 61.65 - lr: 0.100000
2022-11-01 16:01:43,954 ----------------------------------------------------------------------------------------------------
2022-11-01 16:01:43,955 EPOCH 72 done: loss 0.0201 - lr 0.100000
2022-11-01 16:02:09,347 Evaluating as a multi-label problem: False
2022-11-01 16:02:09,363 TEST : loss 0.029515517875552177 - f1-score (micro avg)  0.8582
2022-11-01 16:02:09,415 BAD EPOCHS (no improvement): 3
2022-11-01 16:02:09,508 ----------------------------------------------------------------------------------------------------
2022-11-01 16:02:23,043 epoch 73 - iter 27/274 - loss 0.02220240 - samples/sec: 63.85 - lr: 0.100000
2022-11-01 16:02:34,503 epoch 73 - iter 54/274 - loss 0.02184526 - samples/sec: 75.42 - lr: 0.100000
2022-11-01 16:02:47,677 epoch 73 - iter 81/274 - loss 0.02129952 - samples/sec: 65.60 - lr: 0.100000
2022-11-01 16:03:00,508 epoch 73 - iter 108/274 - loss 0.02092159 - samples/sec: 67.35 - lr: 0.100000
2022-11-01 16:03:11,713 epoch 73 - iter 135/274 - loss 0.02135403 - samples/sec: 77.13 - lr: 0.100000
2022-11-01 16:03:23,418 epoch 73 - iter 162/274 - loss 0.02121899 - samples/sec: 73.84 - lr: 0.100000
2022-11-01 16:03:35,824 epoch 73 - iter 189/274 - loss 0.02072249 - samples/sec: 69.66 - lr: 0.100000
2022-11-01 16:03:48,819 epoch 73 - iter 216/274 - loss 0.02100808 - samples/sec: 66.50 - lr: 0.100000
2022-11-01 16:04:01,462 epoch 73 - iter 243/274 - loss 0.02116109 - samples/sec: 68.36 - lr: 0.100000
2022-11-01 16:04:14,781 epoch 73 - iter 270/274 - loss 0.02126688 - samples/sec: 64.88 - lr: 0.100000
2022-11-01 16:04:16,334 ----------------------------------------------------------------------------------------------------
2022-11-01 16:04:16,334 EPOCH 73 done: loss 0.0212 - lr 0.100000
2022-11-01 16:04:41,564 Evaluating as a multi-label problem: False
2022-11-01 16:04:41,579 TEST : loss 0.0294826440513134 - f1-score (micro avg)  0.8499
2022-11-01 16:04:41,631 Epoch    73: reducing learning rate of group 0 to 5.0000e-02.
2022-11-01 16:04:41,632 BAD EPOCHS (no improvement): 4
2022-11-01 16:04:41,723 ----------------------------------------------------------------------------------------------------
2022-11-01 16:04:54,382 epoch 74 - iter 27/274 - loss 0.01699297 - samples/sec: 68.27 - lr: 0.050000
2022-11-01 16:05:07,038 epoch 74 - iter 54/274 - loss 0.01847639 - samples/sec: 68.28 - lr: 0.050000
2022-11-01 16:05:18,943 epoch 74 - iter 81/274 - loss 0.01896710 - samples/sec: 72.59 - lr: 0.050000
2022-11-01 16:05:30,232 epoch 74 - iter 108/274 - loss 0.01856741 - samples/sec: 76.56 - lr: 0.050000
2022-11-01 16:05:42,326 epoch 74 - iter 135/274 - loss 0.01911050 - samples/sec: 71.46 - lr: 0.050000
2022-11-01 16:05:53,721 epoch 74 - iter 162/274 - loss 0.01893491 - samples/sec: 75.85 - lr: 0.050000
2022-11-01 16:06:05,986 epoch 74 - iter 189/274 - loss 0.01976027 - samples/sec: 70.47 - lr: 0.050000
2022-11-01 16:06:18,737 epoch 74 - iter 216/274 - loss 0.01995122 - samples/sec: 67.77 - lr: 0.050000
2022-11-01 16:06:31,727 epoch 74 - iter 243/274 - loss 0.01949284 - samples/sec: 66.53 - lr: 0.050000
2022-11-01 16:06:44,209 epoch 74 - iter 270/274 - loss 0.01943572 - samples/sec: 69.24 - lr: 0.050000
2022-11-01 16:06:46,178 ----------------------------------------------------------------------------------------------------
2022-11-01 16:06:46,179 EPOCH 74 done: loss 0.0194 - lr 0.050000
2022-11-01 16:07:11,505 Evaluating as a multi-label problem: False
2022-11-01 16:07:11,520 TEST : loss 0.030243773013353348 - f1-score (micro avg)  0.8508
2022-11-01 16:07:11,574 BAD EPOCHS (no improvement): 0
2022-11-01 16:07:11,666 ----------------------------------------------------------------------------------------------------
2022-11-01 16:07:24,777 epoch 75 - iter 27/274 - loss 0.01546676 - samples/sec: 65.92 - lr: 0.050000
2022-11-01 16:07:36,355 epoch 75 - iter 54/274 - loss 0.01834654 - samples/sec: 74.65 - lr: 0.050000
2022-11-01 16:07:48,021 epoch 75 - iter 81/274 - loss 0.01790446 - samples/sec: 74.08 - lr: 0.050000
2022-11-01 16:07:59,523 epoch 75 - iter 108/274 - loss 0.01785671 - samples/sec: 75.14 - lr: 0.050000
2022-11-01 16:08:12,431 epoch 75 - iter 135/274 - loss 0.01831446 - samples/sec: 66.95 - lr: 0.050000
2022-11-01 16:08:25,527 epoch 75 - iter 162/274 - loss 0.01826631 - samples/sec: 65.99 - lr: 0.050000
2022-11-01 16:08:37,958 epoch 75 - iter 189/274 - loss 0.01816669 - samples/sec: 69.52 - lr: 0.050000
2022-11-01 16:08:51,537 epoch 75 - iter 216/274 - loss 0.01861337 - samples/sec: 63.64 - lr: 0.050000
2022-11-01 16:09:03,481 epoch 75 - iter 243/274 - loss 0.01881745 - samples/sec: 72.36 - lr: 0.050000
2022-11-01 16:09:16,590 epoch 75 - iter 270/274 - loss 0.01870689 - samples/sec: 65.93 - lr: 0.050000
2022-11-01 16:09:18,295 ----------------------------------------------------------------------------------------------------
2022-11-01 16:09:18,295 EPOCH 75 done: loss 0.0188 - lr 0.050000
2022-11-01 16:09:43,737 Evaluating as a multi-label problem: False
2022-11-01 16:09:43,752 TEST : loss 0.02911132387816906 - f1-score (micro avg)  0.8527
2022-11-01 16:09:43,804 BAD EPOCHS (no improvement): 0
2022-11-01 16:09:43,895 ----------------------------------------------------------------------------------------------------
2022-11-01 16:09:56,178 epoch 76 - iter 27/274 - loss 0.01445317 - samples/sec: 70.36 - lr: 0.050000
2022-11-01 16:10:08,517 epoch 76 - iter 54/274 - loss 0.01648596 - samples/sec: 70.04 - lr: 0.050000
2022-11-01 16:10:20,368 epoch 76 - iter 81/274 - loss 0.01698888 - samples/sec: 72.93 - lr: 0.050000
2022-11-01 16:10:32,873 epoch 76 - iter 108/274 - loss 0.01756096 - samples/sec: 69.11 - lr: 0.050000
2022-11-01 16:10:46,907 epoch 76 - iter 135/274 - loss 0.01762281 - samples/sec: 61.58 - lr: 0.050000
2022-11-01 16:10:58,979 epoch 76 - iter 162/274 - loss 0.01732201 - samples/sec: 71.60 - lr: 0.050000
2022-11-01 16:11:11,759 epoch 76 - iter 189/274 - loss 0.01751176 - samples/sec: 67.62 - lr: 0.050000
2022-11-01 16:11:23,975 epoch 76 - iter 216/274 - loss 0.01766946 - samples/sec: 70.74 - lr: 0.050000
2022-11-01 16:11:35,773 epoch 76 - iter 243/274 - loss 0.01783327 - samples/sec: 73.25 - lr: 0.050000
2022-11-01 16:11:48,911 epoch 76 - iter 270/274 - loss 0.01793928 - samples/sec: 65.78 - lr: 0.050000
2022-11-01 16:11:50,891 ----------------------------------------------------------------------------------------------------
2022-11-01 16:11:50,892 EPOCH 76 done: loss 0.0180 - lr 0.050000
2022-11-01 16:12:16,332 Evaluating as a multi-label problem: False
2022-11-01 16:12:16,347 TEST : loss 0.02934643253684044 - f1-score (micro avg)  0.857
2022-11-01 16:12:16,399 BAD EPOCHS (no improvement): 0
2022-11-01 16:12:16,490 ----------------------------------------------------------------------------------------------------
2022-11-01 16:12:28,007 epoch 77 - iter 27/274 - loss 0.01524350 - samples/sec: 75.04 - lr: 0.050000
2022-11-01 16:12:40,880 epoch 77 - iter 54/274 - loss 0.01741012 - samples/sec: 67.14 - lr: 0.050000
2022-11-01 16:12:53,126 epoch 77 - iter 81/274 - loss 0.01776495 - samples/sec: 70.57 - lr: 0.050000
2022-11-01 16:13:04,214 epoch 77 - iter 108/274 - loss 0.01764313 - samples/sec: 77.95 - lr: 0.050000
2022-11-01 16:13:18,011 epoch 77 - iter 135/274 - loss 0.01765748 - samples/sec: 62.63 - lr: 0.050000
2022-11-01 16:13:29,621 epoch 77 - iter 162/274 - loss 0.01771770 - samples/sec: 74.44 - lr: 0.050000
2022-11-01 16:13:43,414 epoch 77 - iter 189/274 - loss 0.01796879 - samples/sec: 62.65 - lr: 0.050000
2022-11-01 16:13:54,588 epoch 77 - iter 216/274 - loss 0.01797517 - samples/sec: 77.35 - lr: 0.050000
2022-11-01 16:14:07,007 epoch 77 - iter 243/274 - loss 0.01790936 - samples/sec: 69.59 - lr: 0.050000
2022-11-01 16:14:20,191 epoch 77 - iter 270/274 - loss 0.01865935 - samples/sec: 65.55 - lr: 0.050000
2022-11-01 16:14:22,147 ----------------------------------------------------------------------------------------------------
2022-11-01 16:14:22,148 EPOCH 77 done: loss 0.0186 - lr 0.050000
2022-11-01 16:14:47,277 Evaluating as a multi-label problem: False
2022-11-01 16:14:47,293 TEST : loss 0.028807329013943672 - f1-score (micro avg)  0.8581
2022-11-01 16:14:47,347 BAD EPOCHS (no improvement): 1
2022-11-01 16:14:47,439 ----------------------------------------------------------------------------------------------------
2022-11-01 16:14:59,483 epoch 78 - iter 27/274 - loss 0.01491909 - samples/sec: 71.76 - lr: 0.050000
2022-11-01 16:15:11,094 epoch 78 - iter 54/274 - loss 0.01479802 - samples/sec: 74.43 - lr: 0.050000
2022-11-01 16:15:23,177 epoch 78 - iter 81/274 - loss 0.01800552 - samples/sec: 71.53 - lr: 0.050000
2022-11-01 16:15:35,961 epoch 78 - iter 108/274 - loss 0.01651022 - samples/sec: 67.60 - lr: 0.050000
2022-11-01 16:15:48,569 epoch 78 - iter 135/274 - loss 0.01727430 - samples/sec: 68.55 - lr: 0.050000
2022-11-01 16:16:02,945 epoch 78 - iter 162/274 - loss 0.01702202 - samples/sec: 60.12 - lr: 0.050000
2022-11-01 16:16:15,222 epoch 78 - iter 189/274 - loss 0.01711726 - samples/sec: 70.39 - lr: 0.050000
2022-11-01 16:16:27,068 epoch 78 - iter 216/274 - loss 0.01707427 - samples/sec: 72.95 - lr: 0.050000
2022-11-01 16:16:39,506 epoch 78 - iter 243/274 - loss 0.01700401 - samples/sec: 69.48 - lr: 0.050000
2022-11-01 16:16:52,570 epoch 78 - iter 270/274 - loss 0.01712211 - samples/sec: 66.15 - lr: 0.050000
2022-11-01 16:16:54,130 ----------------------------------------------------------------------------------------------------
2022-11-01 16:16:54,131 EPOCH 78 done: loss 0.0171 - lr 0.050000
2022-11-01 16:17:19,592 Evaluating as a multi-label problem: False
2022-11-01 16:17:19,608 TEST : loss 0.03133295476436615 - f1-score (micro avg)  0.8528
2022-11-01 16:17:19,662 BAD EPOCHS (no improvement): 0
2022-11-01 16:17:19,735 ----------------------------------------------------------------------------------------------------
2022-11-01 16:17:31,215 epoch 79 - iter 27/274 - loss 0.01593943 - samples/sec: 75.29 - lr: 0.050000
2022-11-01 16:17:43,239 epoch 79 - iter 54/274 - loss 0.01816389 - samples/sec: 71.87 - lr: 0.050000
2022-11-01 16:17:54,562 epoch 79 - iter 81/274 - loss 0.01802346 - samples/sec: 76.33 - lr: 0.050000
2022-11-01 16:18:07,895 epoch 79 - iter 108/274 - loss 0.01903539 - samples/sec: 64.82 - lr: 0.050000
2022-11-01 16:18:20,020 epoch 79 - iter 135/274 - loss 0.01855551 - samples/sec: 71.28 - lr: 0.050000
2022-11-01 16:18:33,472 epoch 79 - iter 162/274 - loss 0.01859544 - samples/sec: 64.24 - lr: 0.050000
2022-11-01 16:18:45,736 epoch 79 - iter 189/274 - loss 0.01866095 - samples/sec: 70.47 - lr: 0.050000
2022-11-01 16:18:58,137 epoch 79 - iter 216/274 - loss 0.01866639 - samples/sec: 69.69 - lr: 0.050000
2022-11-01 16:19:10,045 epoch 79 - iter 243/274 - loss 0.01811509 - samples/sec: 72.57 - lr: 0.050000
2022-11-01 16:19:23,548 epoch 79 - iter 270/274 - loss 0.01832024 - samples/sec: 64.00 - lr: 0.050000
2022-11-01 16:19:25,173 ----------------------------------------------------------------------------------------------------
2022-11-01 16:19:25,174 EPOCH 79 done: loss 0.0184 - lr 0.050000
2022-11-01 16:19:50,600 Evaluating as a multi-label problem: False
2022-11-01 16:19:50,616 TEST : loss 0.03068099543452263 - f1-score (micro avg)  0.8506
2022-11-01 16:19:50,669 BAD EPOCHS (no improvement): 1
2022-11-01 16:19:50,760 ----------------------------------------------------------------------------------------------------
2022-11-01 16:20:01,772 epoch 80 - iter 27/274 - loss 0.01991148 - samples/sec: 78.49 - lr: 0.050000
2022-11-01 16:20:16,433 epoch 80 - iter 54/274 - loss 0.01871553 - samples/sec: 58.94 - lr: 0.050000
2022-11-01 16:20:28,629 epoch 80 - iter 81/274 - loss 0.01907954 - samples/sec: 70.86 - lr: 0.050000
2022-11-01 16:20:40,218 epoch 80 - iter 108/274 - loss 0.01834093 - samples/sec: 74.58 - lr: 0.050000
2022-11-01 16:20:53,091 epoch 80 - iter 135/274 - loss 0.01859223 - samples/sec: 67.14 - lr: 0.050000
2022-11-01 16:21:04,356 epoch 80 - iter 162/274 - loss 0.01827675 - samples/sec: 76.72 - lr: 0.050000
2022-11-01 16:21:17,001 epoch 80 - iter 189/274 - loss 0.01822210 - samples/sec: 68.34 - lr: 0.050000
2022-11-01 16:21:28,675 epoch 80 - iter 216/274 - loss 0.01827311 - samples/sec: 74.03 - lr: 0.050000
2022-11-01 16:21:42,235 epoch 80 - iter 243/274 - loss 0.01796925 - samples/sec: 63.73 - lr: 0.050000
2022-11-01 16:21:54,314 epoch 80 - iter 270/274 - loss 0.01791834 - samples/sec: 71.55 - lr: 0.050000
2022-11-01 16:21:56,353 ----------------------------------------------------------------------------------------------------
2022-11-01 16:21:56,353 EPOCH 80 done: loss 0.0180 - lr 0.050000
2022-11-01 16:22:21,823 Evaluating as a multi-label problem: False
2022-11-01 16:22:21,839 TEST : loss 0.03157917782664299 - f1-score (micro avg)  0.8551
2022-11-01 16:22:21,892 BAD EPOCHS (no improvement): 2
2022-11-01 16:22:21,984 ----------------------------------------------------------------------------------------------------
2022-11-01 16:22:34,097 epoch 81 - iter 27/274 - loss 0.01705883 - samples/sec: 71.36 - lr: 0.050000
2022-11-01 16:22:45,629 epoch 81 - iter 54/274 - loss 0.01676405 - samples/sec: 74.94 - lr: 0.050000
2022-11-01 16:22:57,336 epoch 81 - iter 81/274 - loss 0.01739874 - samples/sec: 73.83 - lr: 0.050000
2022-11-01 16:23:08,562 epoch 81 - iter 108/274 - loss 0.01762212 - samples/sec: 76.98 - lr: 0.050000
2022-11-01 16:23:21,574 epoch 81 - iter 135/274 - loss 0.01782749 - samples/sec: 66.42 - lr: 0.050000
2022-11-01 16:23:35,270 epoch 81 - iter 162/274 - loss 0.01828249 - samples/sec: 63.10 - lr: 0.050000
2022-11-01 16:23:48,300 epoch 81 - iter 189/274 - loss 0.01813256 - samples/sec: 66.32 - lr: 0.050000
2022-11-01 16:24:01,404 epoch 81 - iter 216/274 - loss 0.01802512 - samples/sec: 65.95 - lr: 0.050000
2022-11-01 16:24:12,505 epoch 81 - iter 243/274 - loss 0.01793248 - samples/sec: 77.85 - lr: 0.050000
2022-11-01 16:24:24,473 epoch 81 - iter 270/274 - loss 0.01780714 - samples/sec: 72.21 - lr: 0.050000
2022-11-01 16:24:26,323 ----------------------------------------------------------------------------------------------------
2022-11-01 16:24:26,323 EPOCH 81 done: loss 0.0179 - lr 0.050000
2022-11-01 16:24:51,950 Evaluating as a multi-label problem: False
2022-11-01 16:24:51,966 TEST : loss 0.029629342257976532 - f1-score (micro avg)  0.8565
2022-11-01 16:24:52,017 BAD EPOCHS (no improvement): 3
2022-11-01 16:24:52,108 ----------------------------------------------------------------------------------------------------
2022-11-01 16:25:03,673 epoch 82 - iter 27/274 - loss 0.01517411 - samples/sec: 74.73 - lr: 0.050000
2022-11-01 16:25:15,248 epoch 82 - iter 54/274 - loss 0.01566208 - samples/sec: 74.67 - lr: 0.050000
2022-11-01 16:25:28,531 epoch 82 - iter 81/274 - loss 0.01767380 - samples/sec: 65.06 - lr: 0.050000
2022-11-01 16:25:40,413 epoch 82 - iter 108/274 - loss 0.01710010 - samples/sec: 72.74 - lr: 0.050000
2022-11-01 16:25:52,805 epoch 82 - iter 135/274 - loss 0.01665061 - samples/sec: 69.74 - lr: 0.050000
2022-11-01 16:26:05,721 epoch 82 - iter 162/274 - loss 0.01717756 - samples/sec: 66.91 - lr: 0.050000
2022-11-01 16:26:18,213 epoch 82 - iter 189/274 - loss 0.01790767 - samples/sec: 69.18 - lr: 0.050000
2022-11-01 16:26:30,435 epoch 82 - iter 216/274 - loss 0.01790503 - samples/sec: 70.71 - lr: 0.050000
2022-11-01 16:26:44,476 epoch 82 - iter 243/274 - loss 0.01773968 - samples/sec: 61.55 - lr: 0.050000
2022-11-01 16:26:56,279 epoch 82 - iter 270/274 - loss 0.01752431 - samples/sec: 73.22 - lr: 0.050000
2022-11-01 16:26:57,790 ----------------------------------------------------------------------------------------------------
2022-11-01 16:26:57,790 EPOCH 82 done: loss 0.0176 - lr 0.050000
2022-11-01 16:27:23,088 Evaluating as a multi-label problem: False
2022-11-01 16:27:23,103 TEST : loss 0.02843180112540722 - f1-score (micro avg)  0.8544
2022-11-01 16:27:23,156 Epoch    82: reducing learning rate of group 0 to 2.5000e-02.
2022-11-01 16:27:23,156 BAD EPOCHS (no improvement): 4
2022-11-01 16:27:23,248 ----------------------------------------------------------------------------------------------------
2022-11-01 16:27:35,196 epoch 83 - iter 27/274 - loss 0.01636089 - samples/sec: 72.33 - lr: 0.025000
2022-11-01 16:27:46,808 epoch 83 - iter 54/274 - loss 0.01606208 - samples/sec: 74.43 - lr: 0.025000
2022-11-01 16:27:59,607 epoch 83 - iter 81/274 - loss 0.01687172 - samples/sec: 67.52 - lr: 0.025000
2022-11-01 16:28:12,576 epoch 83 - iter 108/274 - loss 0.01773665 - samples/sec: 66.64 - lr: 0.025000
2022-11-01 16:28:25,607 epoch 83 - iter 135/274 - loss 0.01707393 - samples/sec: 66.32 - lr: 0.025000
2022-11-01 16:28:37,893 epoch 83 - iter 162/274 - loss 0.01671065 - samples/sec: 70.35 - lr: 0.025000
2022-11-01 16:28:50,691 epoch 83 - iter 189/274 - loss 0.01697125 - samples/sec: 67.53 - lr: 0.025000
2022-11-01 16:29:03,462 epoch 83 - iter 216/274 - loss 0.01688751 - samples/sec: 67.67 - lr: 0.025000
2022-11-01 16:29:15,237 epoch 83 - iter 243/274 - loss 0.01724621 - samples/sec: 73.39 - lr: 0.025000
2022-11-01 16:29:27,912 epoch 83 - iter 270/274 - loss 0.01744322 - samples/sec: 68.18 - lr: 0.025000
2022-11-01 16:29:29,629 ----------------------------------------------------------------------------------------------------
2022-11-01 16:29:29,629 EPOCH 83 done: loss 0.0173 - lr 0.025000
2022-11-01 16:29:54,787 Evaluating as a multi-label problem: False
2022-11-01 16:29:54,803 TEST : loss 0.029316166415810585 - f1-score (micro avg)  0.8533
2022-11-01 16:29:54,856 BAD EPOCHS (no improvement): 1
2022-11-01 16:29:54,951 ----------------------------------------------------------------------------------------------------
2022-11-01 16:30:06,126 epoch 84 - iter 27/274 - loss 0.01576658 - samples/sec: 77.34 - lr: 0.025000
2022-11-01 16:30:18,356 epoch 84 - iter 54/274 - loss 0.01510948 - samples/sec: 70.67 - lr: 0.025000
2022-11-01 16:30:30,897 epoch 84 - iter 81/274 - loss 0.01509003 - samples/sec: 68.91 - lr: 0.025000
2022-11-01 16:30:44,239 epoch 84 - iter 108/274 - loss 0.01485943 - samples/sec: 64.77 - lr: 0.025000
2022-11-01 16:30:57,506 epoch 84 - iter 135/274 - loss 0.01553865 - samples/sec: 65.14 - lr: 0.025000
2022-11-01 16:31:08,699 epoch 84 - iter 162/274 - loss 0.01580709 - samples/sec: 77.21 - lr: 0.025000
2022-11-01 16:31:21,826 epoch 84 - iter 189/274 - loss 0.01591768 - samples/sec: 65.84 - lr: 0.025000
2022-11-01 16:31:35,047 epoch 84 - iter 216/274 - loss 0.01610133 - samples/sec: 65.36 - lr: 0.025000
2022-11-01 16:31:47,076 epoch 84 - iter 243/274 - loss 0.01600053 - samples/sec: 71.85 - lr: 0.025000
2022-11-01 16:31:59,719 epoch 84 - iter 270/274 - loss 0.01628348 - samples/sec: 68.36 - lr: 0.025000
2022-11-01 16:32:01,717 ----------------------------------------------------------------------------------------------------
2022-11-01 16:32:01,717 EPOCH 84 done: loss 0.0164 - lr 0.025000
2022-11-01 16:32:27,343 Evaluating as a multi-label problem: False
2022-11-01 16:32:27,359 TEST : loss 0.029401035979390144 - f1-score (micro avg)  0.8506
2022-11-01 16:32:27,411 BAD EPOCHS (no improvement): 0
2022-11-01 16:32:27,507 ----------------------------------------------------------------------------------------------------
2022-11-01 16:32:39,216 epoch 85 - iter 27/274 - loss 0.01603222 - samples/sec: 73.81 - lr: 0.025000
2022-11-01 16:32:51,063 epoch 85 - iter 54/274 - loss 0.01741225 - samples/sec: 72.95 - lr: 0.025000
2022-11-01 16:33:04,348 epoch 85 - iter 81/274 - loss 0.01696731 - samples/sec: 65.05 - lr: 0.025000
2022-11-01 16:33:17,167 epoch 85 - iter 108/274 - loss 0.01676102 - samples/sec: 67.42 - lr: 0.025000
2022-11-01 16:33:30,885 epoch 85 - iter 135/274 - loss 0.01643452 - samples/sec: 63.00 - lr: 0.025000
2022-11-01 16:33:42,958 epoch 85 - iter 162/274 - loss 0.01683062 - samples/sec: 71.58 - lr: 0.025000
2022-11-01 16:33:54,584 epoch 85 - iter 189/274 - loss 0.01661397 - samples/sec: 74.34 - lr: 0.025000
2022-11-01 16:34:08,124 epoch 85 - iter 216/274 - loss 0.01674394 - samples/sec: 63.83 - lr: 0.025000
2022-11-01 16:34:19,185 epoch 85 - iter 243/274 - loss 0.01673404 - samples/sec: 78.14 - lr: 0.025000
2022-11-01 16:34:30,584 epoch 85 - iter 270/274 - loss 0.01678524 - samples/sec: 75.82 - lr: 0.025000
2022-11-01 16:34:32,416 ----------------------------------------------------------------------------------------------------
2022-11-01 16:34:32,416 EPOCH 85 done: loss 0.0167 - lr 0.025000
2022-11-01 16:34:57,702 Evaluating as a multi-label problem: False
2022-11-01 16:34:57,717 TEST : loss 0.030953796580433846 - f1-score (micro avg)  0.8556
2022-11-01 16:34:57,769 BAD EPOCHS (no improvement): 1
2022-11-01 16:34:57,860 ----------------------------------------------------------------------------------------------------
2022-11-01 16:35:10,313 epoch 86 - iter 27/274 - loss 0.01832310 - samples/sec: 69.40 - lr: 0.025000
2022-11-01 16:35:24,124 epoch 86 - iter 54/274 - loss 0.01662775 - samples/sec: 62.57 - lr: 0.025000
2022-11-01 16:35:35,622 epoch 86 - iter 81/274 - loss 0.01593853 - samples/sec: 75.17 - lr: 0.025000
2022-11-01 16:35:48,105 epoch 86 - iter 108/274 - loss 0.01677397 - samples/sec: 69.23 - lr: 0.025000
2022-11-01 16:35:59,618 epoch 86 - iter 135/274 - loss 0.01677152 - samples/sec: 75.07 - lr: 0.025000
2022-11-01 16:36:11,947 epoch 86 - iter 162/274 - loss 0.01687084 - samples/sec: 70.10 - lr: 0.025000
2022-11-01 16:36:25,305 epoch 86 - iter 189/274 - loss 0.01703050 - samples/sec: 64.70 - lr: 0.025000
2022-11-01 16:36:37,864 epoch 86 - iter 216/274 - loss 0.01682995 - samples/sec: 68.81 - lr: 0.025000
2022-11-01 16:36:48,783 epoch 86 - iter 243/274 - loss 0.01675319 - samples/sec: 79.15 - lr: 0.025000
2022-11-01 16:36:59,918 epoch 86 - iter 270/274 - loss 0.01679931 - samples/sec: 77.62 - lr: 0.025000
2022-11-01 16:37:01,938 ----------------------------------------------------------------------------------------------------
2022-11-01 16:37:01,938 EPOCH 86 done: loss 0.0170 - lr 0.025000
2022-11-01 16:37:27,319 Evaluating as a multi-label problem: False
2022-11-01 16:37:27,335 TEST : loss 0.030635029077529907 - f1-score (micro avg)  0.8537
2022-11-01 16:37:27,388 BAD EPOCHS (no improvement): 2
2022-11-01 16:37:27,480 ----------------------------------------------------------------------------------------------------
2022-11-01 16:37:39,899 epoch 87 - iter 27/274 - loss 0.01457488 - samples/sec: 69.60 - lr: 0.025000
2022-11-01 16:37:53,247 epoch 87 - iter 54/274 - loss 0.01425651 - samples/sec: 64.74 - lr: 0.025000
2022-11-01 16:38:06,024 epoch 87 - iter 81/274 - loss 0.01547111 - samples/sec: 67.64 - lr: 0.025000
2022-11-01 16:38:19,260 epoch 87 - iter 108/274 - loss 0.01529546 - samples/sec: 65.29 - lr: 0.025000
2022-11-01 16:38:31,312 epoch 87 - iter 135/274 - loss 0.01584319 - samples/sec: 71.71 - lr: 0.025000
2022-11-01 16:38:43,662 epoch 87 - iter 162/274 - loss 0.01590420 - samples/sec: 69.98 - lr: 0.025000
2022-11-01 16:38:56,177 epoch 87 - iter 189/274 - loss 0.01631382 - samples/sec: 69.05 - lr: 0.025000
2022-11-01 16:39:08,261 epoch 87 - iter 216/274 - loss 0.01628017 - samples/sec: 71.52 - lr: 0.025000
2022-11-01 16:39:20,371 epoch 87 - iter 243/274 - loss 0.01615643 - samples/sec: 71.37 - lr: 0.025000
2022-11-01 16:39:33,177 epoch 87 - iter 270/274 - loss 0.01590582 - samples/sec: 67.48 - lr: 0.025000
2022-11-01 16:39:34,790 ----------------------------------------------------------------------------------------------------
2022-11-01 16:39:34,790 EPOCH 87 done: loss 0.0159 - lr 0.025000
2022-11-01 16:40:00,078 Evaluating as a multi-label problem: False
2022-11-01 16:40:00,093 TEST : loss 0.03055056370794773 - f1-score (micro avg)  0.8535
2022-11-01 16:40:00,146 BAD EPOCHS (no improvement): 0
2022-11-01 16:40:00,238 ----------------------------------------------------------------------------------------------------
2022-11-01 16:40:11,140 epoch 88 - iter 27/274 - loss 0.01375907 - samples/sec: 79.28 - lr: 0.025000
2022-11-01 16:40:24,674 epoch 88 - iter 54/274 - loss 0.01666760 - samples/sec: 63.86 - lr: 0.025000
2022-11-01 16:40:36,121 epoch 88 - iter 81/274 - loss 0.01668721 - samples/sec: 75.50 - lr: 0.025000
2022-11-01 16:40:48,625 epoch 88 - iter 108/274 - loss 0.01569771 - samples/sec: 69.12 - lr: 0.025000
2022-11-01 16:41:02,221 epoch 88 - iter 135/274 - loss 0.01541809 - samples/sec: 63.56 - lr: 0.025000
2022-11-01 16:41:13,833 epoch 88 - iter 162/274 - loss 0.01572390 - samples/sec: 74.43 - lr: 0.025000
2022-11-01 16:41:26,394 epoch 88 - iter 189/274 - loss 0.01613422 - samples/sec: 68.80 - lr: 0.025000
2022-11-01 16:41:39,138 epoch 88 - iter 216/274 - loss 0.01597918 - samples/sec: 67.81 - lr: 0.025000
2022-11-01 16:41:50,987 epoch 88 - iter 243/274 - loss 0.01610632 - samples/sec: 72.94 - lr: 0.025000
2022-11-01 16:42:04,017 epoch 88 - iter 270/274 - loss 0.01642128 - samples/sec: 66.33 - lr: 0.025000
2022-11-01 16:42:05,883 ----------------------------------------------------------------------------------------------------
2022-11-01 16:42:05,883 EPOCH 88 done: loss 0.0166 - lr 0.025000
2022-11-01 16:42:30,656 Evaluating as a multi-label problem: False
2022-11-01 16:42:30,672 TEST : loss 0.029628725722432137 - f1-score (micro avg)  0.8577
2022-11-01 16:42:30,726 BAD EPOCHS (no improvement): 1
2022-11-01 16:42:30,799 ----------------------------------------------------------------------------------------------------
2022-11-01 16:42:43,593 epoch 89 - iter 27/274 - loss 0.01806551 - samples/sec: 67.55 - lr: 0.025000
2022-11-01 16:42:56,549 epoch 89 - iter 54/274 - loss 0.01773860 - samples/sec: 66.70 - lr: 0.025000
2022-11-01 16:43:07,563 epoch 89 - iter 81/274 - loss 0.01752078 - samples/sec: 78.47 - lr: 0.025000
2022-11-01 16:43:18,722 epoch 89 - iter 108/274 - loss 0.01689594 - samples/sec: 77.45 - lr: 0.025000
2022-11-01 16:43:31,342 epoch 89 - iter 135/274 - loss 0.01681539 - samples/sec: 68.48 - lr: 0.025000
2022-11-01 16:43:43,326 epoch 89 - iter 162/274 - loss 0.01672993 - samples/sec: 72.12 - lr: 0.025000
2022-11-01 16:43:55,437 epoch 89 - iter 189/274 - loss 0.01699377 - samples/sec: 71.36 - lr: 0.025000
2022-11-01 16:44:07,633 epoch 89 - iter 216/274 - loss 0.01664312 - samples/sec: 70.86 - lr: 0.025000
2022-11-01 16:44:21,310 epoch 89 - iter 243/274 - loss 0.01652580 - samples/sec: 63.19 - lr: 0.025000
2022-11-01 16:44:34,524 epoch 89 - iter 270/274 - loss 0.01646223 - samples/sec: 65.40 - lr: 0.025000
2022-11-01 16:44:36,018 ----------------------------------------------------------------------------------------------------
2022-11-01 16:44:36,018 EPOCH 89 done: loss 0.0164 - lr 0.025000
2022-11-01 16:45:01,028 Evaluating as a multi-label problem: False
2022-11-01 16:45:01,044 TEST : loss 0.030412347987294197 - f1-score (micro avg)  0.8557
2022-11-01 16:45:01,101 BAD EPOCHS (no improvement): 2
2022-11-01 16:45:01,197 ----------------------------------------------------------------------------------------------------
2022-11-01 16:45:13,274 epoch 90 - iter 27/274 - loss 0.01564131 - samples/sec: 71.56 - lr: 0.025000
2022-11-01 16:45:25,179 epoch 90 - iter 54/274 - loss 0.01582138 - samples/sec: 72.60 - lr: 0.025000
2022-11-01 16:45:37,427 epoch 90 - iter 81/274 - loss 0.01540488 - samples/sec: 70.56 - lr: 0.025000
2022-11-01 16:45:48,993 epoch 90 - iter 108/274 - loss 0.01637324 - samples/sec: 74.73 - lr: 0.025000
2022-11-01 16:46:01,317 epoch 90 - iter 135/274 - loss 0.01632562 - samples/sec: 70.13 - lr: 0.025000
2022-11-01 16:46:13,570 epoch 90 - iter 162/274 - loss 0.01599840 - samples/sec: 70.53 - lr: 0.025000
2022-11-01 16:46:26,019 epoch 90 - iter 189/274 - loss 0.01599910 - samples/sec: 69.43 - lr: 0.025000
2022-11-01 16:46:38,827 epoch 90 - iter 216/274 - loss 0.01613755 - samples/sec: 67.47 - lr: 0.025000
2022-11-01 16:46:50,421 epoch 90 - iter 243/274 - loss 0.01621818 - samples/sec: 74.55 - lr: 0.025000
2022-11-01 16:47:03,939 epoch 90 - iter 270/274 - loss 0.01603622 - samples/sec: 63.93 - lr: 0.025000
2022-11-01 16:47:06,316 ----------------------------------------------------------------------------------------------------
2022-11-01 16:47:06,316 EPOCH 90 done: loss 0.0160 - lr 0.025000
2022-11-01 16:47:31,676 Evaluating as a multi-label problem: False
2022-11-01 16:47:31,692 TEST : loss 0.029919512569904327 - f1-score (micro avg)  0.8499
2022-11-01 16:47:31,746 BAD EPOCHS (no improvement): 3
2022-11-01 16:47:31,838 ----------------------------------------------------------------------------------------------------
2022-11-01 16:47:44,697 epoch 91 - iter 27/274 - loss 0.01229596 - samples/sec: 67.21 - lr: 0.025000
2022-11-01 16:47:57,004 epoch 91 - iter 54/274 - loss 0.01415102 - samples/sec: 70.22 - lr: 0.025000
2022-11-01 16:48:09,090 epoch 91 - iter 81/274 - loss 0.01421652 - samples/sec: 71.50 - lr: 0.025000
2022-11-01 16:48:21,585 epoch 91 - iter 108/274 - loss 0.01502545 - samples/sec: 69.17 - lr: 0.025000
2022-11-01 16:48:35,360 epoch 91 - iter 135/274 - loss 0.01534741 - samples/sec: 62.74 - lr: 0.025000
2022-11-01 16:48:47,558 epoch 91 - iter 162/274 - loss 0.01576136 - samples/sec: 70.85 - lr: 0.025000
2022-11-01 16:49:00,013 epoch 91 - iter 189/274 - loss 0.01573564 - samples/sec: 69.39 - lr: 0.025000
2022-11-01 16:49:12,613 epoch 91 - iter 216/274 - loss 0.01610894 - samples/sec: 68.59 - lr: 0.025000
2022-11-01 16:49:23,671 epoch 91 - iter 243/274 - loss 0.01583706 - samples/sec: 78.15 - lr: 0.025000
2022-11-01 16:49:37,477 epoch 91 - iter 270/274 - loss 0.01585399 - samples/sec: 62.60 - lr: 0.025000
2022-11-01 16:49:39,134 ----------------------------------------------------------------------------------------------------
2022-11-01 16:49:39,135 EPOCH 91 done: loss 0.0158 - lr 0.025000
2022-11-01 16:50:04,527 Evaluating as a multi-label problem: False
2022-11-01 16:50:04,542 TEST : loss 0.029802754521369934 - f1-score (micro avg)  0.8562
2022-11-01 16:50:04,594 BAD EPOCHS (no improvement): 0
2022-11-01 16:50:04,667 ----------------------------------------------------------------------------------------------------
2022-11-01 16:50:17,801 epoch 92 - iter 27/274 - loss 0.01424113 - samples/sec: 65.80 - lr: 0.025000
2022-11-01 16:50:30,363 epoch 92 - iter 54/274 - loss 0.01557183 - samples/sec: 68.80 - lr: 0.025000
2022-11-01 16:50:43,821 epoch 92 - iter 81/274 - loss 0.01633458 - samples/sec: 64.21 - lr: 0.025000
2022-11-01 16:50:55,674 epoch 92 - iter 108/274 - loss 0.01687727 - samples/sec: 72.92 - lr: 0.025000
2022-11-01 16:51:08,718 epoch 92 - iter 135/274 - loss 0.01594242 - samples/sec: 66.25 - lr: 0.025000
2022-11-01 16:51:20,596 epoch 92 - iter 162/274 - loss 0.01612769 - samples/sec: 72.76 - lr: 0.025000
2022-11-01 16:51:32,683 epoch 92 - iter 189/274 - loss 0.01619242 - samples/sec: 71.50 - lr: 0.025000
2022-11-01 16:51:45,275 epoch 92 - iter 216/274 - loss 0.01641394 - samples/sec: 68.63 - lr: 0.025000
2022-11-01 16:51:57,544 epoch 92 - iter 243/274 - loss 0.01626312 - samples/sec: 70.44 - lr: 0.025000
2022-11-01 16:52:09,360 epoch 92 - iter 270/274 - loss 0.01581703 - samples/sec: 73.14 - lr: 0.025000
2022-11-01 16:52:11,253 ----------------------------------------------------------------------------------------------------
2022-11-01 16:52:11,254 EPOCH 92 done: loss 0.0158 - lr 0.025000
2022-11-01 16:52:36,332 Evaluating as a multi-label problem: False
2022-11-01 16:52:36,347 TEST : loss 0.031193019822239876 - f1-score (micro avg)  0.852
2022-11-01 16:52:36,399 BAD EPOCHS (no improvement): 0
2022-11-01 16:52:36,495 ----------------------------------------------------------------------------------------------------
2022-11-01 16:52:47,868 epoch 93 - iter 27/274 - loss 0.01514042 - samples/sec: 75.99 - lr: 0.025000
2022-11-01 16:52:59,621 epoch 93 - iter 54/274 - loss 0.01608344 - samples/sec: 73.54 - lr: 0.025000
2022-11-01 16:53:12,802 epoch 93 - iter 81/274 - loss 0.01633994 - samples/sec: 65.56 - lr: 0.025000
2022-11-01 16:53:26,430 epoch 93 - iter 108/274 - loss 0.01694982 - samples/sec: 63.41 - lr: 0.025000
2022-11-01 16:53:39,222 epoch 93 - iter 135/274 - loss 0.01595774 - samples/sec: 67.56 - lr: 0.025000
2022-11-01 16:53:51,426 epoch 93 - iter 162/274 - loss 0.01608164 - samples/sec: 70.81 - lr: 0.025000
2022-11-01 16:54:03,857 epoch 93 - iter 189/274 - loss 0.01616575 - samples/sec: 69.52 - lr: 0.025000
2022-11-01 16:54:16,142 epoch 93 - iter 216/274 - loss 0.01606524 - samples/sec: 70.35 - lr: 0.025000
2022-11-01 16:54:28,972 epoch 93 - iter 243/274 - loss 0.01602004 - samples/sec: 67.36 - lr: 0.025000
2022-11-01 16:54:41,141 epoch 93 - iter 270/274 - loss 0.01552356 - samples/sec: 71.02 - lr: 0.025000
2022-11-01 16:54:42,851 ----------------------------------------------------------------------------------------------------
2022-11-01 16:54:42,852 EPOCH 93 done: loss 0.0155 - lr 0.025000
2022-11-01 16:55:08,139 Evaluating as a multi-label problem: False
2022-11-01 16:55:08,154 TEST : loss 0.03080672211945057 - f1-score (micro avg)  0.8551
2022-11-01 16:55:08,208 BAD EPOCHS (no improvement): 0
2022-11-01 16:55:08,300 ----------------------------------------------------------------------------------------------------
2022-11-01 16:55:20,564 epoch 94 - iter 27/274 - loss 0.01833471 - samples/sec: 70.47 - lr: 0.025000
2022-11-01 16:55:33,934 epoch 94 - iter 54/274 - loss 0.01785616 - samples/sec: 64.64 - lr: 0.025000
2022-11-01 16:55:46,048 epoch 94 - iter 81/274 - loss 0.01756784 - samples/sec: 71.34 - lr: 0.025000
2022-11-01 16:55:59,581 epoch 94 - iter 108/274 - loss 0.01710252 - samples/sec: 63.86 - lr: 0.025000
2022-11-01 16:56:11,194 epoch 94 - iter 135/274 - loss 0.01640143 - samples/sec: 74.42 - lr: 0.025000
2022-11-01 16:56:24,892 epoch 94 - iter 162/274 - loss 0.01595753 - samples/sec: 63.09 - lr: 0.025000
2022-11-01 16:56:37,887 epoch 94 - iter 189/274 - loss 0.01589872 - samples/sec: 66.50 - lr: 0.025000
2022-11-01 16:56:48,846 epoch 94 - iter 216/274 - loss 0.01636018 - samples/sec: 78.87 - lr: 0.025000
2022-11-01 16:57:00,547 epoch 94 - iter 243/274 - loss 0.01639244 - samples/sec: 73.86 - lr: 0.025000
2022-11-01 16:57:12,390 epoch 94 - iter 270/274 - loss 0.01644462 - samples/sec: 72.98 - lr: 0.025000
2022-11-01 16:57:13,913 ----------------------------------------------------------------------------------------------------
2022-11-01 16:57:13,913 EPOCH 94 done: loss 0.0164 - lr 0.025000
2022-11-01 16:57:39,655 Evaluating as a multi-label problem: False
2022-11-01 16:57:39,671 TEST : loss 0.030662264674901962 - f1-score (micro avg)  0.8553
2022-11-01 16:57:39,722 BAD EPOCHS (no improvement): 1
2022-11-01 16:57:39,814 ----------------------------------------------------------------------------------------------------
2022-11-01 16:57:52,162 epoch 95 - iter 27/274 - loss 0.01688978 - samples/sec: 70.00 - lr: 0.025000
2022-11-01 16:58:05,022 epoch 95 - iter 54/274 - loss 0.01534652 - samples/sec: 67.20 - lr: 0.025000
2022-11-01 16:58:16,780 epoch 95 - iter 81/274 - loss 0.01469917 - samples/sec: 73.50 - lr: 0.025000
2022-11-01 16:58:28,997 epoch 95 - iter 108/274 - loss 0.01583896 - samples/sec: 70.74 - lr: 0.025000
2022-11-01 16:58:40,603 epoch 95 - iter 135/274 - loss 0.01604019 - samples/sec: 74.46 - lr: 0.025000
2022-11-01 16:58:52,272 epoch 95 - iter 162/274 - loss 0.01560099 - samples/sec: 74.07 - lr: 0.025000
2022-11-01 16:59:05,106 epoch 95 - iter 189/274 - loss 0.01566128 - samples/sec: 67.33 - lr: 0.025000
2022-11-01 16:59:16,292 epoch 95 - iter 216/274 - loss 0.01538281 - samples/sec: 77.27 - lr: 0.025000
2022-11-01 16:59:30,105 epoch 95 - iter 243/274 - loss 0.01595071 - samples/sec: 62.56 - lr: 0.025000
2022-11-01 16:59:42,530 epoch 95 - iter 270/274 - loss 0.01587799 - samples/sec: 69.55 - lr: 0.025000
2022-11-01 16:59:44,417 ----------------------------------------------------------------------------------------------------
2022-11-01 16:59:44,417 EPOCH 95 done: loss 0.0158 - lr 0.025000
2022-11-01 17:00:09,855 Evaluating as a multi-label problem: False
2022-11-01 17:00:09,870 TEST : loss 0.030545346438884735 - f1-score (micro avg)  0.8545
2022-11-01 17:00:09,923 BAD EPOCHS (no improvement): 2
2022-11-01 17:00:10,015 ----------------------------------------------------------------------------------------------------
2022-11-01 17:00:23,419 epoch 96 - iter 27/274 - loss 0.01242489 - samples/sec: 64.48 - lr: 0.025000
2022-11-01 17:00:35,238 epoch 96 - iter 54/274 - loss 0.01448475 - samples/sec: 73.12 - lr: 0.025000
2022-11-01 17:00:48,022 epoch 96 - iter 81/274 - loss 0.01561201 - samples/sec: 67.60 - lr: 0.025000
2022-11-01 17:01:00,345 epoch 96 - iter 108/274 - loss 0.01621416 - samples/sec: 70.13 - lr: 0.025000
2022-11-01 17:01:13,192 epoch 96 - iter 135/274 - loss 0.01632154 - samples/sec: 67.27 - lr: 0.025000
2022-11-01 17:01:24,671 epoch 96 - iter 162/274 - loss 0.01572867 - samples/sec: 75.29 - lr: 0.025000
2022-11-01 17:01:36,808 epoch 96 - iter 189/274 - loss 0.01559104 - samples/sec: 71.21 - lr: 0.025000
2022-11-01 17:01:50,027 epoch 96 - iter 216/274 - loss 0.01589267 - samples/sec: 65.38 - lr: 0.025000
2022-11-01 17:02:03,405 epoch 96 - iter 243/274 - loss 0.01604069 - samples/sec: 64.60 - lr: 0.025000
2022-11-01 17:02:14,570 epoch 96 - iter 270/274 - loss 0.01609900 - samples/sec: 77.40 - lr: 0.025000
2022-11-01 17:02:16,458 ----------------------------------------------------------------------------------------------------
2022-11-01 17:02:16,458 EPOCH 96 done: loss 0.0161 - lr 0.025000
2022-11-01 17:02:41,425 Evaluating as a multi-label problem: False
2022-11-01 17:02:41,440 TEST : loss 0.031394150108098984 - f1-score (micro avg)  0.8584
2022-11-01 17:02:41,493 BAD EPOCHS (no improvement): 3
2022-11-01 17:02:41,585 ----------------------------------------------------------------------------------------------------
2022-11-01 17:02:54,710 epoch 97 - iter 27/274 - loss 0.01492072 - samples/sec: 65.85 - lr: 0.025000
2022-11-01 17:03:05,770 epoch 97 - iter 54/274 - loss 0.01396878 - samples/sec: 78.14 - lr: 0.025000
2022-11-01 17:03:17,619 epoch 97 - iter 81/274 - loss 0.01413726 - samples/sec: 72.94 - lr: 0.025000
2022-11-01 17:03:31,104 epoch 97 - iter 108/274 - loss 0.01427275 - samples/sec: 64.09 - lr: 0.025000
2022-11-01 17:03:43,566 epoch 97 - iter 135/274 - loss 0.01438317 - samples/sec: 69.35 - lr: 0.025000
2022-11-01 17:03:56,029 epoch 97 - iter 162/274 - loss 0.01508738 - samples/sec: 69.34 - lr: 0.025000
2022-11-01 17:04:07,750 epoch 97 - iter 189/274 - loss 0.01543147 - samples/sec: 73.73 - lr: 0.025000
2022-11-01 17:04:21,673 epoch 97 - iter 216/274 - loss 0.01514577 - samples/sec: 62.07 - lr: 0.025000
2022-11-01 17:04:35,162 epoch 97 - iter 243/274 - loss 0.01554633 - samples/sec: 64.07 - lr: 0.025000
2022-11-01 17:04:47,543 epoch 97 - iter 270/274 - loss 0.01594045 - samples/sec: 69.80 - lr: 0.025000
2022-11-01 17:04:49,266 ----------------------------------------------------------------------------------------------------
2022-11-01 17:04:49,267 EPOCH 97 done: loss 0.0161 - lr 0.025000
2022-11-01 17:05:14,559 Evaluating as a multi-label problem: False
2022-11-01 17:05:14,575 TEST : loss 0.031141091138124466 - f1-score (micro avg)  0.8548
2022-11-01 17:05:14,626 Epoch    97: reducing learning rate of group 0 to 1.2500e-02.
2022-11-01 17:05:14,626 BAD EPOCHS (no improvement): 4
2022-11-01 17:05:14,718 ----------------------------------------------------------------------------------------------------
2022-11-01 17:05:27,619 epoch 98 - iter 27/274 - loss 0.01684552 - samples/sec: 66.99 - lr: 0.012500
2022-11-01 17:05:40,712 epoch 98 - iter 54/274 - loss 0.01617953 - samples/sec: 66.00 - lr: 0.012500
2022-11-01 17:05:52,535 epoch 98 - iter 81/274 - loss 0.01694288 - samples/sec: 73.10 - lr: 0.012500
2022-11-01 17:06:04,021 epoch 98 - iter 108/274 - loss 0.01581446 - samples/sec: 75.25 - lr: 0.012500
2022-11-01 17:06:16,731 epoch 98 - iter 135/274 - loss 0.01504212 - samples/sec: 68.00 - lr: 0.012500
2022-11-01 17:06:28,406 epoch 98 - iter 162/274 - loss 0.01514386 - samples/sec: 74.02 - lr: 0.012500
2022-11-01 17:06:40,061 epoch 98 - iter 189/274 - loss 0.01497497 - samples/sec: 74.15 - lr: 0.012500
2022-11-01 17:06:51,963 epoch 98 - iter 216/274 - loss 0.01510213 - samples/sec: 72.61 - lr: 0.012500
2022-11-01 17:07:04,163 epoch 98 - iter 243/274 - loss 0.01520530 - samples/sec: 70.84 - lr: 0.012500
2022-11-01 17:07:18,137 epoch 98 - iter 270/274 - loss 0.01495979 - samples/sec: 61.84 - lr: 0.012500
2022-11-01 17:07:19,938 ----------------------------------------------------------------------------------------------------
2022-11-01 17:07:19,938 EPOCH 98 done: loss 0.0150 - lr 0.012500
2022-11-01 17:07:45,296 Evaluating as a multi-label problem: False
2022-11-01 17:07:45,312 TEST : loss 0.0315224826335907 - f1-score (micro avg)  0.8517
2022-11-01 17:07:45,364 BAD EPOCHS (no improvement): 0
2022-11-01 17:07:45,457 ----------------------------------------------------------------------------------------------------
2022-11-01 17:07:59,107 epoch 99 - iter 27/274 - loss 0.01568841 - samples/sec: 63.31 - lr: 0.012500
2022-11-01 17:08:11,036 epoch 99 - iter 54/274 - loss 0.01701872 - samples/sec: 72.45 - lr: 0.012500
2022-11-01 17:08:22,893 epoch 99 - iter 81/274 - loss 0.01531658 - samples/sec: 72.89 - lr: 0.012500
2022-11-01 17:08:34,443 epoch 99 - iter 108/274 - loss 0.01571024 - samples/sec: 74.83 - lr: 0.012500
2022-11-01 17:08:45,990 epoch 99 - iter 135/274 - loss 0.01567341 - samples/sec: 74.85 - lr: 0.012500
2022-11-01 17:08:58,358 epoch 99 - iter 162/274 - loss 0.01522725 - samples/sec: 69.88 - lr: 0.012500
2022-11-01 17:09:10,655 epoch 99 - iter 189/274 - loss 0.01517455 - samples/sec: 70.28 - lr: 0.012500
2022-11-01 17:09:24,581 epoch 99 - iter 216/274 - loss 0.01501352 - samples/sec: 62.06 - lr: 0.012500
2022-11-01 17:09:36,581 epoch 99 - iter 243/274 - loss 0.01514386 - samples/sec: 72.02 - lr: 0.012500
2022-11-01 17:09:48,961 epoch 99 - iter 270/274 - loss 0.01501936 - samples/sec: 69.81 - lr: 0.012500
2022-11-01 17:09:50,696 ----------------------------------------------------------------------------------------------------
2022-11-01 17:09:50,696 EPOCH 99 done: loss 0.0149 - lr 0.012500
2022-11-01 17:10:16,131 Evaluating as a multi-label problem: False
2022-11-01 17:10:16,146 TEST : loss 0.032214682549238205 - f1-score (micro avg)  0.8528
2022-11-01 17:10:16,198 BAD EPOCHS (no improvement): 0
2022-11-01 17:10:16,290 ----------------------------------------------------------------------------------------------------
2022-11-01 17:10:28,380 epoch 100 - iter 27/274 - loss 0.01049140 - samples/sec: 71.49 - lr: 0.012500
2022-11-01 17:10:41,052 epoch 100 - iter 54/274 - loss 0.01500905 - samples/sec: 68.20 - lr: 0.012500
2022-11-01 17:10:53,501 epoch 100 - iter 81/274 - loss 0.01512699 - samples/sec: 69.42 - lr: 0.012500
2022-11-01 17:11:05,018 epoch 100 - iter 108/274 - loss 0.01472317 - samples/sec: 75.04 - lr: 0.012500
2022-11-01 17:11:16,311 epoch 100 - iter 135/274 - loss 0.01471632 - samples/sec: 76.53 - lr: 0.012500
2022-11-01 17:11:28,068 epoch 100 - iter 162/274 - loss 0.01508426 - samples/sec: 73.51 - lr: 0.012500
2022-11-01 17:11:42,352 epoch 100 - iter 189/274 - loss 0.01528565 - samples/sec: 60.50 - lr: 0.012500
2022-11-01 17:11:54,868 epoch 100 - iter 216/274 - loss 0.01551813 - samples/sec: 69.05 - lr: 0.012500
2022-11-01 17:12:09,315 epoch 100 - iter 243/274 - loss 0.01560369 - samples/sec: 59.82 - lr: 0.012500
2022-11-01 17:12:20,899 epoch 100 - iter 270/274 - loss 0.01542870 - samples/sec: 74.61 - lr: 0.012500
2022-11-01 17:12:22,620 ----------------------------------------------------------------------------------------------------
2022-11-01 17:12:22,620 EPOCH 100 done: loss 0.0153 - lr 0.012500
2022-11-01 17:12:47,951 Evaluating as a multi-label problem: False
2022-11-01 17:12:47,966 TEST : loss 0.03205437958240509 - f1-score (micro avg)  0.8544
2022-11-01 17:12:48,018 BAD EPOCHS (no improvement): 1
2022-11-01 17:12:48,109 ----------------------------------------------------------------------------------------------------
2022-11-01 17:13:00,180 epoch 101 - iter 27/274 - loss 0.01378529 - samples/sec: 71.60 - lr: 0.012500
2022-11-01 17:13:12,215 epoch 101 - iter 54/274 - loss 0.01337199 - samples/sec: 71.81 - lr: 0.012500
2022-11-01 17:13:25,504 epoch 101 - iter 81/274 - loss 0.01404534 - samples/sec: 65.03 - lr: 0.012500
2022-11-01 17:13:36,981 epoch 101 - iter 108/274 - loss 0.01373175 - samples/sec: 75.30 - lr: 0.012500
2022-11-01 17:13:48,891 epoch 101 - iter 135/274 - loss 0.01451741 - samples/sec: 72.56 - lr: 0.012500
2022-11-01 17:14:01,244 epoch 101 - iter 162/274 - loss 0.01501925 - samples/sec: 69.96 - lr: 0.012500
2022-11-01 17:14:14,210 epoch 101 - iter 189/274 - loss 0.01503842 - samples/sec: 66.65 - lr: 0.012500
2022-11-01 17:14:26,461 epoch 101 - iter 216/274 - loss 0.01533271 - samples/sec: 70.55 - lr: 0.012500
2022-11-01 17:14:38,050 epoch 101 - iter 243/274 - loss 0.01542822 - samples/sec: 74.57 - lr: 0.012500
2022-11-01 17:14:52,728 epoch 101 - iter 270/274 - loss 0.01542944 - samples/sec: 58.88 - lr: 0.012500
2022-11-01 17:14:54,387 ----------------------------------------------------------------------------------------------------
2022-11-01 17:14:54,387 EPOCH 101 done: loss 0.0153 - lr 0.012500
2022-11-01 17:15:19,832 Evaluating as a multi-label problem: False
2022-11-01 17:15:19,847 TEST : loss 0.03180859610438347 - f1-score (micro avg)  0.8518
2022-11-01 17:15:19,900 BAD EPOCHS (no improvement): 2
2022-11-01 17:15:19,996 ----------------------------------------------------------------------------------------------------
2022-11-01 17:15:30,919 epoch 102 - iter 27/274 - loss 0.01367323 - samples/sec: 79.13 - lr: 0.012500
2022-11-01 17:15:42,942 epoch 102 - iter 54/274 - loss 0.01496790 - samples/sec: 71.88 - lr: 0.012500
2022-11-01 17:15:54,982 epoch 102 - iter 81/274 - loss 0.01427020 - samples/sec: 71.78 - lr: 0.012500
2022-11-01 17:16:07,360 epoch 102 - iter 108/274 - loss 0.01451117 - samples/sec: 69.82 - lr: 0.012500
2022-11-01 17:16:19,150 epoch 102 - iter 135/274 - loss 0.01477473 - samples/sec: 73.31 - lr: 0.012500
2022-11-01 17:16:32,137 epoch 102 - iter 162/274 - loss 0.01509181 - samples/sec: 66.54 - lr: 0.012500
2022-11-01 17:16:44,150 epoch 102 - iter 189/274 - loss 0.01558677 - samples/sec: 71.94 - lr: 0.012500
2022-11-01 17:16:55,429 epoch 102 - iter 216/274 - loss 0.01557646 - samples/sec: 76.63 - lr: 0.012500
2022-11-01 17:17:08,071 epoch 102 - iter 243/274 - loss 0.01558887 - samples/sec: 68.36 - lr: 0.012500
2022-11-01 17:17:21,624 epoch 102 - iter 270/274 - loss 0.01573576 - samples/sec: 63.77 - lr: 0.012500
2022-11-01 17:17:24,639 ----------------------------------------------------------------------------------------------------
2022-11-01 17:17:24,640 EPOCH 102 done: loss 0.0157 - lr 0.012500
2022-11-01 17:17:49,335 Evaluating as a multi-label problem: False
2022-11-01 17:17:49,351 TEST : loss 0.03114163875579834 - f1-score (micro avg)  0.8522
2022-11-01 17:17:49,402 BAD EPOCHS (no improvement): 3
2022-11-01 17:17:49,497 ----------------------------------------------------------------------------------------------------
2022-11-01 17:18:01,427 epoch 103 - iter 27/274 - loss 0.01511439 - samples/sec: 72.45 - lr: 0.012500
2022-11-01 17:18:13,288 epoch 103 - iter 54/274 - loss 0.01521225 - samples/sec: 72.87 - lr: 0.012500
2022-11-01 17:18:27,608 epoch 103 - iter 81/274 - loss 0.01588243 - samples/sec: 60.35 - lr: 0.012500
2022-11-01 17:18:40,062 epoch 103 - iter 108/274 - loss 0.01620946 - samples/sec: 69.39 - lr: 0.012500
2022-11-01 17:18:53,137 epoch 103 - iter 135/274 - loss 0.01627265 - samples/sec: 66.10 - lr: 0.012500
2022-11-01 17:19:05,918 epoch 103 - iter 162/274 - loss 0.01616743 - samples/sec: 67.62 - lr: 0.012500
2022-11-01 17:19:18,579 epoch 103 - iter 189/274 - loss 0.01595910 - samples/sec: 68.26 - lr: 0.012500
2022-11-01 17:19:30,844 epoch 103 - iter 216/274 - loss 0.01601796 - samples/sec: 70.46 - lr: 0.012500
2022-11-01 17:19:42,438 epoch 103 - iter 243/274 - loss 0.01586805 - samples/sec: 74.54 - lr: 0.012500
2022-11-01 17:19:54,280 epoch 103 - iter 270/274 - loss 0.01587716 - samples/sec: 72.98 - lr: 0.012500
2022-11-01 17:19:55,910 ----------------------------------------------------------------------------------------------------
2022-11-01 17:19:55,910 EPOCH 103 done: loss 0.0159 - lr 0.012500
2022-11-01 17:20:21,470 Evaluating as a multi-label problem: False
2022-11-01 17:20:21,486 TEST : loss 0.03149925917387009 - f1-score (micro avg)  0.8538
2022-11-01 17:20:21,538 Epoch   103: reducing learning rate of group 0 to 6.2500e-03.
2022-11-01 17:20:21,539 BAD EPOCHS (no improvement): 4
2022-11-01 17:20:21,631 ----------------------------------------------------------------------------------------------------
2022-11-01 17:20:34,090 epoch 104 - iter 27/274 - loss 0.01498141 - samples/sec: 69.37 - lr: 0.006250
2022-11-01 17:20:46,629 epoch 104 - iter 54/274 - loss 0.01501934 - samples/sec: 68.92 - lr: 0.006250
2022-11-01 17:20:57,980 epoch 104 - iter 81/274 - loss 0.01434988 - samples/sec: 76.14 - lr: 0.006250
2022-11-01 17:21:09,792 epoch 104 - iter 108/274 - loss 0.01473952 - samples/sec: 73.17 - lr: 0.006250
2022-11-01 17:21:23,026 epoch 104 - iter 135/274 - loss 0.01529435 - samples/sec: 65.30 - lr: 0.006250
2022-11-01 17:21:36,383 epoch 104 - iter 162/274 - loss 0.01527378 - samples/sec: 64.70 - lr: 0.006250
2022-11-01 17:21:50,064 epoch 104 - iter 189/274 - loss 0.01508563 - samples/sec: 63.17 - lr: 0.006250
2022-11-01 17:22:02,774 epoch 104 - iter 216/274 - loss 0.01520574 - samples/sec: 68.00 - lr: 0.006250
2022-11-01 17:22:14,747 epoch 104 - iter 243/274 - loss 0.01531841 - samples/sec: 72.18 - lr: 0.006250
2022-11-01 17:22:25,810 epoch 104 - iter 270/274 - loss 0.01495468 - samples/sec: 78.12 - lr: 0.006250
2022-11-01 17:22:27,314 ----------------------------------------------------------------------------------------------------
2022-11-01 17:22:27,314 EPOCH 104 done: loss 0.0150 - lr 0.006250
2022-11-01 17:22:52,615 Evaluating as a multi-label problem: False
2022-11-01 17:22:52,631 TEST : loss 0.03160782903432846 - f1-score (micro avg)  0.8545
2022-11-01 17:22:52,682 BAD EPOCHS (no improvement): 1
2022-11-01 17:22:52,774 ----------------------------------------------------------------------------------------------------
2022-11-01 17:23:04,512 epoch 105 - iter 27/274 - loss 0.01478439 - samples/sec: 73.63 - lr: 0.006250
2022-11-01 17:23:17,554 epoch 105 - iter 54/274 - loss 0.01580731 - samples/sec: 66.26 - lr: 0.006250
2022-11-01 17:23:29,786 epoch 105 - iter 81/274 - loss 0.01527523 - samples/sec: 70.66 - lr: 0.006250
2022-11-01 17:23:42,262 epoch 105 - iter 108/274 - loss 0.01556524 - samples/sec: 69.27 - lr: 0.006250
2022-11-01 17:23:53,798 epoch 105 - iter 135/274 - loss 0.01510414 - samples/sec: 74.92 - lr: 0.006250
2022-11-01 17:24:05,883 epoch 105 - iter 162/274 - loss 0.01499963 - samples/sec: 71.52 - lr: 0.006250
2022-11-01 17:24:18,145 epoch 105 - iter 189/274 - loss 0.01459439 - samples/sec: 70.48 - lr: 0.006250
2022-11-01 17:24:31,529 epoch 105 - iter 216/274 - loss 0.01450208 - samples/sec: 64.57 - lr: 0.006250
2022-11-01 17:24:44,094 epoch 105 - iter 243/274 - loss 0.01431071 - samples/sec: 68.78 - lr: 0.006250
2022-11-01 17:24:56,610 epoch 105 - iter 270/274 - loss 0.01451876 - samples/sec: 69.05 - lr: 0.006250
2022-11-01 17:24:58,538 ----------------------------------------------------------------------------------------------------
2022-11-01 17:24:58,539 EPOCH 105 done: loss 0.0145 - lr 0.006250
2022-11-01 17:25:24,716 Evaluating as a multi-label problem: False
2022-11-01 17:25:24,732 TEST : loss 0.031382638961076736 - f1-score (micro avg)  0.8549
2022-11-01 17:25:24,783 BAD EPOCHS (no improvement): 0
2022-11-01 17:25:24,878 ----------------------------------------------------------------------------------------------------
2022-11-01 17:25:37,729 epoch 106 - iter 27/274 - loss 0.01310063 - samples/sec: 67.26 - lr: 0.006250
2022-11-01 17:25:49,473 epoch 106 - iter 54/274 - loss 0.01383816 - samples/sec: 73.59 - lr: 0.006250
2022-11-01 17:26:02,132 epoch 106 - iter 81/274 - loss 0.01373350 - samples/sec: 68.27 - lr: 0.006250
2022-11-01 17:26:14,016 epoch 106 - iter 108/274 - loss 0.01442718 - samples/sec: 72.72 - lr: 0.006250
2022-11-01 17:26:26,053 epoch 106 - iter 135/274 - loss 0.01401087 - samples/sec: 71.80 - lr: 0.006250
2022-11-01 17:26:38,918 epoch 106 - iter 162/274 - loss 0.01399659 - samples/sec: 67.18 - lr: 0.006250
2022-11-01 17:26:51,716 epoch 106 - iter 189/274 - loss 0.01399994 - samples/sec: 67.53 - lr: 0.006250
2022-11-01 17:27:04,149 epoch 106 - iter 216/274 - loss 0.01436065 - samples/sec: 69.51 - lr: 0.006250
2022-11-01 17:27:16,644 epoch 106 - iter 243/274 - loss 0.01474534 - samples/sec: 69.17 - lr: 0.006250
2022-11-01 17:27:28,686 epoch 106 - iter 270/274 - loss 0.01480237 - samples/sec: 71.77 - lr: 0.006250
2022-11-01 17:27:30,054 ----------------------------------------------------------------------------------------------------
2022-11-01 17:27:30,054 EPOCH 106 done: loss 0.0147 - lr 0.006250
2022-11-01 17:27:55,476 Evaluating as a multi-label problem: False
2022-11-01 17:27:55,492 TEST : loss 0.03141792118549347 - f1-score (micro avg)  0.8558
2022-11-01 17:27:55,546 BAD EPOCHS (no improvement): 1
2022-11-01 17:27:55,639 ----------------------------------------------------------------------------------------------------
2022-11-01 17:28:08,177 epoch 107 - iter 27/274 - loss 0.01872842 - samples/sec: 68.93 - lr: 0.006250
2022-11-01 17:28:19,630 epoch 107 - iter 54/274 - loss 0.01616813 - samples/sec: 75.46 - lr: 0.006250
2022-11-01 17:28:32,113 epoch 107 - iter 81/274 - loss 0.01536312 - samples/sec: 69.23 - lr: 0.006250
2022-11-01 17:28:44,519 epoch 107 - iter 108/274 - loss 0.01581316 - samples/sec: 69.67 - lr: 0.006250
2022-11-01 17:28:57,543 epoch 107 - iter 135/274 - loss 0.01573153 - samples/sec: 66.35 - lr: 0.006250
2022-11-01 17:29:09,596 epoch 107 - iter 162/274 - loss 0.01590482 - samples/sec: 71.71 - lr: 0.006250
2022-11-01 17:29:21,223 epoch 107 - iter 189/274 - loss 0.01568356 - samples/sec: 74.32 - lr: 0.006250
2022-11-01 17:29:35,337 epoch 107 - iter 216/274 - loss 0.01557378 - samples/sec: 61.23 - lr: 0.006250
2022-11-01 17:29:47,568 epoch 107 - iter 243/274 - loss 0.01547147 - samples/sec: 70.66 - lr: 0.006250
2022-11-01 17:30:00,199 epoch 107 - iter 270/274 - loss 0.01556995 - samples/sec: 68.42 - lr: 0.006250
2022-11-01 17:30:02,023 ----------------------------------------------------------------------------------------------------
2022-11-01 17:30:02,024 EPOCH 107 done: loss 0.0156 - lr 0.006250
2022-11-01 17:30:26,714 Evaluating as a multi-label problem: False
2022-11-01 17:30:26,729 TEST : loss 0.031312357634305954 - f1-score (micro avg)  0.8558
2022-11-01 17:30:26,780 BAD EPOCHS (no improvement): 2
2022-11-01 17:30:26,872 ----------------------------------------------------------------------------------------------------
2022-11-01 17:30:39,718 epoch 108 - iter 27/274 - loss 0.01390738 - samples/sec: 67.28 - lr: 0.006250
2022-11-01 17:30:52,052 epoch 108 - iter 54/274 - loss 0.01439151 - samples/sec: 70.07 - lr: 0.006250
2022-11-01 17:31:05,111 epoch 108 - iter 81/274 - loss 0.01442134 - samples/sec: 66.17 - lr: 0.006250
2022-11-01 17:31:16,827 epoch 108 - iter 108/274 - loss 0.01435974 - samples/sec: 73.77 - lr: 0.006250
2022-11-01 17:31:29,153 epoch 108 - iter 135/274 - loss 0.01387339 - samples/sec: 70.11 - lr: 0.006250
2022-11-01 17:31:43,801 epoch 108 - iter 162/274 - loss 0.01425564 - samples/sec: 59.00 - lr: 0.006250
2022-11-01 17:31:55,727 epoch 108 - iter 189/274 - loss 0.01421163 - samples/sec: 72.46 - lr: 0.006250
2022-11-01 17:32:07,607 epoch 108 - iter 216/274 - loss 0.01410484 - samples/sec: 72.75 - lr: 0.006250
2022-11-01 17:32:20,751 epoch 108 - iter 243/274 - loss 0.01457425 - samples/sec: 65.75 - lr: 0.006250
2022-11-01 17:32:32,581 epoch 108 - iter 270/274 - loss 0.01465172 - samples/sec: 73.05 - lr: 0.006250
2022-11-01 17:32:34,099 ----------------------------------------------------------------------------------------------------
2022-11-01 17:32:34,100 EPOCH 108 done: loss 0.0148 - lr 0.006250
2022-11-01 17:32:58,961 Evaluating as a multi-label problem: False
2022-11-01 17:32:58,977 TEST : loss 0.031135080382227898 - f1-score (micro avg)  0.8554
2022-11-01 17:32:59,030 BAD EPOCHS (no improvement): 3
2022-11-01 17:32:59,122 ----------------------------------------------------------------------------------------------------
2022-11-01 17:33:12,240 epoch 109 - iter 27/274 - loss 0.01912379 - samples/sec: 65.88 - lr: 0.006250
2022-11-01 17:33:24,444 epoch 109 - iter 54/274 - loss 0.01804758 - samples/sec: 70.82 - lr: 0.006250
2022-11-01 17:33:37,289 epoch 109 - iter 81/274 - loss 0.01646409 - samples/sec: 67.28 - lr: 0.006250
2022-11-01 17:33:49,388 epoch 109 - iter 108/274 - loss 0.01560171 - samples/sec: 71.43 - lr: 0.006250
2022-11-01 17:34:01,172 epoch 109 - iter 135/274 - loss 0.01511687 - samples/sec: 73.34 - lr: 0.006250
2022-11-01 17:34:12,746 epoch 109 - iter 162/274 - loss 0.01504958 - samples/sec: 74.68 - lr: 0.006250
2022-11-01 17:34:25,860 epoch 109 - iter 189/274 - loss 0.01522205 - samples/sec: 65.90 - lr: 0.006250
2022-11-01 17:34:38,292 epoch 109 - iter 216/274 - loss 0.01524269 - samples/sec: 69.52 - lr: 0.006250
2022-11-01 17:34:51,412 epoch 109 - iter 243/274 - loss 0.01492633 - samples/sec: 65.87 - lr: 0.006250
2022-11-01 17:35:04,115 epoch 109 - iter 270/274 - loss 0.01465676 - samples/sec: 68.04 - lr: 0.006250
2022-11-01 17:35:05,583 ----------------------------------------------------------------------------------------------------
2022-11-01 17:35:05,583 EPOCH 109 done: loss 0.0147 - lr 0.006250
2022-11-01 17:35:30,502 Evaluating as a multi-label problem: False
2022-11-01 17:35:30,517 TEST : loss 0.031781088560819626 - f1-score (micro avg)  0.8552
2022-11-01 17:35:30,570 Epoch   109: reducing learning rate of group 0 to 3.1250e-03.
2022-11-01 17:35:30,571 BAD EPOCHS (no improvement): 4
2022-11-01 17:35:30,662 ----------------------------------------------------------------------------------------------------
2022-11-01 17:35:43,277 epoch 110 - iter 27/274 - loss 0.01618152 - samples/sec: 68.51 - lr: 0.003125
2022-11-01 17:35:57,703 epoch 110 - iter 54/274 - loss 0.01398249 - samples/sec: 59.91 - lr: 0.003125
2022-11-01 17:36:11,539 epoch 110 - iter 81/274 - loss 0.01436806 - samples/sec: 62.46 - lr: 0.003125
2022-11-01 17:36:23,687 epoch 110 - iter 108/274 - loss 0.01402755 - samples/sec: 71.14 - lr: 0.003125
2022-11-01 17:36:35,831 epoch 110 - iter 135/274 - loss 0.01429670 - samples/sec: 71.17 - lr: 0.003125
2022-11-01 17:36:47,885 epoch 110 - iter 162/274 - loss 0.01429064 - samples/sec: 71.69 - lr: 0.003125
2022-11-01 17:36:59,675 epoch 110 - iter 189/274 - loss 0.01471822 - samples/sec: 73.30 - lr: 0.003125
2022-11-01 17:37:12,360 epoch 110 - iter 216/274 - loss 0.01430368 - samples/sec: 68.13 - lr: 0.003125
2022-11-01 17:37:23,509 epoch 110 - iter 243/274 - loss 0.01448710 - samples/sec: 77.52 - lr: 0.003125
2022-11-01 17:37:35,507 epoch 110 - iter 270/274 - loss 0.01446019 - samples/sec: 72.03 - lr: 0.003125
2022-11-01 17:37:37,495 ----------------------------------------------------------------------------------------------------
2022-11-01 17:37:37,495 EPOCH 110 done: loss 0.0144 - lr 0.003125
2022-11-01 17:38:02,941 Evaluating as a multi-label problem: False
2022-11-01 17:38:02,956 TEST : loss 0.031605690717697144 - f1-score (micro avg)  0.8551
2022-11-01 17:38:03,011 BAD EPOCHS (no improvement): 0
2022-11-01 17:38:03,085 ----------------------------------------------------------------------------------------------------
2022-11-01 17:38:15,036 epoch 111 - iter 27/274 - loss 0.01596760 - samples/sec: 72.32 - lr: 0.003125
2022-11-01 17:38:28,050 epoch 111 - iter 54/274 - loss 0.01611072 - samples/sec: 66.40 - lr: 0.003125
2022-11-01 17:38:41,281 epoch 111 - iter 81/274 - loss 0.01586174 - samples/sec: 65.32 - lr: 0.003125
2022-11-01 17:38:54,263 epoch 111 - iter 108/274 - loss 0.01557685 - samples/sec: 66.57 - lr: 0.003125
2022-11-01 17:39:08,244 epoch 111 - iter 135/274 - loss 0.01580835 - samples/sec: 61.81 - lr: 0.003125
2022-11-01 17:39:19,514 epoch 111 - iter 162/274 - loss 0.01606974 - samples/sec: 76.68 - lr: 0.003125
2022-11-01 17:39:31,520 epoch 111 - iter 189/274 - loss 0.01547722 - samples/sec: 71.98 - lr: 0.003125
2022-11-01 17:39:42,815 epoch 111 - iter 216/274 - loss 0.01515104 - samples/sec: 76.52 - lr: 0.003125
2022-11-01 17:39:54,557 epoch 111 - iter 243/274 - loss 0.01496053 - samples/sec: 73.60 - lr: 0.003125
2022-11-01 17:40:07,087 epoch 111 - iter 270/274 - loss 0.01483213 - samples/sec: 68.97 - lr: 0.003125
2022-11-01 17:40:08,469 ----------------------------------------------------------------------------------------------------
2022-11-01 17:40:08,469 EPOCH 111 done: loss 0.0149 - lr 0.003125
2022-11-01 17:40:33,329 Evaluating as a multi-label problem: False
2022-11-01 17:40:33,344 TEST : loss 0.031536173075437546 - f1-score (micro avg)  0.8541
2022-11-01 17:40:33,396 BAD EPOCHS (no improvement): 1
2022-11-01 17:40:33,470 ----------------------------------------------------------------------------------------------------
2022-11-01 17:40:46,575 epoch 112 - iter 27/274 - loss 0.01439567 - samples/sec: 65.95 - lr: 0.003125
2022-11-01 17:40:58,836 epoch 112 - iter 54/274 - loss 0.01354366 - samples/sec: 70.48 - lr: 0.003125
2022-11-01 17:41:10,562 epoch 112 - iter 81/274 - loss 0.01444438 - samples/sec: 73.70 - lr: 0.003125
2022-11-01 17:41:24,112 epoch 112 - iter 108/274 - loss 0.01493261 - samples/sec: 63.78 - lr: 0.003125
2022-11-01 17:41:35,909 epoch 112 - iter 135/274 - loss 0.01562564 - samples/sec: 73.26 - lr: 0.003125
2022-11-01 17:41:48,092 epoch 112 - iter 162/274 - loss 0.01544606 - samples/sec: 70.94 - lr: 0.003125
2022-11-01 17:42:00,153 epoch 112 - iter 189/274 - loss 0.01543938 - samples/sec: 71.65 - lr: 0.003125
2022-11-01 17:42:12,466 epoch 112 - iter 216/274 - loss 0.01503371 - samples/sec: 70.19 - lr: 0.003125
2022-11-01 17:42:24,873 epoch 112 - iter 243/274 - loss 0.01527409 - samples/sec: 69.66 - lr: 0.003125
2022-11-01 17:42:37,180 epoch 112 - iter 270/274 - loss 0.01508578 - samples/sec: 70.22 - lr: 0.003125
2022-11-01 17:42:38,763 ----------------------------------------------------------------------------------------------------
2022-11-01 17:42:38,763 EPOCH 112 done: loss 0.0151 - lr 0.003125
2022-11-01 17:43:04,124 Evaluating as a multi-label problem: False
2022-11-01 17:43:04,139 TEST : loss 0.031474340707063675 - f1-score (micro avg)  0.855
2022-11-01 17:43:04,191 BAD EPOCHS (no improvement): 2
2022-11-01 17:43:04,280 ----------------------------------------------------------------------------------------------------
2022-11-01 17:43:16,911 epoch 113 - iter 27/274 - loss 0.01609706 - samples/sec: 68.43 - lr: 0.003125
2022-11-01 17:43:29,310 epoch 113 - iter 54/274 - loss 0.01433556 - samples/sec: 69.70 - lr: 0.003125
2022-11-01 17:43:42,128 epoch 113 - iter 81/274 - loss 0.01434582 - samples/sec: 67.42 - lr: 0.003125
2022-11-01 17:43:55,192 epoch 113 - iter 108/274 - loss 0.01474083 - samples/sec: 66.16 - lr: 0.003125
2022-11-01 17:44:07,374 epoch 113 - iter 135/274 - loss 0.01445667 - samples/sec: 70.94 - lr: 0.003125
2022-11-01 17:44:19,671 epoch 113 - iter 162/274 - loss 0.01481096 - samples/sec: 70.28 - lr: 0.003125
2022-11-01 17:44:31,736 epoch 113 - iter 189/274 - loss 0.01481574 - samples/sec: 71.64 - lr: 0.003125
2022-11-01 17:44:45,034 epoch 113 - iter 216/274 - loss 0.01524675 - samples/sec: 64.99 - lr: 0.003125
2022-11-01 17:44:58,586 epoch 113 - iter 243/274 - loss 0.01492049 - samples/sec: 63.77 - lr: 0.003125
2022-11-01 17:45:09,603 epoch 113 - iter 270/274 - loss 0.01468932 - samples/sec: 78.45 - lr: 0.003125
2022-11-01 17:45:11,032 ----------------------------------------------------------------------------------------------------
2022-11-01 17:45:11,032 EPOCH 113 done: loss 0.0147 - lr 0.003125
2022-11-01 17:45:36,455 Evaluating as a multi-label problem: False
2022-11-01 17:45:36,471 TEST : loss 0.031519342213869095 - f1-score (micro avg)  0.8545
2022-11-01 17:45:36,523 BAD EPOCHS (no improvement): 3
2022-11-01 17:45:36,616 ----------------------------------------------------------------------------------------------------
2022-11-01 17:45:49,215 epoch 114 - iter 27/274 - loss 0.01487123 - samples/sec: 68.60 - lr: 0.003125
2022-11-01 17:46:00,350 epoch 114 - iter 54/274 - loss 0.01485395 - samples/sec: 77.61 - lr: 0.003125
2022-11-01 17:46:13,743 epoch 114 - iter 81/274 - loss 0.01571063 - samples/sec: 64.53 - lr: 0.003125
2022-11-01 17:46:25,662 epoch 114 - iter 108/274 - loss 0.01471453 - samples/sec: 72.51 - lr: 0.003125
2022-11-01 17:46:38,373 epoch 114 - iter 135/274 - loss 0.01512168 - samples/sec: 67.99 - lr: 0.003125
2022-11-01 17:46:50,844 epoch 114 - iter 162/274 - loss 0.01516243 - samples/sec: 69.30 - lr: 0.003125
2022-11-01 17:47:04,008 epoch 114 - iter 189/274 - loss 0.01502249 - samples/sec: 65.65 - lr: 0.003125
2022-11-01 17:47:15,595 epoch 114 - iter 216/274 - loss 0.01471831 - samples/sec: 74.58 - lr: 0.003125
2022-11-01 17:47:29,477 epoch 114 - iter 243/274 - loss 0.01445627 - samples/sec: 62.25 - lr: 0.003125
2022-11-01 17:47:40,993 epoch 114 - iter 270/274 - loss 0.01491303 - samples/sec: 75.05 - lr: 0.003125
2022-11-01 17:47:43,070 ----------------------------------------------------------------------------------------------------
2022-11-01 17:47:43,070 EPOCH 114 done: loss 0.0150 - lr 0.003125
2022-11-01 17:48:08,286 Evaluating as a multi-label problem: False
2022-11-01 17:48:08,302 TEST : loss 0.031727951020002365 - f1-score (micro avg)  0.8533
2022-11-01 17:48:08,354 Epoch   114: reducing learning rate of group 0 to 1.5625e-03.
2022-11-01 17:48:08,354 BAD EPOCHS (no improvement): 4
2022-11-01 17:48:08,429 ----------------------------------------------------------------------------------------------------
2022-11-01 17:48:21,757 epoch 115 - iter 27/274 - loss 0.01438955 - samples/sec: 64.85 - lr: 0.001563
2022-11-01 17:48:35,019 epoch 115 - iter 54/274 - loss 0.01465102 - samples/sec: 65.16 - lr: 0.001563
2022-11-01 17:48:48,715 epoch 115 - iter 81/274 - loss 0.01452675 - samples/sec: 63.10 - lr: 0.001563
2022-11-01 17:49:00,439 epoch 115 - iter 108/274 - loss 0.01446702 - samples/sec: 73.71 - lr: 0.001563
2022-11-01 17:49:13,470 epoch 115 - iter 135/274 - loss 0.01355820 - samples/sec: 66.32 - lr: 0.001563
2022-11-01 17:49:26,293 epoch 115 - iter 162/274 - loss 0.01370481 - samples/sec: 67.40 - lr: 0.001563
2022-11-01 17:49:38,891 epoch 115 - iter 189/274 - loss 0.01345347 - samples/sec: 68.60 - lr: 0.001563
2022-11-01 17:49:50,147 epoch 115 - iter 216/274 - loss 0.01344039 - samples/sec: 76.78 - lr: 0.001563
2022-11-01 17:50:01,283 epoch 115 - iter 243/274 - loss 0.01399875 - samples/sec: 77.61 - lr: 0.001563
2022-11-01 17:50:14,106 epoch 115 - iter 270/274 - loss 0.01443076 - samples/sec: 67.40 - lr: 0.001563
2022-11-01 17:50:15,622 ----------------------------------------------------------------------------------------------------
2022-11-01 17:50:15,622 EPOCH 115 done: loss 0.0146 - lr 0.001563
2022-11-01 17:50:40,571 Evaluating as a multi-label problem: False
2022-11-01 17:50:40,587 TEST : loss 0.03165162727236748 - f1-score (micro avg)  0.8539
2022-11-01 17:50:40,639 BAD EPOCHS (no improvement): 1
2022-11-01 17:50:40,731 ----------------------------------------------------------------------------------------------------
2022-11-01 17:50:54,027 epoch 116 - iter 27/274 - loss 0.01425236 - samples/sec: 65.00 - lr: 0.001563
2022-11-01 17:51:06,232 epoch 116 - iter 54/274 - loss 0.01383829 - samples/sec: 70.81 - lr: 0.001563
2022-11-01 17:51:18,685 epoch 116 - iter 81/274 - loss 0.01359765 - samples/sec: 69.40 - lr: 0.001563
2022-11-01 17:51:29,472 epoch 116 - iter 108/274 - loss 0.01347194 - samples/sec: 80.12 - lr: 0.001563
2022-11-01 17:51:42,835 epoch 116 - iter 135/274 - loss 0.01379473 - samples/sec: 64.67 - lr: 0.001563
2022-11-01 17:51:55,231 epoch 116 - iter 162/274 - loss 0.01379061 - samples/sec: 69.72 - lr: 0.001563
2022-11-01 17:52:08,602 epoch 116 - iter 189/274 - loss 0.01405799 - samples/sec: 64.63 - lr: 0.001563
2022-11-01 17:52:19,838 epoch 116 - iter 216/274 - loss 0.01425247 - samples/sec: 76.92 - lr: 0.001563
2022-11-01 17:52:33,205 epoch 116 - iter 243/274 - loss 0.01416433 - samples/sec: 64.65 - lr: 0.001563
2022-11-01 17:52:45,518 epoch 116 - iter 270/274 - loss 0.01401386 - samples/sec: 70.19 - lr: 0.001563
2022-11-01 17:52:46,821 ----------------------------------------------------------------------------------------------------
2022-11-01 17:52:46,821 EPOCH 116 done: loss 0.0141 - lr 0.001563
2022-11-01 17:53:11,731 Evaluating as a multi-label problem: False
2022-11-01 17:53:11,746 TEST : loss 0.03173290938138962 - f1-score (micro avg)  0.8549
2022-11-01 17:53:11,799 BAD EPOCHS (no improvement): 0
2022-11-01 17:53:11,891 ----------------------------------------------------------------------------------------------------
2022-11-01 17:53:24,606 epoch 117 - iter 27/274 - loss 0.01300331 - samples/sec: 67.97 - lr: 0.001563
2022-11-01 17:53:36,989 epoch 117 - iter 54/274 - loss 0.01595312 - samples/sec: 69.79 - lr: 0.001563
2022-11-01 17:53:48,545 epoch 117 - iter 81/274 - loss 0.01527940 - samples/sec: 74.79 - lr: 0.001563
2022-11-01 17:54:00,263 epoch 117 - iter 108/274 - loss 0.01460286 - samples/sec: 73.76 - lr: 0.001563
2022-11-01 17:54:12,584 epoch 117 - iter 135/274 - loss 0.01422859 - samples/sec: 70.14 - lr: 0.001563
2022-11-01 17:54:25,742 epoch 117 - iter 162/274 - loss 0.01434427 - samples/sec: 65.68 - lr: 0.001563
2022-11-01 17:54:38,379 epoch 117 - iter 189/274 - loss 0.01401961 - samples/sec: 68.39 - lr: 0.001563
2022-11-01 17:54:51,636 epoch 117 - iter 216/274 - loss 0.01447595 - samples/sec: 65.19 - lr: 0.001563
2022-11-01 17:55:04,763 epoch 117 - iter 243/274 - loss 0.01405447 - samples/sec: 65.84 - lr: 0.001563
2022-11-01 17:55:17,004 epoch 117 - iter 270/274 - loss 0.01409952 - samples/sec: 70.60 - lr: 0.001563
2022-11-01 17:55:18,621 ----------------------------------------------------------------------------------------------------
2022-11-01 17:55:18,621 EPOCH 117 done: loss 0.0141 - lr 0.001563
2022-11-01 17:55:43,762 Evaluating as a multi-label problem: False
2022-11-01 17:55:43,777 TEST : loss 0.03180387616157532 - f1-score (micro avg)  0.8554
2022-11-01 17:55:43,830 BAD EPOCHS (no improvement): 0
2022-11-01 17:55:43,922 ----------------------------------------------------------------------------------------------------
2022-11-01 17:55:55,269 epoch 118 - iter 27/274 - loss 0.01405596 - samples/sec: 76.17 - lr: 0.001563
2022-11-01 17:56:06,720 epoch 118 - iter 54/274 - loss 0.01339267 - samples/sec: 75.48 - lr: 0.001563
2022-11-01 17:56:20,308 epoch 118 - iter 81/274 - loss 0.01339778 - samples/sec: 63.60 - lr: 0.001563
2022-11-01 17:56:32,577 epoch 118 - iter 108/274 - loss 0.01319099 - samples/sec: 70.44 - lr: 0.001563
2022-11-01 17:56:44,998 epoch 118 - iter 135/274 - loss 0.01301660 - samples/sec: 69.58 - lr: 0.001563
2022-11-01 17:56:56,910 epoch 118 - iter 162/274 - loss 0.01359261 - samples/sec: 72.55 - lr: 0.001563
2022-11-01 17:57:08,695 epoch 118 - iter 189/274 - loss 0.01402305 - samples/sec: 73.33 - lr: 0.001563
2022-11-01 17:57:20,558 epoch 118 - iter 216/274 - loss 0.01374466 - samples/sec: 72.85 - lr: 0.001563
2022-11-01 17:57:33,907 epoch 118 - iter 243/274 - loss 0.01374517 - samples/sec: 64.74 - lr: 0.001563
2022-11-01 17:57:46,542 epoch 118 - iter 270/274 - loss 0.01403553 - samples/sec: 68.40 - lr: 0.001563
2022-11-01 17:57:47,973 ----------------------------------------------------------------------------------------------------
2022-11-01 17:57:47,973 EPOCH 118 done: loss 0.0140 - lr 0.001563
2022-11-01 17:58:13,100 Evaluating as a multi-label problem: False
2022-11-01 17:58:13,116 TEST : loss 0.03177444264292717 - f1-score (micro avg)  0.8549
2022-11-01 17:58:13,167 BAD EPOCHS (no improvement): 0
2022-11-01 17:58:13,258 ----------------------------------------------------------------------------------------------------
2022-11-01 17:58:25,375 epoch 119 - iter 27/274 - loss 0.01538861 - samples/sec: 71.33 - lr: 0.001563
2022-11-01 17:58:38,665 epoch 119 - iter 54/274 - loss 0.01428429 - samples/sec: 65.03 - lr: 0.001563
2022-11-01 17:58:50,968 epoch 119 - iter 81/274 - loss 0.01545027 - samples/sec: 70.24 - lr: 0.001563
2022-11-01 17:59:03,236 epoch 119 - iter 108/274 - loss 0.01576570 - samples/sec: 70.45 - lr: 0.001563
2022-11-01 17:59:15,846 epoch 119 - iter 135/274 - loss 0.01500808 - samples/sec: 68.53 - lr: 0.001563
2022-11-01 17:59:28,587 epoch 119 - iter 162/274 - loss 0.01529803 - samples/sec: 67.83 - lr: 0.001563
2022-11-01 17:59:40,199 epoch 119 - iter 189/274 - loss 0.01492457 - samples/sec: 74.43 - lr: 0.001563
2022-11-01 17:59:53,221 epoch 119 - iter 216/274 - loss 0.01480307 - samples/sec: 66.37 - lr: 0.001563
2022-11-01 18:00:05,989 epoch 119 - iter 243/274 - loss 0.01461764 - samples/sec: 67.69 - lr: 0.001563
2022-11-01 18:00:18,288 epoch 119 - iter 270/274 - loss 0.01486278 - samples/sec: 70.27 - lr: 0.001563
2022-11-01 18:00:19,889 ----------------------------------------------------------------------------------------------------
2022-11-01 18:00:19,889 EPOCH 119 done: loss 0.0150 - lr 0.001563
2022-11-01 18:00:45,262 Evaluating as a multi-label problem: False
2022-11-01 18:00:45,278 TEST : loss 0.03172260522842407 - f1-score (micro avg)  0.8543
2022-11-01 18:00:45,330 BAD EPOCHS (no improvement): 1
2022-11-01 18:00:45,422 ----------------------------------------------------------------------------------------------------
2022-11-01 18:00:57,044 epoch 120 - iter 27/274 - loss 0.00899055 - samples/sec: 74.37 - lr: 0.001563
2022-11-01 18:01:09,522 epoch 120 - iter 54/274 - loss 0.01259727 - samples/sec: 69.26 - lr: 0.001563
2022-11-01 18:01:22,694 epoch 120 - iter 81/274 - loss 0.01366828 - samples/sec: 65.61 - lr: 0.001563
2022-11-01 18:01:34,264 epoch 120 - iter 108/274 - loss 0.01391092 - samples/sec: 74.69 - lr: 0.001563
2022-11-01 18:01:45,942 epoch 120 - iter 135/274 - loss 0.01388514 - samples/sec: 74.00 - lr: 0.001563
2022-11-01 18:01:58,326 epoch 120 - iter 162/274 - loss 0.01440931 - samples/sec: 69.79 - lr: 0.001563
2022-11-01 18:02:11,386 epoch 120 - iter 189/274 - loss 0.01447825 - samples/sec: 66.17 - lr: 0.001563
2022-11-01 18:02:24,050 epoch 120 - iter 216/274 - loss 0.01423748 - samples/sec: 68.24 - lr: 0.001563
2022-11-01 18:02:35,638 epoch 120 - iter 243/274 - loss 0.01403297 - samples/sec: 74.58 - lr: 0.001563
2022-11-01 18:02:49,124 epoch 120 - iter 270/274 - loss 0.01421427 - samples/sec: 64.08 - lr: 0.001563
2022-11-01 18:02:51,039 ----------------------------------------------------------------------------------------------------
2022-11-01 18:02:51,039 EPOCH 120 done: loss 0.0142 - lr 0.001563
2022-11-01 18:03:16,381 Evaluating as a multi-label problem: False
2022-11-01 18:03:16,397 TEST : loss 0.031805865466594696 - f1-score (micro avg)  0.8541
2022-11-01 18:03:16,449 BAD EPOCHS (no improvement): 2
2022-11-01 18:03:16,534 ----------------------------------------------------------------------------------------------------
2022-11-01 18:03:28,361 epoch 121 - iter 27/274 - loss 0.01605437 - samples/sec: 73.07 - lr: 0.001563
2022-11-01 18:03:40,389 epoch 121 - iter 54/274 - loss 0.01495214 - samples/sec: 71.86 - lr: 0.001563
2022-11-01 18:03:52,570 epoch 121 - iter 81/274 - loss 0.01478860 - samples/sec: 70.95 - lr: 0.001563
2022-11-01 18:04:05,835 epoch 121 - iter 108/274 - loss 0.01482221 - samples/sec: 65.15 - lr: 0.001563
2022-11-01 18:04:19,311 epoch 121 - iter 135/274 - loss 0.01481010 - samples/sec: 64.13 - lr: 0.001563
2022-11-01 18:04:31,812 epoch 121 - iter 162/274 - loss 0.01420799 - samples/sec: 69.13 - lr: 0.001563
2022-11-01 18:04:45,297 epoch 121 - iter 189/274 - loss 0.01428585 - samples/sec: 64.09 - lr: 0.001563
2022-11-01 18:04:56,845 epoch 121 - iter 216/274 - loss 0.01414983 - samples/sec: 74.84 - lr: 0.001563
2022-11-01 18:05:10,343 epoch 121 - iter 243/274 - loss 0.01463416 - samples/sec: 64.02 - lr: 0.001563
2022-11-01 18:05:22,196 epoch 121 - iter 270/274 - loss 0.01435355 - samples/sec: 72.92 - lr: 0.001563
2022-11-01 18:05:23,959 ----------------------------------------------------------------------------------------------------
2022-11-01 18:05:23,959 EPOCH 121 done: loss 0.0143 - lr 0.001563
2022-11-01 18:05:49,338 Evaluating as a multi-label problem: False
2022-11-01 18:05:49,354 TEST : loss 0.03179682791233063 - f1-score (micro avg)  0.8553
2022-11-01 18:05:49,405 BAD EPOCHS (no improvement): 3
2022-11-01 18:05:49,496 ----------------------------------------------------------------------------------------------------
2022-11-01 18:06:02,504 epoch 122 - iter 27/274 - loss 0.01348554 - samples/sec: 66.44 - lr: 0.001563
2022-11-01 18:06:15,580 epoch 122 - iter 54/274 - loss 0.01432921 - samples/sec: 66.10 - lr: 0.001563
2022-11-01 18:06:28,964 epoch 122 - iter 81/274 - loss 0.01316887 - samples/sec: 64.57 - lr: 0.001563
2022-11-01 18:06:40,994 epoch 122 - iter 108/274 - loss 0.01422191 - samples/sec: 71.84 - lr: 0.001563
2022-11-01 18:06:52,690 epoch 122 - iter 135/274 - loss 0.01408750 - samples/sec: 73.89 - lr: 0.001563
2022-11-01 18:07:04,944 epoch 122 - iter 162/274 - loss 0.01386067 - samples/sec: 70.53 - lr: 0.001563
2022-11-01 18:07:17,208 epoch 122 - iter 189/274 - loss 0.01357114 - samples/sec: 70.47 - lr: 0.001563
2022-11-01 18:07:29,672 epoch 122 - iter 216/274 - loss 0.01412466 - samples/sec: 69.33 - lr: 0.001563
2022-11-01 18:07:42,807 epoch 122 - iter 243/274 - loss 0.01395056 - samples/sec: 65.79 - lr: 0.001563
2022-11-01 18:07:55,077 epoch 122 - iter 270/274 - loss 0.01399248 - samples/sec: 70.44 - lr: 0.001563
2022-11-01 18:07:57,015 ----------------------------------------------------------------------------------------------------
2022-11-01 18:07:57,015 EPOCH 122 done: loss 0.0140 - lr 0.001563
2022-11-01 18:08:22,422 Evaluating as a multi-label problem: False
2022-11-01 18:08:22,438 TEST : loss 0.03200670704245567 - f1-score (micro avg)  0.8546
2022-11-01 18:08:22,489 BAD EPOCHS (no improvement): 0
2022-11-01 18:08:22,581 ----------------------------------------------------------------------------------------------------
2022-11-01 18:08:35,223 epoch 123 - iter 27/274 - loss 0.01535170 - samples/sec: 68.37 - lr: 0.001563
2022-11-01 18:08:46,897 epoch 123 - iter 54/274 - loss 0.01369532 - samples/sec: 74.03 - lr: 0.001563
2022-11-01 18:08:59,453 epoch 123 - iter 81/274 - loss 0.01398782 - samples/sec: 68.83 - lr: 0.001563
2022-11-01 18:09:11,954 epoch 123 - iter 108/274 - loss 0.01383519 - samples/sec: 69.13 - lr: 0.001563
2022-11-01 18:09:26,337 epoch 123 - iter 135/274 - loss 0.01394853 - samples/sec: 60.08 - lr: 0.001563
2022-11-01 18:09:37,371 epoch 123 - iter 162/274 - loss 0.01390282 - samples/sec: 78.33 - lr: 0.001563
2022-11-01 18:09:49,682 epoch 123 - iter 189/274 - loss 0.01422790 - samples/sec: 70.20 - lr: 0.001563
2022-11-01 18:10:02,333 epoch 123 - iter 216/274 - loss 0.01462927 - samples/sec: 68.31 - lr: 0.001563
2022-11-01 18:10:13,694 epoch 123 - iter 243/274 - loss 0.01470027 - samples/sec: 76.07 - lr: 0.001563
2022-11-01 18:10:26,453 epoch 123 - iter 270/274 - loss 0.01468566 - samples/sec: 67.73 - lr: 0.001563
2022-11-01 18:10:28,284 ----------------------------------------------------------------------------------------------------
2022-11-01 18:10:28,284 EPOCH 123 done: loss 0.0147 - lr 0.001563
2022-11-01 18:10:53,622 Evaluating as a multi-label problem: False
2022-11-01 18:10:53,638 TEST : loss 0.03187215328216553 - f1-score (micro avg)  0.8541
2022-11-01 18:10:53,691 BAD EPOCHS (no improvement): 1
2022-11-01 18:10:53,786 ----------------------------------------------------------------------------------------------------
2022-11-01 18:11:07,362 epoch 124 - iter 27/274 - loss 0.01179336 - samples/sec: 63.66 - lr: 0.001563
2022-11-01 18:11:19,048 epoch 124 - iter 54/274 - loss 0.01307793 - samples/sec: 73.95 - lr: 0.001563
2022-11-01 18:11:31,062 epoch 124 - iter 81/274 - loss 0.01339808 - samples/sec: 71.94 - lr: 0.001563
2022-11-01 18:11:42,429 epoch 124 - iter 108/274 - loss 0.01306621 - samples/sec: 76.03 - lr: 0.001563
2022-11-01 18:11:54,785 epoch 124 - iter 135/274 - loss 0.01296568 - samples/sec: 69.94 - lr: 0.001563
2022-11-01 18:12:06,411 epoch 124 - iter 162/274 - loss 0.01327152 - samples/sec: 74.34 - lr: 0.001563
2022-11-01 18:12:18,715 epoch 124 - iter 189/274 - loss 0.01373990 - samples/sec: 70.24 - lr: 0.001563
2022-11-01 18:12:31,980 epoch 124 - iter 216/274 - loss 0.01394854 - samples/sec: 65.15 - lr: 0.001563
2022-11-01 18:12:44,200 epoch 124 - iter 243/274 - loss 0.01405277 - samples/sec: 70.73 - lr: 0.001563
2022-11-01 18:12:57,416 epoch 124 - iter 270/274 - loss 0.01405971 - samples/sec: 65.39 - lr: 0.001563
2022-11-01 18:12:59,384 ----------------------------------------------------------------------------------------------------
2022-11-01 18:12:59,384 EPOCH 124 done: loss 0.0141 - lr 0.001563
2022-11-01 18:13:24,782 Evaluating as a multi-label problem: False
2022-11-01 18:13:24,798 TEST : loss 0.03188449889421463 - f1-score (micro avg)  0.8543
2022-11-01 18:13:24,850 BAD EPOCHS (no improvement): 2
2022-11-01 18:13:24,945 ----------------------------------------------------------------------------------------------------
2022-11-01 18:13:37,316 epoch 125 - iter 27/274 - loss 0.01168586 - samples/sec: 69.86 - lr: 0.001563
2022-11-01 18:13:51,327 epoch 125 - iter 54/274 - loss 0.01431803 - samples/sec: 61.68 - lr: 0.001563
2022-11-01 18:14:03,919 epoch 125 - iter 81/274 - loss 0.01415967 - samples/sec: 68.63 - lr: 0.001563
2022-11-01 18:14:16,961 epoch 125 - iter 108/274 - loss 0.01380225 - samples/sec: 66.26 - lr: 0.001563
2022-11-01 18:14:28,811 epoch 125 - iter 135/274 - loss 0.01381803 - samples/sec: 72.93 - lr: 0.001563
2022-11-01 18:14:41,675 epoch 125 - iter 162/274 - loss 0.01389812 - samples/sec: 67.18 - lr: 0.001563
2022-11-01 18:14:53,191 epoch 125 - iter 189/274 - loss 0.01408517 - samples/sec: 75.05 - lr: 0.001563
2022-11-01 18:15:05,054 epoch 125 - iter 216/274 - loss 0.01435856 - samples/sec: 72.85 - lr: 0.001563
2022-11-01 18:15:17,052 epoch 125 - iter 243/274 - loss 0.01424790 - samples/sec: 72.04 - lr: 0.001563
2022-11-01 18:15:29,655 epoch 125 - iter 270/274 - loss 0.01424784 - samples/sec: 68.57 - lr: 0.001563
2022-11-01 18:15:31,485 ----------------------------------------------------------------------------------------------------
2022-11-01 18:15:31,485 EPOCH 125 done: loss 0.0142 - lr 0.001563
2022-11-01 18:15:56,846 Evaluating as a multi-label problem: False
2022-11-01 18:15:56,861 TEST : loss 0.03190324455499649 - f1-score (micro avg)  0.8544
2022-11-01 18:15:56,915 BAD EPOCHS (no improvement): 3
2022-11-01 18:15:57,007 ----------------------------------------------------------------------------------------------------
2022-11-01 18:16:10,448 epoch 126 - iter 27/274 - loss 0.01233038 - samples/sec: 64.30 - lr: 0.001563
2022-11-01 18:16:22,275 epoch 126 - iter 54/274 - loss 0.01381905 - samples/sec: 73.07 - lr: 0.001563
2022-11-01 18:16:34,930 epoch 126 - iter 81/274 - loss 0.01419482 - samples/sec: 68.30 - lr: 0.001563
2022-11-01 18:16:46,563 epoch 126 - iter 108/274 - loss 0.01483839 - samples/sec: 74.29 - lr: 0.001563
2022-11-01 18:16:58,287 epoch 126 - iter 135/274 - loss 0.01521833 - samples/sec: 73.72 - lr: 0.001563
2022-11-01 18:17:09,874 epoch 126 - iter 162/274 - loss 0.01466584 - samples/sec: 74.59 - lr: 0.001563
2022-11-01 18:17:24,081 epoch 126 - iter 189/274 - loss 0.01470213 - samples/sec: 60.83 - lr: 0.001563
2022-11-01 18:17:36,797 epoch 126 - iter 216/274 - loss 0.01444898 - samples/sec: 67.96 - lr: 0.001563
2022-11-01 18:17:48,690 epoch 126 - iter 243/274 - loss 0.01437726 - samples/sec: 72.67 - lr: 0.001563
2022-11-01 18:18:00,074 epoch 126 - iter 270/274 - loss 0.01456913 - samples/sec: 75.92 - lr: 0.001563
2022-11-01 18:18:01,780 ----------------------------------------------------------------------------------------------------
2022-11-01 18:18:01,780 EPOCH 126 done: loss 0.0145 - lr 0.001563
2022-11-01 18:18:27,195 Evaluating as a multi-label problem: False
2022-11-01 18:18:27,211 TEST : loss 0.031878840178251266 - f1-score (micro avg)  0.8544
2022-11-01 18:18:27,263 Epoch   126: reducing learning rate of group 0 to 7.8125e-04.
2022-11-01 18:18:27,263 BAD EPOCHS (no improvement): 4
2022-11-01 18:18:27,356 ----------------------------------------------------------------------------------------------------
2022-11-01 18:18:38,405 epoch 127 - iter 27/274 - loss 0.01214851 - samples/sec: 78.22 - lr: 0.000781
2022-11-01 18:18:51,529 epoch 127 - iter 54/274 - loss 0.01322803 - samples/sec: 65.85 - lr: 0.000781
2022-11-01 18:19:03,957 epoch 127 - iter 81/274 - loss 0.01371365 - samples/sec: 69.54 - lr: 0.000781
2022-11-01 18:19:17,792 epoch 127 - iter 108/274 - loss 0.01357113 - samples/sec: 62.46 - lr: 0.000781
2022-11-01 18:19:30,305 epoch 127 - iter 135/274 - loss 0.01397682 - samples/sec: 69.07 - lr: 0.000781
2022-11-01 18:19:44,368 epoch 127 - iter 162/274 - loss 0.01396536 - samples/sec: 61.45 - lr: 0.000781
2022-11-01 18:19:55,789 epoch 127 - iter 189/274 - loss 0.01376907 - samples/sec: 75.68 - lr: 0.000781
2022-11-01 18:20:09,810 epoch 127 - iter 216/274 - loss 0.01406742 - samples/sec: 61.64 - lr: 0.000781
2022-11-01 18:20:20,817 epoch 127 - iter 243/274 - loss 0.01420367 - samples/sec: 78.52 - lr: 0.000781
2022-11-01 18:20:32,276 epoch 127 - iter 270/274 - loss 0.01427245 - samples/sec: 75.42 - lr: 0.000781
2022-11-01 18:20:33,974 ----------------------------------------------------------------------------------------------------
2022-11-01 18:20:33,975 EPOCH 127 done: loss 0.0141 - lr 0.000781
2022-11-01 18:20:59,316 Evaluating as a multi-label problem: False
2022-11-01 18:20:59,332 TEST : loss 0.031853314489126205 - f1-score (micro avg)  0.8541
2022-11-01 18:20:59,384 BAD EPOCHS (no improvement): 1
2022-11-01 18:20:59,476 ----------------------------------------------------------------------------------------------------
2022-11-01 18:21:12,554 epoch 128 - iter 27/274 - loss 0.01442018 - samples/sec: 66.08 - lr: 0.000781
2022-11-01 18:21:25,402 epoch 128 - iter 54/274 - loss 0.01455128 - samples/sec: 67.26 - lr: 0.000781
2022-11-01 18:21:37,344 epoch 128 - iter 81/274 - loss 0.01443058 - samples/sec: 72.37 - lr: 0.000781
2022-11-01 18:21:49,031 epoch 128 - iter 108/274 - loss 0.01426873 - samples/sec: 73.95 - lr: 0.000781
2022-11-01 18:22:01,548 epoch 128 - iter 135/274 - loss 0.01495891 - samples/sec: 69.04 - lr: 0.000781
2022-11-01 18:22:13,136 epoch 128 - iter 162/274 - loss 0.01507623 - samples/sec: 74.58 - lr: 0.000781
2022-11-01 18:22:25,508 epoch 128 - iter 189/274 - loss 0.01498890 - samples/sec: 69.85 - lr: 0.000781
2022-11-01 18:22:38,731 epoch 128 - iter 216/274 - loss 0.01477757 - samples/sec: 65.36 - lr: 0.000781
2022-11-01 18:22:52,156 epoch 128 - iter 243/274 - loss 0.01465474 - samples/sec: 64.37 - lr: 0.000781
2022-11-01 18:23:04,893 epoch 128 - iter 270/274 - loss 0.01489369 - samples/sec: 67.85 - lr: 0.000781
2022-11-01 18:23:06,594 ----------------------------------------------------------------------------------------------------
2022-11-01 18:23:06,594 EPOCH 128 done: loss 0.0149 - lr 0.000781
2022-11-01 18:23:31,895 Evaluating as a multi-label problem: False
2022-11-01 18:23:31,911 TEST : loss 0.0317995622754097 - f1-score (micro avg)  0.8545
2022-11-01 18:23:31,962 BAD EPOCHS (no improvement): 2
2022-11-01 18:23:32,056 ----------------------------------------------------------------------------------------------------
2022-11-01 18:23:44,890 epoch 129 - iter 27/274 - loss 0.01701574 - samples/sec: 67.34 - lr: 0.000781
2022-11-01 18:23:56,118 epoch 129 - iter 54/274 - loss 0.01559604 - samples/sec: 76.98 - lr: 0.000781
2022-11-01 18:24:08,335 epoch 129 - iter 81/274 - loss 0.01464102 - samples/sec: 70.74 - lr: 0.000781
2022-11-01 18:24:21,755 epoch 129 - iter 108/274 - loss 0.01516544 - samples/sec: 64.39 - lr: 0.000781
2022-11-01 18:24:34,920 epoch 129 - iter 135/274 - loss 0.01553544 - samples/sec: 65.65 - lr: 0.000781
2022-11-01 18:24:46,816 epoch 129 - iter 162/274 - loss 0.01577649 - samples/sec: 72.65 - lr: 0.000781
2022-11-01 18:24:59,344 epoch 129 - iter 189/274 - loss 0.01573528 - samples/sec: 68.98 - lr: 0.000781
2022-11-01 18:25:12,318 epoch 129 - iter 216/274 - loss 0.01545947 - samples/sec: 66.61 - lr: 0.000781
2022-11-01 18:25:23,959 epoch 129 - iter 243/274 - loss 0.01549187 - samples/sec: 74.24 - lr: 0.000781
2022-11-01 18:25:36,740 epoch 129 - iter 270/274 - loss 0.01594032 - samples/sec: 67.62 - lr: 0.000781
2022-11-01 18:25:38,294 ----------------------------------------------------------------------------------------------------
2022-11-01 18:25:38,295 EPOCH 129 done: loss 0.0159 - lr 0.000781
2022-11-01 18:26:03,654 Evaluating as a multi-label problem: False
2022-11-01 18:26:03,669 TEST : loss 0.031778719276189804 - f1-score (micro avg)  0.8547
2022-11-01 18:26:03,722 BAD EPOCHS (no improvement): 3
2022-11-01 18:26:03,813 ----------------------------------------------------------------------------------------------------
2022-11-01 18:26:15,664 epoch 130 - iter 27/274 - loss 0.01545049 - samples/sec: 72.93 - lr: 0.000781
2022-11-01 18:26:28,299 epoch 130 - iter 54/274 - loss 0.01380701 - samples/sec: 68.40 - lr: 0.000781
2022-11-01 18:26:41,697 epoch 130 - iter 81/274 - loss 0.01339731 - samples/sec: 64.50 - lr: 0.000781
2022-11-01 18:26:54,110 epoch 130 - iter 108/274 - loss 0.01311691 - samples/sec: 69.62 - lr: 0.000781
2022-11-01 18:27:06,825 epoch 130 - iter 135/274 - loss 0.01372726 - samples/sec: 67.97 - lr: 0.000781
2022-11-01 18:27:18,546 epoch 130 - iter 162/274 - loss 0.01377890 - samples/sec: 73.74 - lr: 0.000781
2022-11-01 18:27:29,845 epoch 130 - iter 189/274 - loss 0.01383286 - samples/sec: 76.49 - lr: 0.000781
2022-11-01 18:27:43,698 epoch 130 - iter 216/274 - loss 0.01401131 - samples/sec: 62.39 - lr: 0.000781
2022-11-01 18:27:55,900 epoch 130 - iter 243/274 - loss 0.01402296 - samples/sec: 70.83 - lr: 0.000781
2022-11-01 18:28:07,241 epoch 130 - iter 270/274 - loss 0.01396332 - samples/sec: 76.21 - lr: 0.000781
2022-11-01 18:28:08,598 ----------------------------------------------------------------------------------------------------
2022-11-01 18:28:08,598 EPOCH 130 done: loss 0.0140 - lr 0.000781
2022-11-01 18:28:33,883 Evaluating as a multi-label problem: False
2022-11-01 18:28:33,898 TEST : loss 0.031718671321868896 - f1-score (micro avg)  0.8547
2022-11-01 18:28:33,952 BAD EPOCHS (no improvement): 0
2022-11-01 18:28:34,043 ----------------------------------------------------------------------------------------------------
2022-11-01 18:28:45,979 epoch 131 - iter 27/274 - loss 0.01307243 - samples/sec: 72.41 - lr: 0.000781
2022-11-01 18:28:58,110 epoch 131 - iter 54/274 - loss 0.01315823 - samples/sec: 71.24 - lr: 0.000781
2022-11-01 18:29:11,717 epoch 131 - iter 81/274 - loss 0.01382737 - samples/sec: 63.51 - lr: 0.000781
2022-11-01 18:29:24,334 epoch 131 - iter 108/274 - loss 0.01367923 - samples/sec: 68.50 - lr: 0.000781
2022-11-01 18:29:36,846 epoch 131 - iter 135/274 - loss 0.01293479 - samples/sec: 69.07 - lr: 0.000781
2022-11-01 18:29:49,418 epoch 131 - iter 162/274 - loss 0.01360035 - samples/sec: 68.74 - lr: 0.000781
2022-11-01 18:30:00,934 epoch 131 - iter 189/274 - loss 0.01349732 - samples/sec: 75.05 - lr: 0.000781
2022-11-01 18:30:13,375 epoch 131 - iter 216/274 - loss 0.01383598 - samples/sec: 69.47 - lr: 0.000781
2022-11-01 18:30:25,302 epoch 131 - iter 243/274 - loss 0.01377255 - samples/sec: 72.46 - lr: 0.000781
2022-11-01 18:30:37,001 epoch 131 - iter 270/274 - loss 0.01388772 - samples/sec: 73.88 - lr: 0.000781
2022-11-01 18:30:38,646 ----------------------------------------------------------------------------------------------------
2022-11-01 18:30:38,646 EPOCH 131 done: loss 0.0138 - lr 0.000781
2022-11-01 18:31:04,103 Evaluating as a multi-label problem: False
2022-11-01 18:31:04,119 TEST : loss 0.03182306885719299 - f1-score (micro avg)  0.8546
2022-11-01 18:31:04,173 BAD EPOCHS (no improvement): 0
2022-11-01 18:31:04,247 ----------------------------------------------------------------------------------------------------
2022-11-01 18:31:16,478 epoch 132 - iter 27/274 - loss 0.01766349 - samples/sec: 70.66 - lr: 0.000781
2022-11-01 18:31:28,684 epoch 132 - iter 54/274 - loss 0.01453588 - samples/sec: 70.80 - lr: 0.000781
2022-11-01 18:31:40,661 epoch 132 - iter 81/274 - loss 0.01396542 - samples/sec: 72.16 - lr: 0.000781
2022-11-01 18:31:53,393 epoch 132 - iter 108/274 - loss 0.01430618 - samples/sec: 67.88 - lr: 0.000781
2022-11-01 18:32:06,520 epoch 132 - iter 135/274 - loss 0.01439286 - samples/sec: 65.83 - lr: 0.000781
2022-11-01 18:32:19,528 epoch 132 - iter 162/274 - loss 0.01473819 - samples/sec: 66.43 - lr: 0.000781
2022-11-01 18:32:31,572 epoch 132 - iter 189/274 - loss 0.01429222 - samples/sec: 71.76 - lr: 0.000781
2022-11-01 18:32:43,127 epoch 132 - iter 216/274 - loss 0.01431037 - samples/sec: 74.79 - lr: 0.000781
2022-11-01 18:32:57,838 epoch 132 - iter 243/274 - loss 0.01464379 - samples/sec: 58.75 - lr: 0.000781
2022-11-01 18:33:10,135 epoch 132 - iter 270/274 - loss 0.01477125 - samples/sec: 70.28 - lr: 0.000781
2022-11-01 18:33:12,056 ----------------------------------------------------------------------------------------------------
2022-11-01 18:33:12,056 EPOCH 132 done: loss 0.0148 - lr 0.000781
2022-11-01 18:33:37,535 Evaluating as a multi-label problem: False
2022-11-01 18:33:37,551 TEST : loss 0.03184701129794121 - f1-score (micro avg)  0.8546
2022-11-01 18:33:37,601 BAD EPOCHS (no improvement): 1
2022-11-01 18:33:37,697 ----------------------------------------------------------------------------------------------------
2022-11-01 18:33:50,117 epoch 133 - iter 27/274 - loss 0.01314103 - samples/sec: 69.59 - lr: 0.000781
2022-11-01 18:34:02,137 epoch 133 - iter 54/274 - loss 0.01319767 - samples/sec: 71.90 - lr: 0.000781
2022-11-01 18:34:15,737 epoch 133 - iter 81/274 - loss 0.01357056 - samples/sec: 63.55 - lr: 0.000781
2022-11-01 18:34:27,341 epoch 133 - iter 108/274 - loss 0.01377149 - samples/sec: 74.48 - lr: 0.000781
2022-11-01 18:34:39,606 epoch 133 - iter 135/274 - loss 0.01401248 - samples/sec: 70.46 - lr: 0.000781
2022-11-01 18:34:53,225 epoch 133 - iter 162/274 - loss 0.01435865 - samples/sec: 63.46 - lr: 0.000781
2022-11-01 18:35:05,127 epoch 133 - iter 189/274 - loss 0.01460999 - samples/sec: 72.61 - lr: 0.000781
2022-11-01 18:35:17,438 epoch 133 - iter 216/274 - loss 0.01523430 - samples/sec: 70.20 - lr: 0.000781
2022-11-01 18:35:30,196 epoch 133 - iter 243/274 - loss 0.01523406 - samples/sec: 67.74 - lr: 0.000781
2022-11-01 18:35:42,029 epoch 133 - iter 270/274 - loss 0.01521377 - samples/sec: 73.03 - lr: 0.000781
2022-11-01 18:35:43,607 ----------------------------------------------------------------------------------------------------
2022-11-01 18:35:43,607 EPOCH 133 done: loss 0.0151 - lr 0.000781
2022-11-01 18:36:09,113 Evaluating as a multi-label problem: False
2022-11-01 18:36:09,129 TEST : loss 0.03188365697860718 - f1-score (micro avg)  0.8546
2022-11-01 18:36:09,182 BAD EPOCHS (no improvement): 2
2022-11-01 18:36:09,268 ----------------------------------------------------------------------------------------------------
2022-11-01 18:36:21,391 epoch 134 - iter 27/274 - loss 0.01570005 - samples/sec: 71.29 - lr: 0.000781
2022-11-01 18:36:34,709 epoch 134 - iter 54/274 - loss 0.01353171 - samples/sec: 64.89 - lr: 0.000781
2022-11-01 18:36:47,667 epoch 134 - iter 81/274 - loss 0.01290484 - samples/sec: 66.70 - lr: 0.000781
2022-11-01 18:36:59,759 epoch 134 - iter 108/274 - loss 0.01333661 - samples/sec: 71.47 - lr: 0.000781
2022-11-01 18:37:12,839 epoch 134 - iter 135/274 - loss 0.01340435 - samples/sec: 66.07 - lr: 0.000781
2022-11-01 18:37:25,282 epoch 134 - iter 162/274 - loss 0.01310120 - samples/sec: 69.45 - lr: 0.000781
2022-11-01 18:37:37,095 epoch 134 - iter 189/274 - loss 0.01362252 - samples/sec: 73.16 - lr: 0.000781
2022-11-01 18:37:49,281 epoch 134 - iter 216/274 - loss 0.01378086 - samples/sec: 70.92 - lr: 0.000781
2022-11-01 18:38:01,142 epoch 134 - iter 243/274 - loss 0.01385806 - samples/sec: 72.87 - lr: 0.000781
2022-11-01 18:38:14,124 epoch 134 - iter 270/274 - loss 0.01414799 - samples/sec: 66.57 - lr: 0.000781
2022-11-01 18:38:15,844 ----------------------------------------------------------------------------------------------------
2022-11-01 18:38:15,844 EPOCH 134 done: loss 0.0142 - lr 0.000781
2022-11-01 18:38:41,212 Evaluating as a multi-label problem: False
2022-11-01 18:38:41,227 TEST : loss 0.03192955255508423 - f1-score (micro avg)  0.8538
2022-11-01 18:38:41,279 BAD EPOCHS (no improvement): 3
2022-11-01 18:38:41,364 ----------------------------------------------------------------------------------------------------
2022-11-01 18:38:54,723 epoch 135 - iter 27/274 - loss 0.01327526 - samples/sec: 64.69 - lr: 0.000781
2022-11-01 18:39:07,129 epoch 135 - iter 54/274 - loss 0.01409919 - samples/sec: 69.67 - lr: 0.000781
2022-11-01 18:39:19,915 epoch 135 - iter 81/274 - loss 0.01531283 - samples/sec: 67.59 - lr: 0.000781
2022-11-01 18:39:32,995 epoch 135 - iter 108/274 - loss 0.01543934 - samples/sec: 66.07 - lr: 0.000781
2022-11-01 18:39:45,099 epoch 135 - iter 135/274 - loss 0.01553804 - samples/sec: 71.41 - lr: 0.000781
2022-11-01 18:39:58,722 epoch 135 - iter 162/274 - loss 0.01537747 - samples/sec: 63.44 - lr: 0.000781
2022-11-01 18:40:10,924 epoch 135 - iter 189/274 - loss 0.01505536 - samples/sec: 70.82 - lr: 0.000781
2022-11-01 18:40:22,920 epoch 135 - iter 216/274 - loss 0.01518738 - samples/sec: 72.05 - lr: 0.000781
2022-11-01 18:40:34,740 epoch 135 - iter 243/274 - loss 0.01497708 - samples/sec: 73.12 - lr: 0.000781
2022-11-01 18:40:47,071 epoch 135 - iter 270/274 - loss 0.01503585 - samples/sec: 70.08 - lr: 0.000781
2022-11-01 18:40:48,750 ----------------------------------------------------------------------------------------------------
2022-11-01 18:40:48,750 EPOCH 135 done: loss 0.0152 - lr 0.000781
2022-11-01 18:41:13,738 Evaluating as a multi-label problem: False
2022-11-01 18:41:13,753 TEST : loss 0.031969308853149414 - f1-score (micro avg)  0.8544
2022-11-01 18:41:13,805 Epoch   135: reducing learning rate of group 0 to 3.9063e-04.
2022-11-01 18:41:13,805 BAD EPOCHS (no improvement): 4
2022-11-01 18:41:13,900 ----------------------------------------------------------------------------------------------------
2022-11-01 18:41:26,650 epoch 136 - iter 27/274 - loss 0.01290276 - samples/sec: 67.79 - lr: 0.000391
2022-11-01 18:41:39,459 epoch 136 - iter 54/274 - loss 0.01299663 - samples/sec: 67.47 - lr: 0.000391
2022-11-01 18:41:51,985 epoch 136 - iter 81/274 - loss 0.01282157 - samples/sec: 68.99 - lr: 0.000391
2022-11-01 18:42:06,560 epoch 136 - iter 108/274 - loss 0.01339859 - samples/sec: 59.30 - lr: 0.000391
2022-11-01 18:42:18,770 epoch 136 - iter 135/274 - loss 0.01366404 - samples/sec: 70.78 - lr: 0.000391
2022-11-01 18:42:32,008 epoch 136 - iter 162/274 - loss 0.01492463 - samples/sec: 65.28 - lr: 0.000391
2022-11-01 18:42:42,929 epoch 136 - iter 189/274 - loss 0.01462456 - samples/sec: 79.14 - lr: 0.000391
2022-11-01 18:42:55,591 epoch 136 - iter 216/274 - loss 0.01414258 - samples/sec: 68.26 - lr: 0.000391
2022-11-01 18:43:07,774 epoch 136 - iter 243/274 - loss 0.01382027 - samples/sec: 70.93 - lr: 0.000391
2022-11-01 18:43:19,311 epoch 136 - iter 270/274 - loss 0.01399665 - samples/sec: 74.91 - lr: 0.000391
2022-11-01 18:43:20,917 ----------------------------------------------------------------------------------------------------
2022-11-01 18:43:20,917 EPOCH 136 done: loss 0.0140 - lr 0.000391
2022-11-01 18:43:46,411 Evaluating as a multi-label problem: False
2022-11-01 18:43:46,426 TEST : loss 0.0319695845246315 - f1-score (micro avg)  0.855
2022-11-01 18:43:46,478 BAD EPOCHS (no improvement): 1
2022-11-01 18:43:46,571 ----------------------------------------------------------------------------------------------------
2022-11-01 18:43:59,477 epoch 137 - iter 27/274 - loss 0.01202838 - samples/sec: 66.96 - lr: 0.000391
2022-11-01 18:44:12,382 epoch 137 - iter 54/274 - loss 0.01280634 - samples/sec: 66.97 - lr: 0.000391
2022-11-01 18:44:23,487 epoch 137 - iter 81/274 - loss 0.01300539 - samples/sec: 77.82 - lr: 0.000391
2022-11-01 18:44:35,621 epoch 137 - iter 108/274 - loss 0.01354442 - samples/sec: 71.22 - lr: 0.000391
2022-11-01 18:44:47,256 epoch 137 - iter 135/274 - loss 0.01373392 - samples/sec: 74.28 - lr: 0.000391
2022-11-01 18:44:59,898 epoch 137 - iter 162/274 - loss 0.01416349 - samples/sec: 68.36 - lr: 0.000391
2022-11-01 18:45:13,470 epoch 137 - iter 189/274 - loss 0.01416036 - samples/sec: 63.67 - lr: 0.000391
2022-11-01 18:45:27,207 epoch 137 - iter 216/274 - loss 0.01452940 - samples/sec: 62.91 - lr: 0.000391
2022-11-01 18:45:39,752 epoch 137 - iter 243/274 - loss 0.01448564 - samples/sec: 68.89 - lr: 0.000391
2022-11-01 18:45:51,493 epoch 137 - iter 270/274 - loss 0.01453954 - samples/sec: 73.61 - lr: 0.000391
2022-11-01 18:45:53,154 ----------------------------------------------------------------------------------------------------
2022-11-01 18:45:53,154 EPOCH 137 done: loss 0.0145 - lr 0.000391
2022-11-01 18:46:18,540 Evaluating as a multi-label problem: False
2022-11-01 18:46:18,556 TEST : loss 0.03197849541902542 - f1-score (micro avg)  0.8548
2022-11-01 18:46:18,609 BAD EPOCHS (no improvement): 2
2022-11-01 18:46:18,701 ----------------------------------------------------------------------------------------------------
2022-11-01 18:46:32,629 epoch 138 - iter 27/274 - loss 0.01287313 - samples/sec: 62.05 - lr: 0.000391
2022-11-01 18:46:44,889 epoch 138 - iter 54/274 - loss 0.01411019 - samples/sec: 70.49 - lr: 0.000391
2022-11-01 18:46:57,085 epoch 138 - iter 81/274 - loss 0.01373632 - samples/sec: 70.86 - lr: 0.000391
2022-11-01 18:47:10,008 epoch 138 - iter 108/274 - loss 0.01368310 - samples/sec: 66.88 - lr: 0.000391
2022-11-01 18:47:22,002 epoch 138 - iter 135/274 - loss 0.01385494 - samples/sec: 72.05 - lr: 0.000391
2022-11-01 18:47:34,426 epoch 138 - iter 162/274 - loss 0.01378742 - samples/sec: 69.56 - lr: 0.000391
2022-11-01 18:47:46,756 epoch 138 - iter 189/274 - loss 0.01386216 - samples/sec: 70.09 - lr: 0.000391
2022-11-01 18:47:58,425 epoch 138 - iter 216/274 - loss 0.01407536 - samples/sec: 74.06 - lr: 0.000391
2022-11-01 18:48:10,418 epoch 138 - iter 243/274 - loss 0.01377845 - samples/sec: 72.06 - lr: 0.000391
2022-11-01 18:48:22,138 epoch 138 - iter 270/274 - loss 0.01386241 - samples/sec: 73.74 - lr: 0.000391
2022-11-01 18:48:24,823 ----------------------------------------------------------------------------------------------------
2022-11-01 18:48:24,823 EPOCH 138 done: loss 0.0137 - lr 0.000391
2022-11-01 18:48:50,296 Evaluating as a multi-label problem: False
2022-11-01 18:48:50,312 TEST : loss 0.03200221434235573 - f1-score (micro avg)  0.8548
2022-11-01 18:48:50,364 BAD EPOCHS (no improvement): 0
2022-11-01 18:48:50,457 ----------------------------------------------------------------------------------------------------
2022-11-01 18:49:02,999 epoch 139 - iter 27/274 - loss 0.01582375 - samples/sec: 68.91 - lr: 0.000391
2022-11-01 18:49:15,457 epoch 139 - iter 54/274 - loss 0.01495674 - samples/sec: 69.37 - lr: 0.000391
2022-11-01 18:49:28,117 epoch 139 - iter 81/274 - loss 0.01450503 - samples/sec: 68.26 - lr: 0.000391
2022-11-01 18:49:40,212 epoch 139 - iter 108/274 - loss 0.01445288 - samples/sec: 71.45 - lr: 0.000391
2022-11-01 18:49:53,995 epoch 139 - iter 135/274 - loss 0.01467858 - samples/sec: 62.70 - lr: 0.000391
2022-11-01 18:50:06,504 epoch 139 - iter 162/274 - loss 0.01471299 - samples/sec: 69.08 - lr: 0.000391
2022-11-01 18:50:19,341 epoch 139 - iter 189/274 - loss 0.01431085 - samples/sec: 67.32 - lr: 0.000391
2022-11-01 18:50:30,753 epoch 139 - iter 216/274 - loss 0.01414775 - samples/sec: 75.73 - lr: 0.000391
2022-11-01 18:50:43,649 epoch 139 - iter 243/274 - loss 0.01416123 - samples/sec: 67.01 - lr: 0.000391
2022-11-01 18:50:56,349 epoch 139 - iter 270/274 - loss 0.01429129 - samples/sec: 68.05 - lr: 0.000391
2022-11-01 18:50:57,846 ----------------------------------------------------------------------------------------------------
2022-11-01 18:50:57,846 EPOCH 139 done: loss 0.0142 - lr 0.000391
2022-11-01 18:51:23,229 Evaluating as a multi-label problem: False
2022-11-01 18:51:23,244 TEST : loss 0.03198350593447685 - f1-score (micro avg)  0.8544
2022-11-01 18:51:23,296 BAD EPOCHS (no improvement): 1
2022-11-01 18:51:23,387 ----------------------------------------------------------------------------------------------------
2022-11-01 18:51:36,170 epoch 140 - iter 27/274 - loss 0.01491385 - samples/sec: 67.61 - lr: 0.000391
2022-11-01 18:51:48,603 epoch 140 - iter 54/274 - loss 0.01542907 - samples/sec: 69.51 - lr: 0.000391
2022-11-01 18:52:02,681 epoch 140 - iter 81/274 - loss 0.01483332 - samples/sec: 61.39 - lr: 0.000391
2022-11-01 18:52:14,616 epoch 140 - iter 108/274 - loss 0.01461136 - samples/sec: 72.41 - lr: 0.000391
2022-11-01 18:52:26,886 epoch 140 - iter 135/274 - loss 0.01441321 - samples/sec: 70.44 - lr: 0.000391
2022-11-01 18:52:38,892 epoch 140 - iter 162/274 - loss 0.01482984 - samples/sec: 71.98 - lr: 0.000391
2022-11-01 18:52:51,513 epoch 140 - iter 189/274 - loss 0.01465169 - samples/sec: 68.48 - lr: 0.000391
2022-11-01 18:53:03,540 epoch 140 - iter 216/274 - loss 0.01454677 - samples/sec: 71.86 - lr: 0.000391
2022-11-01 18:53:17,309 epoch 140 - iter 243/274 - loss 0.01465699 - samples/sec: 62.77 - lr: 0.000391
2022-11-01 18:53:29,003 epoch 140 - iter 270/274 - loss 0.01447624 - samples/sec: 73.91 - lr: 0.000391
2022-11-01 18:53:30,881 ----------------------------------------------------------------------------------------------------
2022-11-01 18:53:30,881 EPOCH 140 done: loss 0.0146 - lr 0.000391
2022-11-01 18:53:56,246 Evaluating as a multi-label problem: False
2022-11-01 18:53:56,262 TEST : loss 0.03198152035474777 - f1-score (micro avg)  0.8548
2022-11-01 18:53:56,314 BAD EPOCHS (no improvement): 2
2022-11-01 18:53:56,401 ----------------------------------------------------------------------------------------------------
2022-11-01 18:54:07,635 epoch 141 - iter 27/274 - loss 0.01380211 - samples/sec: 76.94 - lr: 0.000391
2022-11-01 18:54:20,777 epoch 141 - iter 54/274 - loss 0.01299416 - samples/sec: 65.76 - lr: 0.000391
2022-11-01 18:54:32,989 epoch 141 - iter 81/274 - loss 0.01288500 - samples/sec: 70.77 - lr: 0.000391
2022-11-01 18:54:44,408 epoch 141 - iter 108/274 - loss 0.01280394 - samples/sec: 75.69 - lr: 0.000391
2022-11-01 18:54:56,270 epoch 141 - iter 135/274 - loss 0.01294786 - samples/sec: 72.86 - lr: 0.000391
2022-11-01 18:55:09,407 epoch 141 - iter 162/274 - loss 0.01290578 - samples/sec: 65.78 - lr: 0.000391
2022-11-01 18:55:21,882 epoch 141 - iter 189/274 - loss 0.01312051 - samples/sec: 69.28 - lr: 0.000391
2022-11-01 18:55:33,330 epoch 141 - iter 216/274 - loss 0.01338580 - samples/sec: 75.50 - lr: 0.000391
2022-11-01 18:55:47,281 epoch 141 - iter 243/274 - loss 0.01371702 - samples/sec: 61.94 - lr: 0.000391
2022-11-01 18:55:59,370 epoch 141 - iter 270/274 - loss 0.01411856 - samples/sec: 71.49 - lr: 0.000391
2022-11-01 18:56:01,282 ----------------------------------------------------------------------------------------------------
2022-11-01 18:56:01,282 EPOCH 141 done: loss 0.0141 - lr 0.000391
2022-11-01 18:56:26,636 Evaluating as a multi-label problem: False
2022-11-01 18:56:26,651 TEST : loss 0.032018985599279404 - f1-score (micro avg)  0.8544
2022-11-01 18:56:26,705 BAD EPOCHS (no improvement): 3
2022-11-01 18:56:26,796 ----------------------------------------------------------------------------------------------------
2022-11-01 18:56:38,798 epoch 142 - iter 27/274 - loss 0.01461087 - samples/sec: 72.01 - lr: 0.000391
2022-11-01 18:56:50,263 epoch 142 - iter 54/274 - loss 0.01406950 - samples/sec: 75.38 - lr: 0.000391
2022-11-01 18:57:01,513 epoch 142 - iter 81/274 - loss 0.01326957 - samples/sec: 76.82 - lr: 0.000391
2022-11-01 18:57:13,833 epoch 142 - iter 108/274 - loss 0.01459213 - samples/sec: 70.15 - lr: 0.000391
2022-11-01 18:57:25,595 epoch 142 - iter 135/274 - loss 0.01422328 - samples/sec: 73.48 - lr: 0.000391
2022-11-01 18:57:39,117 epoch 142 - iter 162/274 - loss 0.01387491 - samples/sec: 63.91 - lr: 0.000391
2022-11-01 18:57:53,314 epoch 142 - iter 189/274 - loss 0.01399542 - samples/sec: 60.87 - lr: 0.000391
2022-11-01 18:58:06,060 epoch 142 - iter 216/274 - loss 0.01406924 - samples/sec: 67.80 - lr: 0.000391
2022-11-01 18:58:18,871 epoch 142 - iter 243/274 - loss 0.01429993 - samples/sec: 67.46 - lr: 0.000391
2022-11-01 18:58:32,342 epoch 142 - iter 270/274 - loss 0.01424921 - samples/sec: 64.15 - lr: 0.000391
2022-11-01 18:58:34,122 ----------------------------------------------------------------------------------------------------
2022-11-01 18:58:34,122 EPOCH 142 done: loss 0.0142 - lr 0.000391
2022-11-01 18:58:59,595 Evaluating as a multi-label problem: False
2022-11-01 18:58:59,611 TEST : loss 0.03204723075032234 - f1-score (micro avg)  0.8541
2022-11-01 18:58:59,664 Epoch   142: reducing learning rate of group 0 to 1.9531e-04.
2022-11-01 18:58:59,664 BAD EPOCHS (no improvement): 4
2022-11-01 18:58:59,757 ----------------------------------------------------------------------------------------------------
2022-11-01 18:59:12,947 epoch 143 - iter 27/274 - loss 0.01607101 - samples/sec: 65.52 - lr: 0.000195
2022-11-01 18:59:25,410 epoch 143 - iter 54/274 - loss 0.01551964 - samples/sec: 69.34 - lr: 0.000195
2022-11-01 18:59:37,705 epoch 143 - iter 81/274 - loss 0.01508179 - samples/sec: 70.29 - lr: 0.000195
2022-11-01 18:59:50,633 epoch 143 - iter 108/274 - loss 0.01503203 - samples/sec: 66.85 - lr: 0.000195
2022-11-01 19:00:02,333 epoch 143 - iter 135/274 - loss 0.01500703 - samples/sec: 73.87 - lr: 0.000195
2022-11-01 19:00:15,575 epoch 143 - iter 162/274 - loss 0.01451339 - samples/sec: 65.26 - lr: 0.000195
2022-11-01 19:00:29,024 epoch 143 - iter 189/274 - loss 0.01453377 - samples/sec: 64.26 - lr: 0.000195
2022-11-01 19:00:40,418 epoch 143 - iter 216/274 - loss 0.01460606 - samples/sec: 75.85 - lr: 0.000195
2022-11-01 19:00:53,208 epoch 143 - iter 243/274 - loss 0.01465891 - samples/sec: 67.57 - lr: 0.000195
2022-11-01 19:01:05,277 epoch 143 - iter 270/274 - loss 0.01452026 - samples/sec: 71.61 - lr: 0.000195
2022-11-01 19:01:06,801 ----------------------------------------------------------------------------------------------------
2022-11-01 19:01:06,801 EPOCH 143 done: loss 0.0145 - lr 0.000195
2022-11-01 19:01:32,286 Evaluating as a multi-label problem: False
2022-11-01 19:01:32,301 TEST : loss 0.03204527124762535 - f1-score (micro avg)  0.8544
2022-11-01 19:01:32,353 BAD EPOCHS (no improvement): 1
2022-11-01 19:01:32,446 ----------------------------------------------------------------------------------------------------
2022-11-01 19:01:43,483 epoch 144 - iter 27/274 - loss 0.01275661 - samples/sec: 78.31 - lr: 0.000195
2022-11-01 19:01:55,891 epoch 144 - iter 54/274 - loss 0.01255751 - samples/sec: 69.65 - lr: 0.000195
2022-11-01 19:02:08,138 epoch 144 - iter 81/274 - loss 0.01352715 - samples/sec: 70.57 - lr: 0.000195
2022-11-01 19:02:20,657 epoch 144 - iter 108/274 - loss 0.01424597 - samples/sec: 69.03 - lr: 0.000195
2022-11-01 19:02:32,689 epoch 144 - iter 135/274 - loss 0.01388532 - samples/sec: 71.83 - lr: 0.000195
2022-11-01 19:02:46,254 epoch 144 - iter 162/274 - loss 0.01418345 - samples/sec: 63.71 - lr: 0.000195
2022-11-01 19:02:58,873 epoch 144 - iter 189/274 - loss 0.01401984 - samples/sec: 68.49 - lr: 0.000195
2022-11-01 19:03:10,582 epoch 144 - iter 216/274 - loss 0.01378628 - samples/sec: 73.81 - lr: 0.000195
2022-11-01 19:03:23,555 epoch 144 - iter 243/274 - loss 0.01386198 - samples/sec: 66.62 - lr: 0.000195
2022-11-01 19:03:37,102 epoch 144 - iter 270/274 - loss 0.01403064 - samples/sec: 63.79 - lr: 0.000195
2022-11-01 19:03:38,807 ----------------------------------------------------------------------------------------------------
2022-11-01 19:03:38,807 EPOCH 144 done: loss 0.0141 - lr 0.000195
2022-11-01 19:04:04,183 Evaluating as a multi-label problem: False
2022-11-01 19:04:04,199 TEST : loss 0.03205322101712227 - f1-score (micro avg)  0.8544
2022-11-01 19:04:04,251 BAD EPOCHS (no improvement): 2
2022-11-01 19:04:04,337 ----------------------------------------------------------------------------------------------------
2022-11-01 19:04:15,584 epoch 145 - iter 27/274 - loss 0.01196807 - samples/sec: 76.84 - lr: 0.000195
2022-11-01 19:04:27,733 epoch 145 - iter 54/274 - loss 0.01428555 - samples/sec: 71.14 - lr: 0.000195
2022-11-01 19:04:39,618 epoch 145 - iter 81/274 - loss 0.01458192 - samples/sec: 72.72 - lr: 0.000195
2022-11-01 19:04:52,925 epoch 145 - iter 108/274 - loss 0.01460566 - samples/sec: 64.95 - lr: 0.000195
2022-11-01 19:05:04,454 epoch 145 - iter 135/274 - loss 0.01511987 - samples/sec: 74.96 - lr: 0.000195
2022-11-01 19:05:16,725 epoch 145 - iter 162/274 - loss 0.01514862 - samples/sec: 70.43 - lr: 0.000195
2022-11-01 19:05:29,601 epoch 145 - iter 189/274 - loss 0.01476270 - samples/sec: 67.12 - lr: 0.000195
2022-11-01 19:05:42,378 epoch 145 - iter 216/274 - loss 0.01491464 - samples/sec: 67.64 - lr: 0.000195
2022-11-01 19:05:54,791 epoch 145 - iter 243/274 - loss 0.01472325 - samples/sec: 69.62 - lr: 0.000195
2022-11-01 19:06:08,380 epoch 145 - iter 270/274 - loss 0.01450260 - samples/sec: 63.59 - lr: 0.000195
2022-11-01 19:06:10,102 ----------------------------------------------------------------------------------------------------
2022-11-01 19:06:10,103 EPOCH 145 done: loss 0.0145 - lr 0.000195
2022-11-01 19:06:35,540 Evaluating as a multi-label problem: False
2022-11-01 19:06:35,556 TEST : loss 0.03206166997551918 - f1-score (micro avg)  0.8544
2022-11-01 19:06:35,609 BAD EPOCHS (no improvement): 3
2022-11-01 19:06:35,703 ----------------------------------------------------------------------------------------------------
2022-11-01 19:06:48,592 epoch 146 - iter 27/274 - loss 0.01138730 - samples/sec: 67.06 - lr: 0.000195
2022-11-01 19:07:00,468 epoch 146 - iter 54/274 - loss 0.01167755 - samples/sec: 72.77 - lr: 0.000195
2022-11-01 19:07:12,555 epoch 146 - iter 81/274 - loss 0.01291096 - samples/sec: 71.50 - lr: 0.000195
2022-11-01 19:07:25,188 epoch 146 - iter 108/274 - loss 0.01365870 - samples/sec: 68.41 - lr: 0.000195
2022-11-01 19:07:39,012 epoch 146 - iter 135/274 - loss 0.01360006 - samples/sec: 62.51 - lr: 0.000195
2022-11-01 19:07:50,620 epoch 146 - iter 162/274 - loss 0.01400603 - samples/sec: 74.45 - lr: 0.000195
2022-11-01 19:08:02,972 epoch 146 - iter 189/274 - loss 0.01390354 - samples/sec: 69.97 - lr: 0.000195
2022-11-01 19:08:15,150 epoch 146 - iter 216/274 - loss 0.01413519 - samples/sec: 70.96 - lr: 0.000195
2022-11-01 19:08:27,039 epoch 146 - iter 243/274 - loss 0.01425737 - samples/sec: 72.69 - lr: 0.000195
2022-11-01 19:08:38,896 epoch 146 - iter 270/274 - loss 0.01407049 - samples/sec: 72.89 - lr: 0.000195
2022-11-01 19:08:41,119 ----------------------------------------------------------------------------------------------------
2022-11-01 19:08:41,119 EPOCH 146 done: loss 0.0140 - lr 0.000195
2022-11-01 19:09:06,382 Evaluating as a multi-label problem: False
2022-11-01 19:09:06,397 TEST : loss 0.032056890428066254 - f1-score (micro avg)  0.8544
2022-11-01 19:09:06,450 Epoch   146: reducing learning rate of group 0 to 9.7656e-05.
2022-11-01 19:09:06,451 BAD EPOCHS (no improvement): 4
2022-11-01 19:09:06,524 ----------------------------------------------------------------------------------------------------
2022-11-01 19:09:06,524 ----------------------------------------------------------------------------------------------------
2022-11-01 19:09:06,524 learning rate too small - quitting training!
2022-11-01 19:09:06,524 ----------------------------------------------------------------------------------------------------
2022-11-01 19:09:06,599 ----------------------------------------------------------------------------------------------------
2022-11-01 19:09:06,599 Testing using last state of model ...
2022-11-01 19:09:31,767 Evaluating as a multi-label problem: False
2022-11-01 19:09:31,783 0.8572	0.8516	0.8544	0.798
2022-11-01 19:09:31,783 
Results:
- F-score (micro) 0.8544
- F-score (macro) 0.7406
- Accuracy 0.798

By class:
              precision    recall  f1-score   support

        PERS     0.9231    0.9374    0.9302      1678
         LOC     0.8204    0.8429    0.8315       401
         ORG     0.6708    0.6245    0.6468       261
        MISC     0.6029    0.5125    0.5541       240

   micro avg     0.8572    0.8516    0.8544      2580
   macro avg     0.7543    0.7293    0.7406      2580
weighted avg     0.8518    0.8516    0.8512      2580

2022-11-01 19:09:31,783 ----------------------------------------------------------------------------------------------------