File size: 222,979 Bytes
e3ae526
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2022-11-06 20:36:44,639 ----------------------------------------------------------------------------------------------------
2022-11-06 20:36:44,639 Model: "SequenceTagger(
  (embeddings): StackedEmbeddings(
    (list_embedding_0): FlairEmbeddings(
      (lm): LanguageModel(
        (drop): Dropout(p=0.1, inplace=False)
        (encoder): Embedding(962, 100)
        (rnn): LSTM(100, 1024)
        (decoder): Linear(in_features=1024, out_features=962, bias=True)
      )
    )
    (list_embedding_1): FlairEmbeddings(
      (lm): LanguageModel(
        (drop): Dropout(p=0.1, inplace=False)
        (encoder): Embedding(962, 100)
        (rnn): LSTM(100, 1024)
        (decoder): Linear(in_features=1024, out_features=962, bias=True)
      )
    )
  )
  (dropout): Dropout(p=0.005334913013756493, inplace=False)
  (word_dropout): WordDropout(p=0.05)
  (locked_dropout): LockedDropout(p=0.5)
  (embedding2nn): Linear(in_features=2048, out_features=2048, bias=True)
  (rnn): LSTM(2048, 256, batch_first=True, bidirectional=True)
  (linear): Linear(in_features=512, out_features=20, bias=True)
  (loss_function): ViterbiLoss()
  (crf): CRF()
)"
2022-11-06 20:36:44,639 ----------------------------------------------------------------------------------------------------
2022-11-06 20:36:44,639 Corpus: "Corpus: 5496 train + 672 dev + 892 test sentences"
2022-11-06 20:36:44,639 ----------------------------------------------------------------------------------------------------
2022-11-06 20:36:44,640 Parameters:
2022-11-06 20:36:44,640  - learning_rate: "0.100000"
2022-11-06 20:36:44,640  - mini_batch_size: "16"
2022-11-06 20:36:44,640  - patience: "3"
2022-11-06 20:36:44,640  - anneal_factor: "0.5"
2022-11-06 20:36:44,640  - max_epochs: "150"
2022-11-06 20:36:44,640  - shuffle: "True"
2022-11-06 20:36:44,640  - train_with_dev: "True"
2022-11-06 20:36:44,640  - batch_growth_annealing: "False"
2022-11-06 20:36:44,640 ----------------------------------------------------------------------------------------------------
2022-11-06 20:36:44,640 Model training base path: "pos-tests/uk.flairembeddings.champ"
2022-11-06 20:36:44,640 ----------------------------------------------------------------------------------------------------
2022-11-06 20:36:44,640 Device: cuda:0
2022-11-06 20:36:44,640 ----------------------------------------------------------------------------------------------------
2022-11-06 20:36:44,641 Embeddings storage mode: cpu
2022-11-06 20:36:44,641 ----------------------------------------------------------------------------------------------------
2022-11-06 20:36:52,658 epoch 1 - iter 38/386 - loss 1.88961718 - samples/sec: 75.87 - lr: 0.100000
2022-11-06 20:36:58,417 epoch 1 - iter 76/386 - loss 1.47768008 - samples/sec: 105.63 - lr: 0.100000
2022-11-06 20:37:05,566 epoch 1 - iter 114/386 - loss 1.19063825 - samples/sec: 85.09 - lr: 0.100000
2022-11-06 20:37:11,577 epoch 1 - iter 152/386 - loss 1.02974511 - samples/sec: 101.19 - lr: 0.100000
2022-11-06 20:37:18,761 epoch 1 - iter 190/386 - loss 0.92486845 - samples/sec: 84.67 - lr: 0.100000
2022-11-06 20:37:27,941 epoch 1 - iter 228/386 - loss 0.81813485 - samples/sec: 66.25 - lr: 0.100000
2022-11-06 20:37:35,445 epoch 1 - iter 266/386 - loss 0.77842545 - samples/sec: 81.05 - lr: 0.100000
2022-11-06 20:37:43,156 epoch 1 - iter 304/386 - loss 0.72645892 - samples/sec: 78.89 - lr: 0.100000
2022-11-06 20:37:51,456 epoch 1 - iter 342/386 - loss 0.68857673 - samples/sec: 73.28 - lr: 0.100000
2022-11-06 20:37:59,557 epoch 1 - iter 380/386 - loss 0.65020291 - samples/sec: 75.08 - lr: 0.100000
2022-11-06 20:38:00,729 ----------------------------------------------------------------------------------------------------
2022-11-06 20:38:00,729 EPOCH 1 done: loss 0.6450 - lr 0.100000
2022-11-06 20:38:14,564 Evaluating as a multi-label problem: False
2022-11-06 20:38:14,679 TEST : loss 0.17086097598075867 - f1-score (micro avg)  0.9512
2022-11-06 20:38:14,794 BAD EPOCHS (no improvement): 0
2022-11-06 20:38:14,951 ----------------------------------------------------------------------------------------------------
2022-11-06 20:38:20,209 epoch 2 - iter 38/386 - loss 0.35452940 - samples/sec: 115.73 - lr: 0.100000
2022-11-06 20:38:26,172 epoch 2 - iter 76/386 - loss 0.35270834 - samples/sec: 102.02 - lr: 0.100000
2022-11-06 20:38:31,703 epoch 2 - iter 114/386 - loss 0.35270777 - samples/sec: 109.98 - lr: 0.100000
2022-11-06 20:38:37,311 epoch 2 - iter 152/386 - loss 0.34728297 - samples/sec: 108.47 - lr: 0.100000
2022-11-06 20:38:42,764 epoch 2 - iter 190/386 - loss 0.34372065 - samples/sec: 111.57 - lr: 0.100000
2022-11-06 20:38:48,305 epoch 2 - iter 228/386 - loss 0.34270320 - samples/sec: 109.78 - lr: 0.100000
2022-11-06 20:38:54,041 epoch 2 - iter 266/386 - loss 0.33850648 - samples/sec: 106.07 - lr: 0.100000
2022-11-06 20:38:59,745 epoch 2 - iter 304/386 - loss 0.33432568 - samples/sec: 106.65 - lr: 0.100000
2022-11-06 20:39:05,211 epoch 2 - iter 342/386 - loss 0.33065647 - samples/sec: 111.30 - lr: 0.100000
2022-11-06 20:39:10,663 epoch 2 - iter 380/386 - loss 0.32681839 - samples/sec: 111.58 - lr: 0.100000
2022-11-06 20:39:11,364 ----------------------------------------------------------------------------------------------------
2022-11-06 20:39:11,365 EPOCH 2 done: loss 0.3262 - lr 0.100000
2022-11-06 20:39:20,976 Evaluating as a multi-label problem: False
2022-11-06 20:39:21,093 TEST : loss 0.13997453451156616 - f1-score (micro avg)  0.9582
2022-11-06 20:39:21,207 BAD EPOCHS (no improvement): 0
2022-11-06 20:39:21,434 ----------------------------------------------------------------------------------------------------
2022-11-06 20:39:26,741 epoch 3 - iter 38/386 - loss 0.29294011 - samples/sec: 114.64 - lr: 0.100000
2022-11-06 20:39:31,872 epoch 3 - iter 76/386 - loss 0.29017001 - samples/sec: 118.58 - lr: 0.100000
2022-11-06 20:39:37,423 epoch 3 - iter 114/386 - loss 0.29170149 - samples/sec: 109.59 - lr: 0.100000
2022-11-06 20:39:42,974 epoch 3 - iter 152/386 - loss 0.29094573 - samples/sec: 109.60 - lr: 0.100000
2022-11-06 20:39:48,865 epoch 3 - iter 190/386 - loss 0.28629286 - samples/sec: 103.25 - lr: 0.100000
2022-11-06 20:39:54,264 epoch 3 - iter 228/386 - loss 0.28390933 - samples/sec: 112.68 - lr: 0.100000
2022-11-06 20:39:59,891 epoch 3 - iter 266/386 - loss 0.28294971 - samples/sec: 108.12 - lr: 0.100000
2022-11-06 20:40:05,418 epoch 3 - iter 304/386 - loss 0.28193462 - samples/sec: 110.08 - lr: 0.100000
2022-11-06 20:40:11,108 epoch 3 - iter 342/386 - loss 0.28075670 - samples/sec: 106.91 - lr: 0.100000
2022-11-06 20:40:16,699 epoch 3 - iter 380/386 - loss 0.28035510 - samples/sec: 108.80 - lr: 0.100000
2022-11-06 20:40:17,449 ----------------------------------------------------------------------------------------------------
2022-11-06 20:40:17,449 EPOCH 3 done: loss 0.2802 - lr 0.100000
2022-11-06 20:40:27,148 Evaluating as a multi-label problem: False
2022-11-06 20:40:27,264 TEST : loss 0.12084240466356277 - f1-score (micro avg)  0.9638
2022-11-06 20:40:27,378 BAD EPOCHS (no improvement): 0
2022-11-06 20:40:27,583 ----------------------------------------------------------------------------------------------------
2022-11-06 20:40:32,829 epoch 4 - iter 38/386 - loss 0.25615401 - samples/sec: 115.99 - lr: 0.100000
2022-11-06 20:40:38,449 epoch 4 - iter 76/386 - loss 0.25978411 - samples/sec: 108.25 - lr: 0.100000
2022-11-06 20:40:43,530 epoch 4 - iter 114/386 - loss 0.25883124 - samples/sec: 119.73 - lr: 0.100000
2022-11-06 20:40:49,225 epoch 4 - iter 152/386 - loss 0.25933191 - samples/sec: 106.82 - lr: 0.100000
2022-11-06 20:40:54,682 epoch 4 - iter 190/386 - loss 0.25994752 - samples/sec: 111.48 - lr: 0.100000
2022-11-06 20:41:00,117 epoch 4 - iter 228/386 - loss 0.25830164 - samples/sec: 111.94 - lr: 0.100000
2022-11-06 20:41:06,007 epoch 4 - iter 266/386 - loss 0.25880376 - samples/sec: 103.27 - lr: 0.100000
2022-11-06 20:41:11,863 epoch 4 - iter 304/386 - loss 0.25683624 - samples/sec: 103.89 - lr: 0.100000
2022-11-06 20:41:17,322 epoch 4 - iter 342/386 - loss 0.25543810 - samples/sec: 111.44 - lr: 0.100000
2022-11-06 20:41:22,801 epoch 4 - iter 380/386 - loss 0.25652313 - samples/sec: 111.03 - lr: 0.100000
2022-11-06 20:41:23,731 ----------------------------------------------------------------------------------------------------
2022-11-06 20:41:23,732 EPOCH 4 done: loss 0.2567 - lr 0.100000
2022-11-06 20:41:35,645 Evaluating as a multi-label problem: False
2022-11-06 20:41:35,761 TEST : loss 0.10487399250268936 - f1-score (micro avg)  0.9673
2022-11-06 20:41:35,875 BAD EPOCHS (no improvement): 0
2022-11-06 20:41:36,092 ----------------------------------------------------------------------------------------------------
2022-11-06 20:41:41,723 epoch 5 - iter 38/386 - loss 0.22752191 - samples/sec: 108.07 - lr: 0.100000
2022-11-06 20:41:47,194 epoch 5 - iter 76/386 - loss 0.23877064 - samples/sec: 111.20 - lr: 0.100000
2022-11-06 20:41:53,184 epoch 5 - iter 114/386 - loss 0.23723243 - samples/sec: 101.55 - lr: 0.100000
2022-11-06 20:41:58,276 epoch 5 - iter 152/386 - loss 0.23492548 - samples/sec: 120.16 - lr: 0.100000
2022-11-06 20:42:04,003 epoch 5 - iter 190/386 - loss 0.23384590 - samples/sec: 106.22 - lr: 0.100000
2022-11-06 20:42:09,511 epoch 5 - iter 228/386 - loss 0.23679768 - samples/sec: 110.44 - lr: 0.100000
2022-11-06 20:42:15,048 epoch 5 - iter 266/386 - loss 0.23705954 - samples/sec: 109.88 - lr: 0.100000
2022-11-06 20:42:20,836 epoch 5 - iter 304/386 - loss 0.23739395 - samples/sec: 105.09 - lr: 0.100000
2022-11-06 20:42:26,380 epoch 5 - iter 342/386 - loss 0.23844616 - samples/sec: 109.72 - lr: 0.100000
2022-11-06 20:42:31,800 epoch 5 - iter 380/386 - loss 0.23836010 - samples/sec: 112.25 - lr: 0.100000
2022-11-06 20:42:32,565 ----------------------------------------------------------------------------------------------------
2022-11-06 20:42:32,566 EPOCH 5 done: loss 0.2380 - lr 0.100000
2022-11-06 20:42:42,191 Evaluating as a multi-label problem: False
2022-11-06 20:42:42,309 TEST : loss 0.10361631959676743 - f1-score (micro avg)  0.9666
2022-11-06 20:42:42,424 BAD EPOCHS (no improvement): 0
2022-11-06 20:42:42,637 ----------------------------------------------------------------------------------------------------
2022-11-06 20:42:48,102 epoch 6 - iter 38/386 - loss 0.22899429 - samples/sec: 111.34 - lr: 0.100000
2022-11-06 20:42:53,390 epoch 6 - iter 76/386 - loss 0.22634441 - samples/sec: 115.06 - lr: 0.100000
2022-11-06 20:42:58,802 epoch 6 - iter 114/386 - loss 0.22738383 - samples/sec: 112.40 - lr: 0.100000
2022-11-06 20:43:04,281 epoch 6 - iter 152/386 - loss 0.22831817 - samples/sec: 111.04 - lr: 0.100000
2022-11-06 20:43:09,553 epoch 6 - iter 190/386 - loss 0.22899114 - samples/sec: 115.40 - lr: 0.100000
2022-11-06 20:43:15,176 epoch 6 - iter 228/386 - loss 0.22503611 - samples/sec: 108.19 - lr: 0.100000
2022-11-06 20:43:20,596 epoch 6 - iter 266/386 - loss 0.22562923 - samples/sec: 112.24 - lr: 0.100000
2022-11-06 20:43:26,484 epoch 6 - iter 304/386 - loss 0.22385177 - samples/sec: 103.31 - lr: 0.100000
2022-11-06 20:43:32,694 epoch 6 - iter 342/386 - loss 0.22503902 - samples/sec: 97.96 - lr: 0.100000
2022-11-06 20:43:38,008 epoch 6 - iter 380/386 - loss 0.22506621 - samples/sec: 114.49 - lr: 0.100000
2022-11-06 20:43:38,867 ----------------------------------------------------------------------------------------------------
2022-11-06 20:43:38,867 EPOCH 6 done: loss 0.2247 - lr 0.100000
2022-11-06 20:43:48,534 Evaluating as a multi-label problem: False
2022-11-06 20:43:48,652 TEST : loss 0.10305152833461761 - f1-score (micro avg)  0.9663
2022-11-06 20:43:48,766 BAD EPOCHS (no improvement): 0
2022-11-06 20:43:48,980 ----------------------------------------------------------------------------------------------------
2022-11-06 20:43:54,333 epoch 7 - iter 38/386 - loss 0.22529638 - samples/sec: 113.68 - lr: 0.100000
2022-11-06 20:44:00,048 epoch 7 - iter 76/386 - loss 0.21567440 - samples/sec: 106.44 - lr: 0.100000
2022-11-06 20:44:05,556 epoch 7 - iter 114/386 - loss 0.22089919 - samples/sec: 110.46 - lr: 0.100000
2022-11-06 20:44:11,230 epoch 7 - iter 152/386 - loss 0.22059846 - samples/sec: 107.20 - lr: 0.100000
2022-11-06 20:44:16,903 epoch 7 - iter 190/386 - loss 0.22095491 - samples/sec: 107.25 - lr: 0.100000
2022-11-06 20:44:22,101 epoch 7 - iter 228/386 - loss 0.21976408 - samples/sec: 117.04 - lr: 0.100000
2022-11-06 20:44:27,485 epoch 7 - iter 266/386 - loss 0.22107223 - samples/sec: 112.99 - lr: 0.100000
2022-11-06 20:44:33,198 epoch 7 - iter 304/386 - loss 0.21947713 - samples/sec: 106.49 - lr: 0.100000
2022-11-06 20:44:38,728 epoch 7 - iter 342/386 - loss 0.21871513 - samples/sec: 110.01 - lr: 0.100000
2022-11-06 20:44:44,565 epoch 7 - iter 380/386 - loss 0.21872143 - samples/sec: 104.22 - lr: 0.100000
2022-11-06 20:44:45,335 ----------------------------------------------------------------------------------------------------
2022-11-06 20:44:45,336 EPOCH 7 done: loss 0.2184 - lr 0.100000
2022-11-06 20:44:55,019 Evaluating as a multi-label problem: False
2022-11-06 20:44:55,137 TEST : loss 0.09460901468992233 - f1-score (micro avg)  0.9693
2022-11-06 20:44:55,250 BAD EPOCHS (no improvement): 0
2022-11-06 20:44:55,463 ----------------------------------------------------------------------------------------------------
2022-11-06 20:45:01,495 epoch 8 - iter 38/386 - loss 0.21493772 - samples/sec: 100.86 - lr: 0.100000
2022-11-06 20:45:07,230 epoch 8 - iter 76/386 - loss 0.21122181 - samples/sec: 106.09 - lr: 0.100000
2022-11-06 20:45:12,511 epoch 8 - iter 114/386 - loss 0.20912935 - samples/sec: 115.20 - lr: 0.100000
2022-11-06 20:45:18,013 epoch 8 - iter 152/386 - loss 0.20730821 - samples/sec: 110.57 - lr: 0.100000
2022-11-06 20:45:23,128 epoch 8 - iter 190/386 - loss 0.20626902 - samples/sec: 118.92 - lr: 0.100000
2022-11-06 20:45:28,405 epoch 8 - iter 228/386 - loss 0.20860099 - samples/sec: 115.29 - lr: 0.100000
2022-11-06 20:45:33,414 epoch 8 - iter 266/386 - loss 0.20959349 - samples/sec: 121.46 - lr: 0.100000
2022-11-06 20:45:39,424 epoch 8 - iter 304/386 - loss 0.20963436 - samples/sec: 101.22 - lr: 0.100000
2022-11-06 20:45:45,212 epoch 8 - iter 342/386 - loss 0.20919203 - samples/sec: 105.10 - lr: 0.100000
2022-11-06 20:45:50,812 epoch 8 - iter 380/386 - loss 0.20887056 - samples/sec: 108.64 - lr: 0.100000
2022-11-06 20:45:51,741 ----------------------------------------------------------------------------------------------------
2022-11-06 20:45:51,742 EPOCH 8 done: loss 0.2089 - lr 0.100000
2022-11-06 20:46:01,411 Evaluating as a multi-label problem: False
2022-11-06 20:46:01,529 TEST : loss 0.09638751298189163 - f1-score (micro avg)  0.969
2022-11-06 20:46:01,643 BAD EPOCHS (no improvement): 0
2022-11-06 20:46:01,851 ----------------------------------------------------------------------------------------------------
2022-11-06 20:46:07,202 epoch 9 - iter 38/386 - loss 0.21385281 - samples/sec: 113.71 - lr: 0.100000
2022-11-06 20:46:12,883 epoch 9 - iter 76/386 - loss 0.20570144 - samples/sec: 107.08 - lr: 0.100000
2022-11-06 20:46:18,474 epoch 9 - iter 114/386 - loss 0.19932819 - samples/sec: 108.82 - lr: 0.100000
2022-11-06 20:46:24,012 epoch 9 - iter 152/386 - loss 0.19956175 - samples/sec: 109.85 - lr: 0.100000
2022-11-06 20:46:29,555 epoch 9 - iter 190/386 - loss 0.20140471 - samples/sec: 109.74 - lr: 0.100000
2022-11-06 20:46:35,896 epoch 9 - iter 228/386 - loss 0.20212131 - samples/sec: 95.93 - lr: 0.100000
2022-11-06 20:46:41,010 epoch 9 - iter 266/386 - loss 0.20129877 - samples/sec: 118.97 - lr: 0.100000
2022-11-06 20:46:46,315 epoch 9 - iter 304/386 - loss 0.20214050 - samples/sec: 114.68 - lr: 0.100000
2022-11-06 20:46:51,766 epoch 9 - iter 342/386 - loss 0.20216261 - samples/sec: 111.61 - lr: 0.100000
2022-11-06 20:46:57,274 epoch 9 - iter 380/386 - loss 0.20182060 - samples/sec: 110.45 - lr: 0.100000
2022-11-06 20:46:58,137 ----------------------------------------------------------------------------------------------------
2022-11-06 20:46:58,137 EPOCH 9 done: loss 0.2015 - lr 0.100000
2022-11-06 20:47:07,877 Evaluating as a multi-label problem: False
2022-11-06 20:47:07,993 TEST : loss 0.09079930186271667 - f1-score (micro avg)  0.9707
2022-11-06 20:47:08,107 BAD EPOCHS (no improvement): 0
2022-11-06 20:47:08,312 ----------------------------------------------------------------------------------------------------
2022-11-06 20:47:14,371 epoch 10 - iter 38/386 - loss 0.18753357 - samples/sec: 100.43 - lr: 0.100000
2022-11-06 20:47:19,847 epoch 10 - iter 76/386 - loss 0.18895331 - samples/sec: 111.09 - lr: 0.100000
2022-11-06 20:47:25,633 epoch 10 - iter 114/386 - loss 0.19191244 - samples/sec: 105.14 - lr: 0.100000
2022-11-06 20:47:31,164 epoch 10 - iter 152/386 - loss 0.19083482 - samples/sec: 109.99 - lr: 0.100000
2022-11-06 20:47:37,079 epoch 10 - iter 190/386 - loss 0.19443441 - samples/sec: 102.84 - lr: 0.100000
2022-11-06 20:47:42,890 epoch 10 - iter 228/386 - loss 0.19279406 - samples/sec: 104.70 - lr: 0.100000
2022-11-06 20:47:48,533 epoch 10 - iter 266/386 - loss 0.19340536 - samples/sec: 107.79 - lr: 0.100000
2022-11-06 20:47:53,622 epoch 10 - iter 304/386 - loss 0.19422661 - samples/sec: 119.56 - lr: 0.100000
2022-11-06 20:47:58,679 epoch 10 - iter 342/386 - loss 0.19472214 - samples/sec: 120.31 - lr: 0.100000
2022-11-06 20:48:04,250 epoch 10 - iter 380/386 - loss 0.19471480 - samples/sec: 109.20 - lr: 0.100000
2022-11-06 20:48:05,211 ----------------------------------------------------------------------------------------------------
2022-11-06 20:48:05,211 EPOCH 10 done: loss 0.1945 - lr 0.100000
2022-11-06 20:48:14,925 Evaluating as a multi-label problem: False
2022-11-06 20:48:15,042 TEST : loss 0.09166789054870605 - f1-score (micro avg)  0.97
2022-11-06 20:48:15,155 BAD EPOCHS (no improvement): 0
2022-11-06 20:48:15,371 ----------------------------------------------------------------------------------------------------
2022-11-06 20:48:20,625 epoch 11 - iter 38/386 - loss 0.19465953 - samples/sec: 115.82 - lr: 0.100000
2022-11-06 20:48:26,212 epoch 11 - iter 76/386 - loss 0.18636815 - samples/sec: 108.88 - lr: 0.100000
2022-11-06 20:48:31,875 epoch 11 - iter 114/386 - loss 0.18495775 - samples/sec: 107.43 - lr: 0.100000
2022-11-06 20:48:37,842 epoch 11 - iter 152/386 - loss 0.18408789 - samples/sec: 101.94 - lr: 0.100000
2022-11-06 20:48:44,103 epoch 11 - iter 190/386 - loss 0.18540037 - samples/sec: 97.16 - lr: 0.100000
2022-11-06 20:48:49,724 epoch 11 - iter 228/386 - loss 0.18697837 - samples/sec: 108.22 - lr: 0.100000
2022-11-06 20:48:55,206 epoch 11 - iter 266/386 - loss 0.18772444 - samples/sec: 110.97 - lr: 0.100000
2022-11-06 20:49:00,750 epoch 11 - iter 304/386 - loss 0.18780846 - samples/sec: 109.74 - lr: 0.100000
2022-11-06 20:49:05,829 epoch 11 - iter 342/386 - loss 0.18780680 - samples/sec: 119.77 - lr: 0.100000
2022-11-06 20:49:11,200 epoch 11 - iter 380/386 - loss 0.18794317 - samples/sec: 113.29 - lr: 0.100000
2022-11-06 20:49:11,957 ----------------------------------------------------------------------------------------------------
2022-11-06 20:49:11,957 EPOCH 11 done: loss 0.1881 - lr 0.100000
2022-11-06 20:49:21,692 Evaluating as a multi-label problem: False
2022-11-06 20:49:21,810 TEST : loss 0.08823293447494507 - f1-score (micro avg)  0.9713
2022-11-06 20:49:21,925 BAD EPOCHS (no improvement): 0
2022-11-06 20:49:22,138 ----------------------------------------------------------------------------------------------------
2022-11-06 20:49:27,810 epoch 12 - iter 38/386 - loss 0.19030824 - samples/sec: 107.26 - lr: 0.100000
2022-11-06 20:49:33,408 epoch 12 - iter 76/386 - loss 0.19090830 - samples/sec: 108.69 - lr: 0.100000
2022-11-06 20:49:39,084 epoch 12 - iter 114/386 - loss 0.18845799 - samples/sec: 107.18 - lr: 0.100000
2022-11-06 20:49:44,918 epoch 12 - iter 152/386 - loss 0.18810649 - samples/sec: 104.27 - lr: 0.100000
2022-11-06 20:49:50,979 epoch 12 - iter 190/386 - loss 0.18715379 - samples/sec: 100.38 - lr: 0.100000
2022-11-06 20:49:56,472 epoch 12 - iter 228/386 - loss 0.18446952 - samples/sec: 110.75 - lr: 0.100000
2022-11-06 20:50:01,831 epoch 12 - iter 266/386 - loss 0.18390291 - samples/sec: 113.51 - lr: 0.100000
2022-11-06 20:50:07,542 epoch 12 - iter 304/386 - loss 0.18496511 - samples/sec: 106.53 - lr: 0.100000
2022-11-06 20:50:13,032 epoch 12 - iter 342/386 - loss 0.18602052 - samples/sec: 110.81 - lr: 0.100000
2022-11-06 20:50:18,370 epoch 12 - iter 380/386 - loss 0.18607219 - samples/sec: 113.98 - lr: 0.100000
2022-11-06 20:50:19,126 ----------------------------------------------------------------------------------------------------
2022-11-06 20:50:19,126 EPOCH 12 done: loss 0.1864 - lr 0.100000
2022-11-06 20:50:28,390 Evaluating as a multi-label problem: False
2022-11-06 20:50:28,509 TEST : loss 0.09221376478672028 - f1-score (micro avg)  0.9697
2022-11-06 20:50:28,623 BAD EPOCHS (no improvement): 0
2022-11-06 20:50:28,837 ----------------------------------------------------------------------------------------------------
2022-11-06 20:50:34,166 epoch 13 - iter 38/386 - loss 0.18837518 - samples/sec: 114.18 - lr: 0.100000
2022-11-06 20:50:39,865 epoch 13 - iter 76/386 - loss 0.18305753 - samples/sec: 106.86 - lr: 0.100000
2022-11-06 20:50:45,311 epoch 13 - iter 114/386 - loss 0.17754302 - samples/sec: 111.72 - lr: 0.100000
2022-11-06 20:50:50,952 epoch 13 - iter 152/386 - loss 0.17535643 - samples/sec: 107.84 - lr: 0.100000
2022-11-06 20:50:56,810 epoch 13 - iter 190/386 - loss 0.17662633 - samples/sec: 103.85 - lr: 0.100000
2022-11-06 20:51:02,296 epoch 13 - iter 228/386 - loss 0.17879492 - samples/sec: 110.88 - lr: 0.100000
2022-11-06 20:51:08,204 epoch 13 - iter 266/386 - loss 0.17749818 - samples/sec: 102.98 - lr: 0.100000
2022-11-06 20:51:13,932 epoch 13 - iter 304/386 - loss 0.17909369 - samples/sec: 106.20 - lr: 0.100000
2022-11-06 20:51:19,654 epoch 13 - iter 342/386 - loss 0.17936686 - samples/sec: 106.33 - lr: 0.100000
2022-11-06 20:51:25,470 epoch 13 - iter 380/386 - loss 0.17907693 - samples/sec: 104.60 - lr: 0.100000
2022-11-06 20:51:26,408 ----------------------------------------------------------------------------------------------------
2022-11-06 20:51:26,409 EPOCH 13 done: loss 0.1789 - lr 0.100000
2022-11-06 20:51:35,303 Evaluating as a multi-label problem: False
2022-11-06 20:51:35,420 TEST : loss 0.08666753023862839 - f1-score (micro avg)  0.9711
2022-11-06 20:51:35,535 BAD EPOCHS (no improvement): 0
2022-11-06 20:51:35,751 ----------------------------------------------------------------------------------------------------
2022-11-06 20:51:41,328 epoch 14 - iter 38/386 - loss 0.17659370 - samples/sec: 109.11 - lr: 0.100000
2022-11-06 20:51:46,724 epoch 14 - iter 76/386 - loss 0.17717785 - samples/sec: 112.74 - lr: 0.100000
2022-11-06 20:51:52,363 epoch 14 - iter 114/386 - loss 0.17727583 - samples/sec: 107.88 - lr: 0.100000
2022-11-06 20:51:57,835 epoch 14 - iter 152/386 - loss 0.17558755 - samples/sec: 111.18 - lr: 0.100000
2022-11-06 20:52:03,438 epoch 14 - iter 190/386 - loss 0.17647551 - samples/sec: 108.57 - lr: 0.100000
2022-11-06 20:52:09,148 epoch 14 - iter 228/386 - loss 0.17614281 - samples/sec: 106.54 - lr: 0.100000
2022-11-06 20:52:14,747 epoch 14 - iter 266/386 - loss 0.17762340 - samples/sec: 108.66 - lr: 0.100000
2022-11-06 20:52:20,348 epoch 14 - iter 304/386 - loss 0.17659061 - samples/sec: 108.60 - lr: 0.100000
2022-11-06 20:52:26,079 epoch 14 - iter 342/386 - loss 0.17538245 - samples/sec: 106.17 - lr: 0.100000
2022-11-06 20:52:31,932 epoch 14 - iter 380/386 - loss 0.17530091 - samples/sec: 103.93 - lr: 0.100000
2022-11-06 20:52:32,726 ----------------------------------------------------------------------------------------------------
2022-11-06 20:52:32,727 EPOCH 14 done: loss 0.1751 - lr 0.100000
2022-11-06 20:52:42,073 Evaluating as a multi-label problem: False
2022-11-06 20:52:42,190 TEST : loss 0.08278612792491913 - f1-score (micro avg)  0.9732
2022-11-06 20:52:42,302 BAD EPOCHS (no improvement): 0
2022-11-06 20:52:42,515 ----------------------------------------------------------------------------------------------------
2022-11-06 20:52:47,798 epoch 15 - iter 38/386 - loss 0.16309852 - samples/sec: 115.19 - lr: 0.100000
2022-11-06 20:52:53,422 epoch 15 - iter 76/386 - loss 0.16417836 - samples/sec: 108.17 - lr: 0.100000
2022-11-06 20:52:59,582 epoch 15 - iter 114/386 - loss 0.16900543 - samples/sec: 98.75 - lr: 0.100000
2022-11-06 20:53:04,615 epoch 15 - iter 152/386 - loss 0.16798509 - samples/sec: 120.89 - lr: 0.100000
2022-11-06 20:53:10,430 epoch 15 - iter 190/386 - loss 0.17086367 - samples/sec: 104.61 - lr: 0.100000
2022-11-06 20:53:16,529 epoch 15 - iter 228/386 - loss 0.16985321 - samples/sec: 99.75 - lr: 0.100000
2022-11-06 20:53:21,908 epoch 15 - iter 266/386 - loss 0.17032852 - samples/sec: 113.10 - lr: 0.100000
2022-11-06 20:53:27,343 epoch 15 - iter 304/386 - loss 0.17092036 - samples/sec: 111.92 - lr: 0.100000
2022-11-06 20:53:33,186 epoch 15 - iter 342/386 - loss 0.17242412 - samples/sec: 104.12 - lr: 0.100000
2022-11-06 20:53:38,393 epoch 15 - iter 380/386 - loss 0.17357857 - samples/sec: 116.85 - lr: 0.100000
2022-11-06 20:53:39,106 ----------------------------------------------------------------------------------------------------
2022-11-06 20:53:39,107 EPOCH 15 done: loss 0.1732 - lr 0.100000
2022-11-06 20:53:51,076 Evaluating as a multi-label problem: False
2022-11-06 20:53:51,192 TEST : loss 0.08690010011196136 - f1-score (micro avg)  0.972
2022-11-06 20:53:51,306 BAD EPOCHS (no improvement): 0
2022-11-06 20:53:51,510 ----------------------------------------------------------------------------------------------------
2022-11-06 20:53:56,589 epoch 16 - iter 38/386 - loss 0.17036775 - samples/sec: 119.81 - lr: 0.100000
2022-11-06 20:54:02,420 epoch 16 - iter 76/386 - loss 0.16920502 - samples/sec: 104.34 - lr: 0.100000
2022-11-06 20:54:07,695 epoch 16 - iter 114/386 - loss 0.16618744 - samples/sec: 115.32 - lr: 0.100000
2022-11-06 20:54:13,031 epoch 16 - iter 152/386 - loss 0.16660212 - samples/sec: 114.03 - lr: 0.100000
2022-11-06 20:54:18,443 epoch 16 - iter 190/386 - loss 0.16844597 - samples/sec: 112.40 - lr: 0.100000
2022-11-06 20:54:23,874 epoch 16 - iter 228/386 - loss 0.16658228 - samples/sec: 112.01 - lr: 0.100000
2022-11-06 20:54:29,566 epoch 16 - iter 266/386 - loss 0.16713623 - samples/sec: 106.89 - lr: 0.100000
2022-11-06 20:54:35,356 epoch 16 - iter 304/386 - loss 0.16775392 - samples/sec: 105.07 - lr: 0.100000
2022-11-06 20:54:40,973 epoch 16 - iter 342/386 - loss 0.16753092 - samples/sec: 108.31 - lr: 0.100000
2022-11-06 20:54:47,190 epoch 16 - iter 380/386 - loss 0.16711554 - samples/sec: 97.84 - lr: 0.100000
2022-11-06 20:54:48,047 ----------------------------------------------------------------------------------------------------
2022-11-06 20:54:48,047 EPOCH 16 done: loss 0.1675 - lr 0.100000
2022-11-06 20:54:57,695 Evaluating as a multi-label problem: False
2022-11-06 20:54:57,813 TEST : loss 0.08330953121185303 - f1-score (micro avg)  0.9734
2022-11-06 20:54:57,930 BAD EPOCHS (no improvement): 0
2022-11-06 20:54:58,141 ----------------------------------------------------------------------------------------------------
2022-11-06 20:55:03,292 epoch 17 - iter 38/386 - loss 0.17502829 - samples/sec: 118.14 - lr: 0.100000
2022-11-06 20:55:08,797 epoch 17 - iter 76/386 - loss 0.16843116 - samples/sec: 110.51 - lr: 0.100000
2022-11-06 20:55:13,948 epoch 17 - iter 114/386 - loss 0.16803005 - samples/sec: 118.11 - lr: 0.100000
2022-11-06 20:55:19,380 epoch 17 - iter 152/386 - loss 0.16644258 - samples/sec: 111.98 - lr: 0.100000
2022-11-06 20:55:25,262 epoch 17 - iter 190/386 - loss 0.16591449 - samples/sec: 103.42 - lr: 0.100000
2022-11-06 20:55:31,113 epoch 17 - iter 228/386 - loss 0.16655165 - samples/sec: 103.97 - lr: 0.100000
2022-11-06 20:55:36,772 epoch 17 - iter 266/386 - loss 0.16720170 - samples/sec: 107.52 - lr: 0.100000
2022-11-06 20:55:42,603 epoch 17 - iter 304/386 - loss 0.16818979 - samples/sec: 104.32 - lr: 0.100000
2022-11-06 20:55:48,158 epoch 17 - iter 342/386 - loss 0.16742200 - samples/sec: 109.51 - lr: 0.100000
2022-11-06 20:55:53,675 epoch 17 - iter 380/386 - loss 0.16757147 - samples/sec: 110.28 - lr: 0.100000
2022-11-06 20:55:54,502 ----------------------------------------------------------------------------------------------------
2022-11-06 20:55:54,503 EPOCH 17 done: loss 0.1678 - lr 0.100000
2022-11-06 20:56:04,246 Evaluating as a multi-label problem: False
2022-11-06 20:56:04,363 TEST : loss 0.08121314644813538 - f1-score (micro avg)  0.9744
2022-11-06 20:56:04,477 BAD EPOCHS (no improvement): 1
2022-11-06 20:56:04,688 ----------------------------------------------------------------------------------------------------
2022-11-06 20:56:09,972 epoch 18 - iter 38/386 - loss 0.16529975 - samples/sec: 115.16 - lr: 0.100000
2022-11-06 20:56:15,051 epoch 18 - iter 76/386 - loss 0.16989333 - samples/sec: 119.80 - lr: 0.100000
2022-11-06 20:56:20,209 epoch 18 - iter 114/386 - loss 0.16695045 - samples/sec: 117.94 - lr: 0.100000
2022-11-06 20:56:26,104 epoch 18 - iter 152/386 - loss 0.16782753 - samples/sec: 103.19 - lr: 0.100000
2022-11-06 20:56:31,985 epoch 18 - iter 190/386 - loss 0.16581193 - samples/sec: 103.44 - lr: 0.100000
2022-11-06 20:56:37,824 epoch 18 - iter 228/386 - loss 0.16465238 - samples/sec: 104.19 - lr: 0.100000
2022-11-06 20:56:43,581 epoch 18 - iter 266/386 - loss 0.16401545 - samples/sec: 105.68 - lr: 0.100000
2022-11-06 20:56:49,303 epoch 18 - iter 304/386 - loss 0.16283744 - samples/sec: 106.32 - lr: 0.100000
2022-11-06 20:56:54,990 epoch 18 - iter 342/386 - loss 0.16172837 - samples/sec: 106.96 - lr: 0.100000
2022-11-06 20:57:00,441 epoch 18 - iter 380/386 - loss 0.16220310 - samples/sec: 111.62 - lr: 0.100000
2022-11-06 20:57:01,181 ----------------------------------------------------------------------------------------------------
2022-11-06 20:57:01,182 EPOCH 18 done: loss 0.1623 - lr 0.100000
2022-11-06 20:57:10,902 Evaluating as a multi-label problem: False
2022-11-06 20:57:11,019 TEST : loss 0.07836408168077469 - f1-score (micro avg)  0.9745
2022-11-06 20:57:11,133 BAD EPOCHS (no improvement): 0
2022-11-06 20:57:11,347 ----------------------------------------------------------------------------------------------------
2022-11-06 20:57:17,197 epoch 19 - iter 38/386 - loss 0.16558504 - samples/sec: 104.03 - lr: 0.100000
2022-11-06 20:57:22,661 epoch 19 - iter 76/386 - loss 0.16480656 - samples/sec: 111.34 - lr: 0.100000
2022-11-06 20:57:28,015 epoch 19 - iter 114/386 - loss 0.16165750 - samples/sec: 113.62 - lr: 0.100000
2022-11-06 20:57:33,088 epoch 19 - iter 152/386 - loss 0.16171112 - samples/sec: 119.94 - lr: 0.100000
2022-11-06 20:57:38,973 epoch 19 - iter 190/386 - loss 0.16295973 - samples/sec: 103.36 - lr: 0.100000
2022-11-06 20:57:44,532 epoch 19 - iter 228/386 - loss 0.16345664 - samples/sec: 109.43 - lr: 0.100000
2022-11-06 20:57:50,631 epoch 19 - iter 266/386 - loss 0.16293156 - samples/sec: 99.74 - lr: 0.100000
2022-11-06 20:57:56,147 epoch 19 - iter 304/386 - loss 0.16175446 - samples/sec: 110.30 - lr: 0.100000
2022-11-06 20:58:02,000 epoch 19 - iter 342/386 - loss 0.16181308 - samples/sec: 103.93 - lr: 0.100000
2022-11-06 20:58:07,419 epoch 19 - iter 380/386 - loss 0.16159155 - samples/sec: 112.28 - lr: 0.100000
2022-11-06 20:58:08,189 ----------------------------------------------------------------------------------------------------
2022-11-06 20:58:08,189 EPOCH 19 done: loss 0.1617 - lr 0.100000
2022-11-06 20:58:17,915 Evaluating as a multi-label problem: False
2022-11-06 20:58:18,032 TEST : loss 0.08216149359941483 - f1-score (micro avg)  0.9747
2022-11-06 20:58:18,146 BAD EPOCHS (no improvement): 0
2022-11-06 20:58:18,357 ----------------------------------------------------------------------------------------------------
2022-11-06 20:58:24,010 epoch 20 - iter 38/386 - loss 0.15493718 - samples/sec: 107.64 - lr: 0.100000
2022-11-06 20:58:29,441 epoch 20 - iter 76/386 - loss 0.15938559 - samples/sec: 112.01 - lr: 0.100000
2022-11-06 20:58:35,738 epoch 20 - iter 114/386 - loss 0.16028978 - samples/sec: 96.61 - lr: 0.100000
2022-11-06 20:58:41,385 epoch 20 - iter 152/386 - loss 0.15622031 - samples/sec: 107.72 - lr: 0.100000
2022-11-06 20:58:46,596 epoch 20 - iter 190/386 - loss 0.15824790 - samples/sec: 116.77 - lr: 0.100000
2022-11-06 20:58:51,920 epoch 20 - iter 228/386 - loss 0.15992430 - samples/sec: 114.27 - lr: 0.100000
2022-11-06 20:58:57,417 epoch 20 - iter 266/386 - loss 0.16045659 - samples/sec: 110.66 - lr: 0.100000
2022-11-06 20:59:02,733 epoch 20 - iter 304/386 - loss 0.15924395 - samples/sec: 114.45 - lr: 0.100000
2022-11-06 20:59:08,115 epoch 20 - iter 342/386 - loss 0.15996715 - samples/sec: 113.03 - lr: 0.100000
2022-11-06 20:59:14,095 epoch 20 - iter 380/386 - loss 0.15988839 - samples/sec: 101.72 - lr: 0.100000
2022-11-06 20:59:14,920 ----------------------------------------------------------------------------------------------------
2022-11-06 20:59:14,920 EPOCH 20 done: loss 0.1600 - lr 0.100000
2022-11-06 20:59:24,629 Evaluating as a multi-label problem: False
2022-11-06 20:59:24,747 TEST : loss 0.08073458075523376 - f1-score (micro avg)  0.9737
2022-11-06 20:59:24,861 BAD EPOCHS (no improvement): 0
2022-11-06 20:59:25,069 ----------------------------------------------------------------------------------------------------
2022-11-06 20:59:30,496 epoch 21 - iter 38/386 - loss 0.15646384 - samples/sec: 112.12 - lr: 0.100000
2022-11-06 20:59:36,689 epoch 21 - iter 76/386 - loss 0.15833186 - samples/sec: 98.22 - lr: 0.100000
2022-11-06 20:59:42,302 epoch 21 - iter 114/386 - loss 0.15639674 - samples/sec: 108.39 - lr: 0.100000
2022-11-06 20:59:47,388 epoch 21 - iter 152/386 - loss 0.15523675 - samples/sec: 119.62 - lr: 0.100000
2022-11-06 20:59:52,743 epoch 21 - iter 190/386 - loss 0.15815249 - samples/sec: 113.59 - lr: 0.100000
2022-11-06 20:59:57,973 epoch 21 - iter 228/386 - loss 0.15968102 - samples/sec: 116.33 - lr: 0.100000
2022-11-06 21:00:03,286 epoch 21 - iter 266/386 - loss 0.15926273 - samples/sec: 114.49 - lr: 0.100000
2022-11-06 21:00:08,837 epoch 21 - iter 304/386 - loss 0.15918787 - samples/sec: 109.61 - lr: 0.100000
2022-11-06 21:00:14,457 epoch 21 - iter 342/386 - loss 0.15886766 - samples/sec: 108.23 - lr: 0.100000
2022-11-06 21:00:20,472 epoch 21 - iter 380/386 - loss 0.15755869 - samples/sec: 101.14 - lr: 0.100000
2022-11-06 21:00:21,352 ----------------------------------------------------------------------------------------------------
2022-11-06 21:00:21,352 EPOCH 21 done: loss 0.1575 - lr 0.100000
2022-11-06 21:00:31,068 Evaluating as a multi-label problem: False
2022-11-06 21:00:31,185 TEST : loss 0.08205189555883408 - f1-score (micro avg)  0.9743
2022-11-06 21:00:31,301 BAD EPOCHS (no improvement): 0
2022-11-06 21:00:31,505 ----------------------------------------------------------------------------------------------------
2022-11-06 21:00:37,354 epoch 22 - iter 38/386 - loss 0.15864763 - samples/sec: 104.03 - lr: 0.100000
2022-11-06 21:00:43,136 epoch 22 - iter 76/386 - loss 0.15493977 - samples/sec: 105.21 - lr: 0.100000
2022-11-06 21:00:48,831 epoch 22 - iter 114/386 - loss 0.15076336 - samples/sec: 106.82 - lr: 0.100000
2022-11-06 21:00:54,557 epoch 22 - iter 152/386 - loss 0.15246751 - samples/sec: 106.24 - lr: 0.100000
2022-11-06 21:01:00,455 epoch 22 - iter 190/386 - loss 0.15165248 - samples/sec: 103.15 - lr: 0.100000
2022-11-06 21:01:05,621 epoch 22 - iter 228/386 - loss 0.15177154 - samples/sec: 117.75 - lr: 0.100000
2022-11-06 21:01:10,922 epoch 22 - iter 266/386 - loss 0.15051751 - samples/sec: 114.76 - lr: 0.100000
2022-11-06 21:01:16,760 epoch 22 - iter 304/386 - loss 0.15118076 - samples/sec: 104.21 - lr: 0.100000
2022-11-06 21:01:22,266 epoch 22 - iter 342/386 - loss 0.15055201 - samples/sec: 110.50 - lr: 0.100000
2022-11-06 21:01:27,611 epoch 22 - iter 380/386 - loss 0.15119519 - samples/sec: 113.82 - lr: 0.100000
2022-11-06 21:01:28,340 ----------------------------------------------------------------------------------------------------
2022-11-06 21:01:28,340 EPOCH 22 done: loss 0.1515 - lr 0.100000
2022-11-06 21:01:38,050 Evaluating as a multi-label problem: False
2022-11-06 21:01:38,168 TEST : loss 0.07914499193429947 - f1-score (micro avg)  0.9744
2022-11-06 21:01:38,282 BAD EPOCHS (no improvement): 0
2022-11-06 21:01:38,489 ----------------------------------------------------------------------------------------------------
2022-11-06 21:01:44,087 epoch 23 - iter 38/386 - loss 0.13755212 - samples/sec: 108.70 - lr: 0.100000
2022-11-06 21:01:49,886 epoch 23 - iter 76/386 - loss 0.14831372 - samples/sec: 104.90 - lr: 0.100000
2022-11-06 21:01:55,850 epoch 23 - iter 114/386 - loss 0.15013172 - samples/sec: 102.00 - lr: 0.100000
2022-11-06 21:02:01,257 epoch 23 - iter 152/386 - loss 0.15083360 - samples/sec: 112.52 - lr: 0.100000
2022-11-06 21:02:06,555 epoch 23 - iter 190/386 - loss 0.15422736 - samples/sec: 114.84 - lr: 0.100000
2022-11-06 21:02:11,963 epoch 23 - iter 228/386 - loss 0.15444813 - samples/sec: 112.47 - lr: 0.100000
2022-11-06 21:02:17,169 epoch 23 - iter 266/386 - loss 0.15525693 - samples/sec: 116.88 - lr: 0.100000
2022-11-06 21:02:22,061 epoch 23 - iter 304/386 - loss 0.15494546 - samples/sec: 124.37 - lr: 0.100000
2022-11-06 21:02:27,705 epoch 23 - iter 342/386 - loss 0.15405838 - samples/sec: 107.79 - lr: 0.100000
2022-11-06 21:02:33,764 epoch 23 - iter 380/386 - loss 0.15553576 - samples/sec: 100.39 - lr: 0.100000
2022-11-06 21:02:34,599 ----------------------------------------------------------------------------------------------------
2022-11-06 21:02:34,599 EPOCH 23 done: loss 0.1554 - lr 0.100000
2022-11-06 21:02:44,235 Evaluating as a multi-label problem: False
2022-11-06 21:02:44,352 TEST : loss 0.07991506159305573 - f1-score (micro avg)  0.9745
2022-11-06 21:02:44,466 BAD EPOCHS (no improvement): 1
2022-11-06 21:02:44,683 ----------------------------------------------------------------------------------------------------
2022-11-06 21:02:50,503 epoch 24 - iter 38/386 - loss 0.14697074 - samples/sec: 104.54 - lr: 0.100000
2022-11-06 21:02:56,444 epoch 24 - iter 76/386 - loss 0.15070964 - samples/sec: 102.39 - lr: 0.100000
2022-11-06 21:03:01,829 epoch 24 - iter 114/386 - loss 0.14717350 - samples/sec: 112.97 - lr: 0.100000
2022-11-06 21:03:07,250 epoch 24 - iter 152/386 - loss 0.14756800 - samples/sec: 112.23 - lr: 0.100000
2022-11-06 21:03:12,903 epoch 24 - iter 190/386 - loss 0.14806885 - samples/sec: 107.63 - lr: 0.100000
2022-11-06 21:03:18,413 epoch 24 - iter 228/386 - loss 0.14679408 - samples/sec: 110.39 - lr: 0.100000
2022-11-06 21:03:24,214 epoch 24 - iter 266/386 - loss 0.14714592 - samples/sec: 104.87 - lr: 0.100000
2022-11-06 21:03:29,178 epoch 24 - iter 304/386 - loss 0.14747206 - samples/sec: 122.56 - lr: 0.100000
2022-11-06 21:03:34,142 epoch 24 - iter 342/386 - loss 0.14818296 - samples/sec: 122.56 - lr: 0.100000
2022-11-06 21:03:39,739 epoch 24 - iter 380/386 - loss 0.14974964 - samples/sec: 108.71 - lr: 0.100000
2022-11-06 21:03:40,537 ----------------------------------------------------------------------------------------------------
2022-11-06 21:03:40,537 EPOCH 24 done: loss 0.1506 - lr 0.100000
2022-11-06 21:03:50,243 Evaluating as a multi-label problem: False
2022-11-06 21:03:50,360 TEST : loss 0.07870050519704819 - f1-score (micro avg)  0.9741
2022-11-06 21:03:50,475 BAD EPOCHS (no improvement): 0
2022-11-06 21:03:50,687 ----------------------------------------------------------------------------------------------------
2022-11-06 21:03:56,233 epoch 25 - iter 38/386 - loss 0.13940087 - samples/sec: 109.72 - lr: 0.100000
2022-11-06 21:04:01,975 epoch 25 - iter 76/386 - loss 0.14896394 - samples/sec: 105.96 - lr: 0.100000
2022-11-06 21:04:07,889 epoch 25 - iter 114/386 - loss 0.14707969 - samples/sec: 102.85 - lr: 0.100000
2022-11-06 21:04:13,194 epoch 25 - iter 152/386 - loss 0.14597872 - samples/sec: 114.69 - lr: 0.100000
2022-11-06 21:04:18,624 epoch 25 - iter 190/386 - loss 0.14539814 - samples/sec: 112.04 - lr: 0.100000
2022-11-06 21:04:23,930 epoch 25 - iter 228/386 - loss 0.14700191 - samples/sec: 114.64 - lr: 0.100000
2022-11-06 21:04:29,612 epoch 25 - iter 266/386 - loss 0.14515688 - samples/sec: 107.08 - lr: 0.100000
2022-11-06 21:04:35,184 epoch 25 - iter 304/386 - loss 0.14791253 - samples/sec: 109.17 - lr: 0.100000
2022-11-06 21:04:40,665 epoch 25 - iter 342/386 - loss 0.14734839 - samples/sec: 111.00 - lr: 0.100000
2022-11-06 21:04:45,848 epoch 25 - iter 380/386 - loss 0.14822894 - samples/sec: 117.40 - lr: 0.100000
2022-11-06 21:04:46,703 ----------------------------------------------------------------------------------------------------
2022-11-06 21:04:46,703 EPOCH 25 done: loss 0.1481 - lr 0.100000
2022-11-06 21:04:58,721 Evaluating as a multi-label problem: False
2022-11-06 21:04:58,838 TEST : loss 0.07901712507009506 - f1-score (micro avg)  0.9746
2022-11-06 21:04:58,952 BAD EPOCHS (no improvement): 0
2022-11-06 21:04:59,165 ----------------------------------------------------------------------------------------------------
2022-11-06 21:05:04,673 epoch 26 - iter 38/386 - loss 0.14282227 - samples/sec: 110.46 - lr: 0.100000
2022-11-06 21:05:10,143 epoch 26 - iter 76/386 - loss 0.14009603 - samples/sec: 111.22 - lr: 0.100000
2022-11-06 21:05:15,479 epoch 26 - iter 114/386 - loss 0.14511417 - samples/sec: 114.01 - lr: 0.100000
2022-11-06 21:05:20,755 epoch 26 - iter 152/386 - loss 0.14774136 - samples/sec: 115.31 - lr: 0.100000
2022-11-06 21:05:26,550 epoch 26 - iter 190/386 - loss 0.14833681 - samples/sec: 104.98 - lr: 0.100000
2022-11-06 21:05:32,041 epoch 26 - iter 228/386 - loss 0.14767418 - samples/sec: 110.80 - lr: 0.100000
2022-11-06 21:05:37,997 epoch 26 - iter 266/386 - loss 0.14808159 - samples/sec: 102.14 - lr: 0.100000
2022-11-06 21:05:43,704 epoch 26 - iter 304/386 - loss 0.14801024 - samples/sec: 106.59 - lr: 0.100000
2022-11-06 21:05:49,439 epoch 26 - iter 342/386 - loss 0.14801693 - samples/sec: 106.06 - lr: 0.100000
2022-11-06 21:05:55,135 epoch 26 - iter 380/386 - loss 0.14740170 - samples/sec: 106.80 - lr: 0.100000
2022-11-06 21:05:55,861 ----------------------------------------------------------------------------------------------------
2022-11-06 21:05:55,861 EPOCH 26 done: loss 0.1475 - lr 0.100000
2022-11-06 21:06:05,533 Evaluating as a multi-label problem: False
2022-11-06 21:06:05,651 TEST : loss 0.07874496281147003 - f1-score (micro avg)  0.9749
2022-11-06 21:06:05,766 BAD EPOCHS (no improvement): 0
2022-11-06 21:06:05,968 ----------------------------------------------------------------------------------------------------
2022-11-06 21:06:11,873 epoch 27 - iter 38/386 - loss 0.13004283 - samples/sec: 103.03 - lr: 0.100000
2022-11-06 21:06:17,429 epoch 27 - iter 76/386 - loss 0.13711483 - samples/sec: 109.50 - lr: 0.100000
2022-11-06 21:06:22,939 epoch 27 - iter 114/386 - loss 0.13564053 - samples/sec: 110.41 - lr: 0.100000
2022-11-06 21:06:28,139 epoch 27 - iter 152/386 - loss 0.13669751 - samples/sec: 116.98 - lr: 0.100000
2022-11-06 21:06:34,190 epoch 27 - iter 190/386 - loss 0.13980698 - samples/sec: 100.54 - lr: 0.100000
2022-11-06 21:06:39,906 epoch 27 - iter 228/386 - loss 0.14014600 - samples/sec: 106.43 - lr: 0.100000
2022-11-06 21:06:45,374 epoch 27 - iter 266/386 - loss 0.14190313 - samples/sec: 111.25 - lr: 0.100000
2022-11-06 21:06:50,848 epoch 27 - iter 304/386 - loss 0.14403091 - samples/sec: 111.12 - lr: 0.100000
2022-11-06 21:06:56,487 epoch 27 - iter 342/386 - loss 0.14531144 - samples/sec: 107.89 - lr: 0.100000
2022-11-06 21:07:02,016 epoch 27 - iter 380/386 - loss 0.14536325 - samples/sec: 110.03 - lr: 0.100000
2022-11-06 21:07:02,857 ----------------------------------------------------------------------------------------------------
2022-11-06 21:07:02,858 EPOCH 27 done: loss 0.1455 - lr 0.100000
2022-11-06 21:07:11,706 Evaluating as a multi-label problem: False
2022-11-06 21:07:11,820 TEST : loss 0.07635033130645752 - f1-score (micro avg)  0.9757
2022-11-06 21:07:11,932 BAD EPOCHS (no improvement): 0
2022-11-06 21:07:12,133 ----------------------------------------------------------------------------------------------------
2022-11-06 21:07:17,911 epoch 28 - iter 38/386 - loss 0.13194440 - samples/sec: 105.31 - lr: 0.100000
2022-11-06 21:07:23,934 epoch 28 - iter 76/386 - loss 0.13987553 - samples/sec: 101.00 - lr: 0.100000
2022-11-06 21:07:29,141 epoch 28 - iter 114/386 - loss 0.13984912 - samples/sec: 116.84 - lr: 0.100000
2022-11-06 21:07:34,786 epoch 28 - iter 152/386 - loss 0.14119805 - samples/sec: 107.76 - lr: 0.100000
2022-11-06 21:07:40,664 epoch 28 - iter 190/386 - loss 0.14009221 - samples/sec: 103.49 - lr: 0.100000
2022-11-06 21:07:46,086 epoch 28 - iter 228/386 - loss 0.14194481 - samples/sec: 112.19 - lr: 0.100000
2022-11-06 21:07:51,402 epoch 28 - iter 266/386 - loss 0.14287215 - samples/sec: 114.43 - lr: 0.100000
2022-11-06 21:07:56,794 epoch 28 - iter 304/386 - loss 0.14232579 - samples/sec: 112.83 - lr: 0.100000
2022-11-06 21:08:02,371 epoch 28 - iter 342/386 - loss 0.14283220 - samples/sec: 109.07 - lr: 0.100000
2022-11-06 21:08:07,977 epoch 28 - iter 380/386 - loss 0.14188657 - samples/sec: 108.51 - lr: 0.100000
2022-11-06 21:08:08,829 ----------------------------------------------------------------------------------------------------
2022-11-06 21:08:08,829 EPOCH 28 done: loss 0.1414 - lr 0.100000
2022-11-06 21:08:17,807 Evaluating as a multi-label problem: False
2022-11-06 21:08:17,921 TEST : loss 0.07446986436843872 - f1-score (micro avg)  0.9765
2022-11-06 21:08:18,033 BAD EPOCHS (no improvement): 0
2022-11-06 21:08:18,240 ----------------------------------------------------------------------------------------------------
2022-11-06 21:08:23,510 epoch 29 - iter 38/386 - loss 0.14492015 - samples/sec: 115.46 - lr: 0.100000
2022-11-06 21:08:29,410 epoch 29 - iter 76/386 - loss 0.14047206 - samples/sec: 103.11 - lr: 0.100000
2022-11-06 21:08:34,873 epoch 29 - iter 114/386 - loss 0.13804250 - samples/sec: 111.34 - lr: 0.100000
2022-11-06 21:08:40,671 epoch 29 - iter 152/386 - loss 0.13884114 - samples/sec: 104.92 - lr: 0.100000
2022-11-06 21:08:45,997 epoch 29 - iter 190/386 - loss 0.13904629 - samples/sec: 114.23 - lr: 0.100000
2022-11-06 21:08:51,833 epoch 29 - iter 228/386 - loss 0.13886545 - samples/sec: 104.22 - lr: 0.100000
2022-11-06 21:08:57,787 epoch 29 - iter 266/386 - loss 0.14075134 - samples/sec: 102.17 - lr: 0.100000
2022-11-06 21:09:03,106 epoch 29 - iter 304/386 - loss 0.14174863 - samples/sec: 114.37 - lr: 0.100000
2022-11-06 21:09:08,622 epoch 29 - iter 342/386 - loss 0.14258607 - samples/sec: 110.29 - lr: 0.100000
2022-11-06 21:09:14,442 epoch 29 - iter 380/386 - loss 0.14217338 - samples/sec: 104.52 - lr: 0.100000
2022-11-06 21:09:15,384 ----------------------------------------------------------------------------------------------------
2022-11-06 21:09:15,385 EPOCH 29 done: loss 0.1419 - lr 0.100000
2022-11-06 21:09:24,917 Evaluating as a multi-label problem: False
2022-11-06 21:09:25,031 TEST : loss 0.07629775255918503 - f1-score (micro avg)  0.977
2022-11-06 21:09:25,143 BAD EPOCHS (no improvement): 1
2022-11-06 21:09:25,353 ----------------------------------------------------------------------------------------------------
2022-11-06 21:09:30,737 epoch 30 - iter 38/386 - loss 0.13435244 - samples/sec: 113.02 - lr: 0.100000
2022-11-06 21:09:36,689 epoch 30 - iter 76/386 - loss 0.13767440 - samples/sec: 102.20 - lr: 0.100000
2022-11-06 21:09:42,013 epoch 30 - iter 114/386 - loss 0.13696206 - samples/sec: 114.27 - lr: 0.100000
2022-11-06 21:09:47,791 epoch 30 - iter 152/386 - loss 0.13829190 - samples/sec: 105.27 - lr: 0.100000
2022-11-06 21:09:53,579 epoch 30 - iter 190/386 - loss 0.13687404 - samples/sec: 105.11 - lr: 0.100000
2022-11-06 21:09:58,847 epoch 30 - iter 228/386 - loss 0.13774599 - samples/sec: 115.47 - lr: 0.100000
2022-11-06 21:10:04,568 epoch 30 - iter 266/386 - loss 0.13901783 - samples/sec: 107.13 - lr: 0.100000
2022-11-06 21:10:10,503 epoch 30 - iter 304/386 - loss 0.13908626 - samples/sec: 102.49 - lr: 0.100000
2022-11-06 21:10:16,164 epoch 30 - iter 342/386 - loss 0.14021005 - samples/sec: 107.47 - lr: 0.100000
2022-11-06 21:10:21,615 epoch 30 - iter 380/386 - loss 0.14053641 - samples/sec: 111.59 - lr: 0.100000
2022-11-06 21:10:22,475 ----------------------------------------------------------------------------------------------------
2022-11-06 21:10:22,475 EPOCH 30 done: loss 0.1405 - lr 0.100000
2022-11-06 21:10:32,025 Evaluating as a multi-label problem: False
2022-11-06 21:10:32,139 TEST : loss 0.08012723922729492 - f1-score (micro avg)  0.9751
2022-11-06 21:10:32,251 BAD EPOCHS (no improvement): 0
2022-11-06 21:10:32,460 ----------------------------------------------------------------------------------------------------
2022-11-06 21:10:37,874 epoch 31 - iter 38/386 - loss 0.13605364 - samples/sec: 112.39 - lr: 0.100000
2022-11-06 21:10:43,072 epoch 31 - iter 76/386 - loss 0.13129275 - samples/sec: 117.05 - lr: 0.100000
2022-11-06 21:10:48,560 epoch 31 - iter 114/386 - loss 0.12929537 - samples/sec: 110.85 - lr: 0.100000
2022-11-06 21:10:54,309 epoch 31 - iter 152/386 - loss 0.13464118 - samples/sec: 105.81 - lr: 0.100000
2022-11-06 21:11:00,243 epoch 31 - iter 190/386 - loss 0.13449220 - samples/sec: 102.51 - lr: 0.100000
2022-11-06 21:11:05,899 epoch 31 - iter 228/386 - loss 0.13490655 - samples/sec: 107.54 - lr: 0.100000
2022-11-06 21:11:11,421 epoch 31 - iter 266/386 - loss 0.13724499 - samples/sec: 110.18 - lr: 0.100000
2022-11-06 21:11:16,750 epoch 31 - iter 304/386 - loss 0.13669783 - samples/sec: 114.14 - lr: 0.100000
2022-11-06 21:11:22,824 epoch 31 - iter 342/386 - loss 0.13557873 - samples/sec: 100.15 - lr: 0.100000
2022-11-06 21:11:28,281 epoch 31 - iter 380/386 - loss 0.13537335 - samples/sec: 111.48 - lr: 0.100000
2022-11-06 21:11:29,086 ----------------------------------------------------------------------------------------------------
2022-11-06 21:11:29,086 EPOCH 31 done: loss 0.1352 - lr 0.100000
2022-11-06 21:11:38,570 Evaluating as a multi-label problem: False
2022-11-06 21:11:38,683 TEST : loss 0.07867585122585297 - f1-score (micro avg)  0.9759
2022-11-06 21:11:38,795 BAD EPOCHS (no improvement): 0
2022-11-06 21:11:39,003 ----------------------------------------------------------------------------------------------------
2022-11-06 21:11:44,555 epoch 32 - iter 38/386 - loss 0.13232513 - samples/sec: 109.61 - lr: 0.100000
2022-11-06 21:11:49,687 epoch 32 - iter 76/386 - loss 0.13482951 - samples/sec: 118.55 - lr: 0.100000
2022-11-06 21:11:54,993 epoch 32 - iter 114/386 - loss 0.13304503 - samples/sec: 114.65 - lr: 0.100000
2022-11-06 21:12:01,031 epoch 32 - iter 152/386 - loss 0.13218221 - samples/sec: 100.74 - lr: 0.100000
2022-11-06 21:12:06,365 epoch 32 - iter 190/386 - loss 0.13670654 - samples/sec: 114.04 - lr: 0.100000
2022-11-06 21:12:11,993 epoch 32 - iter 228/386 - loss 0.13752981 - samples/sec: 108.10 - lr: 0.100000
2022-11-06 21:12:17,882 epoch 32 - iter 266/386 - loss 0.13855191 - samples/sec: 103.29 - lr: 0.100000
2022-11-06 21:12:23,269 epoch 32 - iter 304/386 - loss 0.13809400 - samples/sec: 112.93 - lr: 0.100000
2022-11-06 21:12:29,310 epoch 32 - iter 342/386 - loss 0.13822772 - samples/sec: 100.71 - lr: 0.100000
2022-11-06 21:12:34,964 epoch 32 - iter 380/386 - loss 0.13783689 - samples/sec: 107.59 - lr: 0.100000
2022-11-06 21:12:35,755 ----------------------------------------------------------------------------------------------------
2022-11-06 21:12:35,755 EPOCH 32 done: loss 0.1380 - lr 0.100000
2022-11-06 21:12:45,245 Evaluating as a multi-label problem: False
2022-11-06 21:12:45,358 TEST : loss 0.07559281587600708 - f1-score (micro avg)  0.9764
2022-11-06 21:12:45,470 BAD EPOCHS (no improvement): 1
2022-11-06 21:12:45,673 ----------------------------------------------------------------------------------------------------
2022-11-06 21:12:50,680 epoch 33 - iter 38/386 - loss 0.13040322 - samples/sec: 121.52 - lr: 0.100000
2022-11-06 21:12:56,389 epoch 33 - iter 76/386 - loss 0.13221927 - samples/sec: 106.56 - lr: 0.100000
2022-11-06 21:13:01,972 epoch 33 - iter 114/386 - loss 0.13390827 - samples/sec: 108.96 - lr: 0.100000
2022-11-06 21:13:07,263 epoch 33 - iter 152/386 - loss 0.13364135 - samples/sec: 114.98 - lr: 0.100000
2022-11-06 21:13:12,446 epoch 33 - iter 190/386 - loss 0.13402240 - samples/sec: 117.38 - lr: 0.100000
2022-11-06 21:13:18,032 epoch 33 - iter 228/386 - loss 0.13390599 - samples/sec: 108.91 - lr: 0.100000
2022-11-06 21:13:23,570 epoch 33 - iter 266/386 - loss 0.13400107 - samples/sec: 109.84 - lr: 0.100000
2022-11-06 21:13:29,197 epoch 33 - iter 304/386 - loss 0.13416777 - samples/sec: 108.10 - lr: 0.100000
2022-11-06 21:13:35,233 epoch 33 - iter 342/386 - loss 0.13495150 - samples/sec: 100.79 - lr: 0.100000
2022-11-06 21:13:41,146 epoch 33 - iter 380/386 - loss 0.13447871 - samples/sec: 102.87 - lr: 0.100000
2022-11-06 21:13:41,959 ----------------------------------------------------------------------------------------------------
2022-11-06 21:13:41,959 EPOCH 33 done: loss 0.1345 - lr 0.100000
2022-11-06 21:13:51,410 Evaluating as a multi-label problem: False
2022-11-06 21:13:51,526 TEST : loss 0.07484747469425201 - f1-score (micro avg)  0.9777
2022-11-06 21:13:51,639 BAD EPOCHS (no improvement): 0
2022-11-06 21:13:51,845 ----------------------------------------------------------------------------------------------------
2022-11-06 21:13:58,087 epoch 34 - iter 38/386 - loss 0.12716848 - samples/sec: 97.48 - lr: 0.100000
2022-11-06 21:14:03,926 epoch 34 - iter 76/386 - loss 0.13247563 - samples/sec: 104.19 - lr: 0.100000
2022-11-06 21:14:09,453 epoch 34 - iter 114/386 - loss 0.13110225 - samples/sec: 110.06 - lr: 0.100000
2022-11-06 21:14:14,599 epoch 34 - iter 152/386 - loss 0.13129140 - samples/sec: 118.22 - lr: 0.100000
2022-11-06 21:14:19,723 epoch 34 - iter 190/386 - loss 0.13341774 - samples/sec: 118.72 - lr: 0.100000
2022-11-06 21:14:25,406 epoch 34 - iter 228/386 - loss 0.13308897 - samples/sec: 107.05 - lr: 0.100000
2022-11-06 21:14:30,738 epoch 34 - iter 266/386 - loss 0.13388475 - samples/sec: 114.09 - lr: 0.100000
2022-11-06 21:14:36,691 epoch 34 - iter 304/386 - loss 0.13500382 - samples/sec: 102.19 - lr: 0.100000
2022-11-06 21:14:42,091 epoch 34 - iter 342/386 - loss 0.13561086 - samples/sec: 112.66 - lr: 0.100000
2022-11-06 21:14:47,903 epoch 34 - iter 380/386 - loss 0.13482125 - samples/sec: 104.67 - lr: 0.100000
2022-11-06 21:14:48,710 ----------------------------------------------------------------------------------------------------
2022-11-06 21:14:48,711 EPOCH 34 done: loss 0.1347 - lr 0.100000
2022-11-06 21:14:58,212 Evaluating as a multi-label problem: False
2022-11-06 21:14:58,326 TEST : loss 0.07798200100660324 - f1-score (micro avg)  0.9772
2022-11-06 21:14:58,438 BAD EPOCHS (no improvement): 1
2022-11-06 21:14:58,646 ----------------------------------------------------------------------------------------------------
2022-11-06 21:15:03,999 epoch 35 - iter 38/386 - loss 0.12669705 - samples/sec: 113.66 - lr: 0.100000
2022-11-06 21:15:09,226 epoch 35 - iter 76/386 - loss 0.12803323 - samples/sec: 116.39 - lr: 0.100000
2022-11-06 21:15:14,490 epoch 35 - iter 114/386 - loss 0.13240979 - samples/sec: 115.59 - lr: 0.100000
2022-11-06 21:15:19,801 epoch 35 - iter 152/386 - loss 0.13315680 - samples/sec: 114.53 - lr: 0.100000
2022-11-06 21:15:25,186 epoch 35 - iter 190/386 - loss 0.13257909 - samples/sec: 112.99 - lr: 0.100000
2022-11-06 21:15:31,186 epoch 35 - iter 228/386 - loss 0.13326997 - samples/sec: 101.37 - lr: 0.100000
2022-11-06 21:15:36,633 epoch 35 - iter 266/386 - loss 0.13333582 - samples/sec: 111.69 - lr: 0.100000
2022-11-06 21:15:42,519 epoch 35 - iter 304/386 - loss 0.13407603 - samples/sec: 103.34 - lr: 0.100000
2022-11-06 21:15:47,912 epoch 35 - iter 342/386 - loss 0.13477046 - samples/sec: 112.81 - lr: 0.100000
2022-11-06 21:15:54,149 epoch 35 - iter 380/386 - loss 0.13462222 - samples/sec: 97.53 - lr: 0.100000
2022-11-06 21:15:55,071 ----------------------------------------------------------------------------------------------------
2022-11-06 21:15:55,071 EPOCH 35 done: loss 0.1344 - lr 0.100000
2022-11-06 21:16:06,985 Evaluating as a multi-label problem: False
2022-11-06 21:16:07,099 TEST : loss 0.07759656012058258 - f1-score (micro avg)  0.9763
2022-11-06 21:16:07,211 BAD EPOCHS (no improvement): 0
2022-11-06 21:16:07,415 ----------------------------------------------------------------------------------------------------
2022-11-06 21:16:13,125 epoch 36 - iter 38/386 - loss 0.14084251 - samples/sec: 106.55 - lr: 0.100000
2022-11-06 21:16:18,426 epoch 36 - iter 76/386 - loss 0.13560492 - samples/sec: 114.77 - lr: 0.100000
2022-11-06 21:16:23,844 epoch 36 - iter 114/386 - loss 0.13425714 - samples/sec: 112.28 - lr: 0.100000
2022-11-06 21:16:29,425 epoch 36 - iter 152/386 - loss 0.13443528 - samples/sec: 108.98 - lr: 0.100000
2022-11-06 21:16:35,416 epoch 36 - iter 190/386 - loss 0.13544237 - samples/sec: 101.55 - lr: 0.100000
2022-11-06 21:16:40,715 epoch 36 - iter 228/386 - loss 0.13445681 - samples/sec: 114.79 - lr: 0.100000
2022-11-06 21:16:46,197 epoch 36 - iter 266/386 - loss 0.13370809 - samples/sec: 110.98 - lr: 0.100000
2022-11-06 21:16:52,085 epoch 36 - iter 304/386 - loss 0.13356780 - samples/sec: 103.30 - lr: 0.100000
2022-11-06 21:16:57,690 epoch 36 - iter 342/386 - loss 0.13324128 - samples/sec: 108.54 - lr: 0.100000
2022-11-06 21:17:03,316 epoch 36 - iter 380/386 - loss 0.13276034 - samples/sec: 108.12 - lr: 0.100000
2022-11-06 21:17:04,142 ----------------------------------------------------------------------------------------------------
2022-11-06 21:17:04,143 EPOCH 36 done: loss 0.1328 - lr 0.100000
2022-11-06 21:17:13,677 Evaluating as a multi-label problem: False
2022-11-06 21:17:13,791 TEST : loss 0.07676690816879272 - f1-score (micro avg)  0.9773
2022-11-06 21:17:13,903 BAD EPOCHS (no improvement): 0
2022-11-06 21:17:14,112 ----------------------------------------------------------------------------------------------------
2022-11-06 21:17:20,098 epoch 37 - iter 38/386 - loss 0.11773268 - samples/sec: 101.66 - lr: 0.100000
2022-11-06 21:17:25,549 epoch 37 - iter 76/386 - loss 0.12268172 - samples/sec: 111.60 - lr: 0.100000
2022-11-06 21:17:31,263 epoch 37 - iter 114/386 - loss 0.12196934 - samples/sec: 106.46 - lr: 0.100000
2022-11-06 21:17:36,935 epoch 37 - iter 152/386 - loss 0.12469575 - samples/sec: 107.26 - lr: 0.100000
2022-11-06 21:17:42,684 epoch 37 - iter 190/386 - loss 0.12632570 - samples/sec: 105.81 - lr: 0.100000
2022-11-06 21:17:48,000 epoch 37 - iter 228/386 - loss 0.12650076 - samples/sec: 114.42 - lr: 0.100000
2022-11-06 21:17:52,778 epoch 37 - iter 266/386 - loss 0.12751872 - samples/sec: 127.35 - lr: 0.100000
2022-11-06 21:17:58,664 epoch 37 - iter 304/386 - loss 0.12835283 - samples/sec: 103.34 - lr: 0.100000
2022-11-06 21:18:04,258 epoch 37 - iter 342/386 - loss 0.12751420 - samples/sec: 108.76 - lr: 0.100000
2022-11-06 21:18:10,061 epoch 37 - iter 380/386 - loss 0.12880953 - samples/sec: 104.82 - lr: 0.100000
2022-11-06 21:18:10,878 ----------------------------------------------------------------------------------------------------
2022-11-06 21:18:10,878 EPOCH 37 done: loss 0.1289 - lr 0.100000
2022-11-06 21:18:20,270 Evaluating as a multi-label problem: False
2022-11-06 21:18:20,386 TEST : loss 0.07300665974617004 - f1-score (micro avg)  0.978
2022-11-06 21:18:20,498 BAD EPOCHS (no improvement): 0
2022-11-06 21:18:20,713 ----------------------------------------------------------------------------------------------------
2022-11-06 21:18:25,955 epoch 38 - iter 38/386 - loss 0.12656382 - samples/sec: 116.08 - lr: 0.100000
2022-11-06 21:18:31,778 epoch 38 - iter 76/386 - loss 0.12664169 - samples/sec: 104.47 - lr: 0.100000
2022-11-06 21:18:37,249 epoch 38 - iter 114/386 - loss 0.12657923 - samples/sec: 111.19 - lr: 0.100000
2022-11-06 21:18:43,101 epoch 38 - iter 152/386 - loss 0.12572572 - samples/sec: 103.96 - lr: 0.100000
2022-11-06 21:18:49,038 epoch 38 - iter 190/386 - loss 0.12654161 - samples/sec: 102.46 - lr: 0.100000
2022-11-06 21:18:54,901 epoch 38 - iter 228/386 - loss 0.12749062 - samples/sec: 103.74 - lr: 0.100000
2022-11-06 21:19:00,492 epoch 38 - iter 266/386 - loss 0.12772509 - samples/sec: 108.81 - lr: 0.100000
2022-11-06 21:19:05,602 epoch 38 - iter 304/386 - loss 0.12844144 - samples/sec: 119.05 - lr: 0.100000
2022-11-06 21:19:10,460 epoch 38 - iter 342/386 - loss 0.12831778 - samples/sec: 125.23 - lr: 0.100000
2022-11-06 21:19:16,192 epoch 38 - iter 380/386 - loss 0.12827157 - samples/sec: 106.12 - lr: 0.100000
2022-11-06 21:19:16,916 ----------------------------------------------------------------------------------------------------
2022-11-06 21:19:16,916 EPOCH 38 done: loss 0.1286 - lr 0.100000
2022-11-06 21:19:26,445 Evaluating as a multi-label problem: False
2022-11-06 21:19:26,560 TEST : loss 0.07631804794073105 - f1-score (micro avg)  0.9765
2022-11-06 21:19:26,673 BAD EPOCHS (no improvement): 0
2022-11-06 21:19:26,873 ----------------------------------------------------------------------------------------------------
2022-11-06 21:19:32,474 epoch 39 - iter 38/386 - loss 0.12921879 - samples/sec: 108.64 - lr: 0.100000
2022-11-06 21:19:38,030 epoch 39 - iter 76/386 - loss 0.12550183 - samples/sec: 109.50 - lr: 0.100000
2022-11-06 21:19:43,651 epoch 39 - iter 114/386 - loss 0.12590097 - samples/sec: 108.22 - lr: 0.100000
2022-11-06 21:19:49,937 epoch 39 - iter 152/386 - loss 0.12453781 - samples/sec: 96.76 - lr: 0.100000
2022-11-06 21:19:55,059 epoch 39 - iter 190/386 - loss 0.12681373 - samples/sec: 118.78 - lr: 0.100000
2022-11-06 21:20:00,742 epoch 39 - iter 228/386 - loss 0.12644162 - samples/sec: 107.04 - lr: 0.100000
2022-11-06 21:20:06,147 epoch 39 - iter 266/386 - loss 0.12619254 - samples/sec: 112.55 - lr: 0.100000
2022-11-06 21:20:11,462 epoch 39 - iter 304/386 - loss 0.12768228 - samples/sec: 114.46 - lr: 0.100000
2022-11-06 21:20:16,796 epoch 39 - iter 342/386 - loss 0.12841007 - samples/sec: 114.06 - lr: 0.100000
2022-11-06 21:20:22,820 epoch 39 - iter 380/386 - loss 0.12930063 - samples/sec: 100.98 - lr: 0.100000
2022-11-06 21:20:23,811 ----------------------------------------------------------------------------------------------------
2022-11-06 21:20:23,811 EPOCH 39 done: loss 0.1297 - lr 0.100000
2022-11-06 21:20:34,264 Evaluating as a multi-label problem: False
2022-11-06 21:20:34,385 TEST : loss 0.07472442835569382 - f1-score (micro avg)  0.9769
2022-11-06 21:20:34,499 BAD EPOCHS (no improvement): 1
2022-11-06 21:20:34,700 ----------------------------------------------------------------------------------------------------
2022-11-06 21:20:40,752 epoch 40 - iter 38/386 - loss 0.12268551 - samples/sec: 100.55 - lr: 0.100000
2022-11-06 21:20:47,598 epoch 40 - iter 76/386 - loss 0.12238748 - samples/sec: 88.84 - lr: 0.100000
2022-11-06 21:20:53,304 epoch 40 - iter 114/386 - loss 0.12365842 - samples/sec: 106.63 - lr: 0.100000
2022-11-06 21:20:59,388 epoch 40 - iter 152/386 - loss 0.12125446 - samples/sec: 99.98 - lr: 0.100000
2022-11-06 21:21:05,617 epoch 40 - iter 190/386 - loss 0.12154079 - samples/sec: 97.67 - lr: 0.100000
2022-11-06 21:21:11,161 epoch 40 - iter 228/386 - loss 0.12124347 - samples/sec: 109.71 - lr: 0.100000
2022-11-06 21:21:17,542 epoch 40 - iter 266/386 - loss 0.12335241 - samples/sec: 95.34 - lr: 0.100000
2022-11-06 21:21:23,746 epoch 40 - iter 304/386 - loss 0.12514150 - samples/sec: 98.04 - lr: 0.100000
2022-11-06 21:21:29,748 epoch 40 - iter 342/386 - loss 0.12565763 - samples/sec: 101.36 - lr: 0.100000
2022-11-06 21:21:35,962 epoch 40 - iter 380/386 - loss 0.12620808 - samples/sec: 97.90 - lr: 0.100000
2022-11-06 21:21:36,822 ----------------------------------------------------------------------------------------------------
2022-11-06 21:21:36,822 EPOCH 40 done: loss 0.1260 - lr 0.100000
2022-11-06 21:21:47,770 Evaluating as a multi-label problem: False
2022-11-06 21:21:47,888 TEST : loss 0.0739121362566948 - f1-score (micro avg)  0.9773
2022-11-06 21:21:48,002 BAD EPOCHS (no improvement): 0
2022-11-06 21:21:48,214 ----------------------------------------------------------------------------------------------------
2022-11-06 21:21:54,367 epoch 41 - iter 38/386 - loss 0.12501690 - samples/sec: 98.87 - lr: 0.100000
2022-11-06 21:21:59,976 epoch 41 - iter 76/386 - loss 0.12864011 - samples/sec: 108.46 - lr: 0.100000
2022-11-06 21:22:05,669 epoch 41 - iter 114/386 - loss 0.12787936 - samples/sec: 106.86 - lr: 0.100000
2022-11-06 21:22:11,608 epoch 41 - iter 152/386 - loss 0.12923740 - samples/sec: 102.43 - lr: 0.100000
2022-11-06 21:22:17,559 epoch 41 - iter 190/386 - loss 0.12849211 - samples/sec: 102.21 - lr: 0.100000
2022-11-06 21:22:23,015 epoch 41 - iter 228/386 - loss 0.12815326 - samples/sec: 111.50 - lr: 0.100000
2022-11-06 21:22:28,588 epoch 41 - iter 266/386 - loss 0.12708207 - samples/sec: 110.00 - lr: 0.100000
2022-11-06 21:22:34,117 epoch 41 - iter 304/386 - loss 0.12568639 - samples/sec: 110.03 - lr: 0.100000
2022-11-06 21:22:40,037 epoch 41 - iter 342/386 - loss 0.12439832 - samples/sec: 102.75 - lr: 0.100000
2022-11-06 21:22:45,593 epoch 41 - iter 380/386 - loss 0.12537910 - samples/sec: 109.51 - lr: 0.100000
2022-11-06 21:22:46,444 ----------------------------------------------------------------------------------------------------
2022-11-06 21:22:46,444 EPOCH 41 done: loss 0.1253 - lr 0.100000
2022-11-06 21:22:56,038 Evaluating as a multi-label problem: False
2022-11-06 21:22:56,155 TEST : loss 0.0780162438750267 - f1-score (micro avg)  0.977
2022-11-06 21:22:56,269 BAD EPOCHS (no improvement): 0
2022-11-06 21:22:56,482 ----------------------------------------------------------------------------------------------------
2022-11-06 21:23:02,363 epoch 42 - iter 38/386 - loss 0.11149869 - samples/sec: 103.47 - lr: 0.100000
2022-11-06 21:23:07,895 epoch 42 - iter 76/386 - loss 0.11748343 - samples/sec: 109.98 - lr: 0.100000
2022-11-06 21:23:13,346 epoch 42 - iter 114/386 - loss 0.11649259 - samples/sec: 111.59 - lr: 0.100000
2022-11-06 21:23:18,275 epoch 42 - iter 152/386 - loss 0.11698177 - samples/sec: 123.44 - lr: 0.100000
2022-11-06 21:23:23,563 epoch 42 - iter 190/386 - loss 0.11887342 - samples/sec: 115.03 - lr: 0.100000
2022-11-06 21:23:29,173 epoch 42 - iter 228/386 - loss 0.11677996 - samples/sec: 108.44 - lr: 0.100000
2022-11-06 21:23:34,579 epoch 42 - iter 266/386 - loss 0.11824350 - samples/sec: 112.54 - lr: 0.100000
2022-11-06 21:23:40,055 epoch 42 - iter 304/386 - loss 0.12008683 - samples/sec: 111.08 - lr: 0.100000
2022-11-06 21:23:45,880 epoch 42 - iter 342/386 - loss 0.12062932 - samples/sec: 104.43 - lr: 0.100000
2022-11-06 21:23:51,979 epoch 42 - iter 380/386 - loss 0.12229146 - samples/sec: 99.74 - lr: 0.100000
2022-11-06 21:23:52,834 ----------------------------------------------------------------------------------------------------
2022-11-06 21:23:52,834 EPOCH 42 done: loss 0.1220 - lr 0.100000
2022-11-06 21:24:02,444 Evaluating as a multi-label problem: False
2022-11-06 21:24:02,562 TEST : loss 0.07854187488555908 - f1-score (micro avg)  0.976
2022-11-06 21:24:02,674 BAD EPOCHS (no improvement): 0
2022-11-06 21:24:02,884 ----------------------------------------------------------------------------------------------------
2022-11-06 21:24:08,148 epoch 43 - iter 38/386 - loss 0.11958608 - samples/sec: 115.61 - lr: 0.100000
2022-11-06 21:24:13,398 epoch 43 - iter 76/386 - loss 0.11836372 - samples/sec: 115.88 - lr: 0.100000
2022-11-06 21:24:19,459 epoch 43 - iter 114/386 - loss 0.12201423 - samples/sec: 100.36 - lr: 0.100000
2022-11-06 21:24:25,282 epoch 43 - iter 152/386 - loss 0.12318619 - samples/sec: 104.48 - lr: 0.100000
2022-11-06 21:24:30,615 epoch 43 - iter 190/386 - loss 0.12337366 - samples/sec: 114.06 - lr: 0.100000
2022-11-06 21:24:36,294 epoch 43 - iter 228/386 - loss 0.12486417 - samples/sec: 107.83 - lr: 0.100000
2022-11-06 21:24:41,939 epoch 43 - iter 266/386 - loss 0.12427762 - samples/sec: 107.77 - lr: 0.100000
2022-11-06 21:24:47,463 epoch 43 - iter 304/386 - loss 0.12320286 - samples/sec: 110.98 - lr: 0.100000
2022-11-06 21:24:53,194 epoch 43 - iter 342/386 - loss 0.12386685 - samples/sec: 106.14 - lr: 0.100000
2022-11-06 21:24:58,726 epoch 43 - iter 380/386 - loss 0.12403804 - samples/sec: 109.98 - lr: 0.100000
2022-11-06 21:24:59,622 ----------------------------------------------------------------------------------------------------
2022-11-06 21:24:59,622 EPOCH 43 done: loss 0.1240 - lr 0.100000
2022-11-06 21:25:09,220 Evaluating as a multi-label problem: False
2022-11-06 21:25:09,336 TEST : loss 0.0756213441491127 - f1-score (micro avg)  0.9772
2022-11-06 21:25:09,450 BAD EPOCHS (no improvement): 1
2022-11-06 21:25:09,661 ----------------------------------------------------------------------------------------------------
2022-11-06 21:25:14,975 epoch 44 - iter 38/386 - loss 0.11529806 - samples/sec: 114.50 - lr: 0.100000
2022-11-06 21:25:21,233 epoch 44 - iter 76/386 - loss 0.12011694 - samples/sec: 97.22 - lr: 0.100000
2022-11-06 21:25:27,381 epoch 44 - iter 114/386 - loss 0.11971319 - samples/sec: 98.93 - lr: 0.100000
2022-11-06 21:25:33,175 epoch 44 - iter 152/386 - loss 0.11990878 - samples/sec: 105.00 - lr: 0.100000
2022-11-06 21:25:38,881 epoch 44 - iter 190/386 - loss 0.12065174 - samples/sec: 106.62 - lr: 0.100000
2022-11-06 21:25:44,099 epoch 44 - iter 228/386 - loss 0.11906558 - samples/sec: 116.58 - lr: 0.100000
2022-11-06 21:25:49,404 epoch 44 - iter 266/386 - loss 0.12058134 - samples/sec: 115.19 - lr: 0.100000
2022-11-06 21:25:54,627 epoch 44 - iter 304/386 - loss 0.12038138 - samples/sec: 116.49 - lr: 0.100000
2022-11-06 21:25:59,973 epoch 44 - iter 342/386 - loss 0.12033364 - samples/sec: 113.80 - lr: 0.100000
2022-11-06 21:26:05,652 epoch 44 - iter 380/386 - loss 0.12198193 - samples/sec: 107.12 - lr: 0.100000
2022-11-06 21:26:06,529 ----------------------------------------------------------------------------------------------------
2022-11-06 21:26:06,530 EPOCH 44 done: loss 0.1220 - lr 0.100000
2022-11-06 21:26:16,050 Evaluating as a multi-label problem: False
2022-11-06 21:26:16,167 TEST : loss 0.07966844737529755 - f1-score (micro avg)  0.9765
2022-11-06 21:26:16,280 BAD EPOCHS (no improvement): 0
2022-11-06 21:26:16,483 ----------------------------------------------------------------------------------------------------
2022-11-06 21:26:22,198 epoch 45 - iter 38/386 - loss 0.11658074 - samples/sec: 106.47 - lr: 0.100000
2022-11-06 21:26:27,956 epoch 45 - iter 76/386 - loss 0.11810186 - samples/sec: 105.66 - lr: 0.100000
2022-11-06 21:26:33,511 epoch 45 - iter 114/386 - loss 0.11998494 - samples/sec: 109.51 - lr: 0.100000
2022-11-06 21:26:39,132 epoch 45 - iter 152/386 - loss 0.11772619 - samples/sec: 108.22 - lr: 0.100000
2022-11-06 21:26:44,693 epoch 45 - iter 190/386 - loss 0.11807594 - samples/sec: 109.41 - lr: 0.100000
2022-11-06 21:26:50,190 epoch 45 - iter 228/386 - loss 0.11906856 - samples/sec: 110.67 - lr: 0.100000
2022-11-06 21:26:55,645 epoch 45 - iter 266/386 - loss 0.12077577 - samples/sec: 111.52 - lr: 0.100000
2022-11-06 21:27:01,272 epoch 45 - iter 304/386 - loss 0.12018970 - samples/sec: 108.11 - lr: 0.100000
2022-11-06 21:27:06,688 epoch 45 - iter 342/386 - loss 0.12045177 - samples/sec: 112.33 - lr: 0.100000
2022-11-06 21:27:12,362 epoch 45 - iter 380/386 - loss 0.12097869 - samples/sec: 107.20 - lr: 0.100000
2022-11-06 21:27:13,161 ----------------------------------------------------------------------------------------------------
2022-11-06 21:27:13,161 EPOCH 45 done: loss 0.1209 - lr 0.100000
2022-11-06 21:27:22,937 Evaluating as a multi-label problem: False
2022-11-06 21:27:23,053 TEST : loss 0.07720887660980225 - f1-score (micro avg)  0.9767
2022-11-06 21:27:23,166 BAD EPOCHS (no improvement): 0
2022-11-06 21:27:23,377 ----------------------------------------------------------------------------------------------------
2022-11-06 21:27:29,128 epoch 46 - iter 38/386 - loss 0.11581804 - samples/sec: 105.81 - lr: 0.100000
2022-11-06 21:27:34,828 epoch 46 - iter 76/386 - loss 0.11872404 - samples/sec: 106.72 - lr: 0.100000
2022-11-06 21:27:39,690 epoch 46 - iter 114/386 - loss 0.11995258 - samples/sec: 125.14 - lr: 0.100000
2022-11-06 21:27:45,311 epoch 46 - iter 152/386 - loss 0.12179851 - samples/sec: 108.22 - lr: 0.100000
2022-11-06 21:27:51,300 epoch 46 - iter 190/386 - loss 0.12292524 - samples/sec: 101.57 - lr: 0.100000
2022-11-06 21:27:57,100 epoch 46 - iter 228/386 - loss 0.12271512 - samples/sec: 104.88 - lr: 0.100000
2022-11-06 21:28:02,842 epoch 46 - iter 266/386 - loss 0.12196746 - samples/sec: 105.95 - lr: 0.100000
2022-11-06 21:28:08,370 epoch 46 - iter 304/386 - loss 0.12271587 - samples/sec: 110.06 - lr: 0.100000
2022-11-06 21:28:13,125 epoch 46 - iter 342/386 - loss 0.12309745 - samples/sec: 127.93 - lr: 0.100000
2022-11-06 21:28:18,470 epoch 46 - iter 380/386 - loss 0.12348590 - samples/sec: 113.83 - lr: 0.100000
2022-11-06 21:28:19,306 ----------------------------------------------------------------------------------------------------
2022-11-06 21:28:19,307 EPOCH 46 done: loss 0.1233 - lr 0.100000
2022-11-06 21:28:31,227 Evaluating as a multi-label problem: False
2022-11-06 21:28:31,344 TEST : loss 0.07568249851465225 - f1-score (micro avg)  0.9774
2022-11-06 21:28:31,457 BAD EPOCHS (no improvement): 1
2022-11-06 21:28:31,669 ----------------------------------------------------------------------------------------------------
2022-11-06 21:28:37,650 epoch 47 - iter 38/386 - loss 0.11595339 - samples/sec: 101.73 - lr: 0.100000
2022-11-06 21:28:43,362 epoch 47 - iter 76/386 - loss 0.11709559 - samples/sec: 106.50 - lr: 0.100000
2022-11-06 21:28:49,223 epoch 47 - iter 114/386 - loss 0.11756609 - samples/sec: 103.79 - lr: 0.100000
2022-11-06 21:28:54,635 epoch 47 - iter 152/386 - loss 0.12033252 - samples/sec: 112.41 - lr: 0.100000
2022-11-06 21:29:00,052 epoch 47 - iter 190/386 - loss 0.12025189 - samples/sec: 112.30 - lr: 0.100000
2022-11-06 21:29:05,678 epoch 47 - iter 228/386 - loss 0.11965504 - samples/sec: 108.12 - lr: 0.100000
2022-11-06 21:29:11,257 epoch 47 - iter 266/386 - loss 0.11906688 - samples/sec: 109.05 - lr: 0.100000
2022-11-06 21:29:16,838 epoch 47 - iter 304/386 - loss 0.11868831 - samples/sec: 109.00 - lr: 0.100000
2022-11-06 21:29:21,901 epoch 47 - iter 342/386 - loss 0.12035505 - samples/sec: 120.16 - lr: 0.100000
2022-11-06 21:29:27,022 epoch 47 - iter 380/386 - loss 0.12021009 - samples/sec: 118.79 - lr: 0.100000
2022-11-06 21:29:27,884 ----------------------------------------------------------------------------------------------------
2022-11-06 21:29:27,884 EPOCH 47 done: loss 0.1203 - lr 0.100000
2022-11-06 21:29:37,446 Evaluating as a multi-label problem: False
2022-11-06 21:29:37,563 TEST : loss 0.07547062635421753 - f1-score (micro avg)  0.9775
2022-11-06 21:29:37,678 BAD EPOCHS (no improvement): 0
2022-11-06 21:29:37,876 ----------------------------------------------------------------------------------------------------
2022-11-06 21:29:43,653 epoch 48 - iter 38/386 - loss 0.12227377 - samples/sec: 105.33 - lr: 0.100000
2022-11-06 21:29:49,140 epoch 48 - iter 76/386 - loss 0.12056539 - samples/sec: 110.87 - lr: 0.100000
2022-11-06 21:29:54,836 epoch 48 - iter 114/386 - loss 0.11941017 - samples/sec: 106.80 - lr: 0.100000
2022-11-06 21:30:00,821 epoch 48 - iter 152/386 - loss 0.12095295 - samples/sec: 101.64 - lr: 0.100000
2022-11-06 21:30:06,274 epoch 48 - iter 190/386 - loss 0.12128609 - samples/sec: 111.55 - lr: 0.100000
2022-11-06 21:30:12,004 epoch 48 - iter 228/386 - loss 0.12113142 - samples/sec: 106.17 - lr: 0.100000
2022-11-06 21:30:17,705 epoch 48 - iter 266/386 - loss 0.12022908 - samples/sec: 106.71 - lr: 0.100000
2022-11-06 21:30:23,040 epoch 48 - iter 304/386 - loss 0.12018651 - samples/sec: 114.03 - lr: 0.100000
2022-11-06 21:30:28,146 epoch 48 - iter 342/386 - loss 0.12015658 - samples/sec: 119.16 - lr: 0.100000
2022-11-06 21:30:33,425 epoch 48 - iter 380/386 - loss 0.12050812 - samples/sec: 115.24 - lr: 0.100000
2022-11-06 21:30:34,660 ----------------------------------------------------------------------------------------------------
2022-11-06 21:30:34,660 EPOCH 48 done: loss 0.1204 - lr 0.100000
2022-11-06 21:30:43,888 Evaluating as a multi-label problem: False
2022-11-06 21:30:44,005 TEST : loss 0.07593300938606262 - f1-score (micro avg)  0.9779
2022-11-06 21:30:44,119 BAD EPOCHS (no improvement): 1
2022-11-06 21:30:44,324 ----------------------------------------------------------------------------------------------------
2022-11-06 21:30:49,608 epoch 49 - iter 38/386 - loss 0.11311434 - samples/sec: 115.17 - lr: 0.100000
2022-11-06 21:30:55,068 epoch 49 - iter 76/386 - loss 0.11893316 - samples/sec: 111.43 - lr: 0.100000
2022-11-06 21:31:00,591 epoch 49 - iter 114/386 - loss 0.11886508 - samples/sec: 110.13 - lr: 0.100000
2022-11-06 21:31:06,265 epoch 49 - iter 152/386 - loss 0.11676186 - samples/sec: 107.23 - lr: 0.100000
2022-11-06 21:31:11,933 epoch 49 - iter 190/386 - loss 0.11803846 - samples/sec: 107.32 - lr: 0.100000
2022-11-06 21:31:17,749 epoch 49 - iter 228/386 - loss 0.11884410 - samples/sec: 104.58 - lr: 0.100000
2022-11-06 21:31:23,644 epoch 49 - iter 266/386 - loss 0.11916669 - samples/sec: 103.21 - lr: 0.100000
2022-11-06 21:31:29,531 epoch 49 - iter 304/386 - loss 0.11847528 - samples/sec: 103.32 - lr: 0.100000
2022-11-06 21:31:34,769 epoch 49 - iter 342/386 - loss 0.11839289 - samples/sec: 116.15 - lr: 0.100000
2022-11-06 21:31:40,611 epoch 49 - iter 380/386 - loss 0.11785760 - samples/sec: 104.12 - lr: 0.100000
2022-11-06 21:31:41,537 ----------------------------------------------------------------------------------------------------
2022-11-06 21:31:41,537 EPOCH 49 done: loss 0.1180 - lr 0.100000
2022-11-06 21:31:50,354 Evaluating as a multi-label problem: False
2022-11-06 21:31:50,469 TEST : loss 0.07601259648799896 - f1-score (micro avg)  0.9772
2022-11-06 21:31:50,581 BAD EPOCHS (no improvement): 0
2022-11-06 21:31:50,792 ----------------------------------------------------------------------------------------------------
2022-11-06 21:31:56,264 epoch 50 - iter 38/386 - loss 0.10859661 - samples/sec: 111.21 - lr: 0.100000
2022-11-06 21:32:01,873 epoch 50 - iter 76/386 - loss 0.11903546 - samples/sec: 108.47 - lr: 0.100000
2022-11-06 21:32:07,333 epoch 50 - iter 114/386 - loss 0.11678697 - samples/sec: 111.42 - lr: 0.100000
2022-11-06 21:32:13,408 epoch 50 - iter 152/386 - loss 0.11600897 - samples/sec: 100.53 - lr: 0.100000
2022-11-06 21:32:19,137 epoch 50 - iter 190/386 - loss 0.11566727 - samples/sec: 106.17 - lr: 0.100000
2022-11-06 21:32:24,914 epoch 50 - iter 228/386 - loss 0.11646796 - samples/sec: 105.31 - lr: 0.100000
2022-11-06 21:32:30,880 epoch 50 - iter 266/386 - loss 0.11725206 - samples/sec: 101.97 - lr: 0.100000
2022-11-06 21:32:36,731 epoch 50 - iter 304/386 - loss 0.11755446 - samples/sec: 103.98 - lr: 0.100000
2022-11-06 21:32:42,356 epoch 50 - iter 342/386 - loss 0.11906673 - samples/sec: 108.14 - lr: 0.100000
2022-11-06 21:32:47,819 epoch 50 - iter 380/386 - loss 0.11887510 - samples/sec: 111.35 - lr: 0.100000
2022-11-06 21:32:48,663 ----------------------------------------------------------------------------------------------------
2022-11-06 21:32:48,664 EPOCH 50 done: loss 0.1194 - lr 0.100000
2022-11-06 21:32:57,909 Evaluating as a multi-label problem: False
2022-11-06 21:32:58,026 TEST : loss 0.07529637962579727 - f1-score (micro avg)  0.9777
2022-11-06 21:32:58,140 BAD EPOCHS (no improvement): 1
2022-11-06 21:32:58,345 ----------------------------------------------------------------------------------------------------
2022-11-06 21:33:03,192 epoch 51 - iter 38/386 - loss 0.11452134 - samples/sec: 125.55 - lr: 0.100000
2022-11-06 21:33:08,686 epoch 51 - iter 76/386 - loss 0.11590443 - samples/sec: 110.74 - lr: 0.100000
2022-11-06 21:33:14,440 epoch 51 - iter 114/386 - loss 0.11784341 - samples/sec: 105.72 - lr: 0.100000
2022-11-06 21:33:19,823 epoch 51 - iter 152/386 - loss 0.11705536 - samples/sec: 113.02 - lr: 0.100000
2022-11-06 21:33:26,045 epoch 51 - iter 190/386 - loss 0.11543878 - samples/sec: 97.76 - lr: 0.100000
2022-11-06 21:33:31,639 epoch 51 - iter 228/386 - loss 0.11612966 - samples/sec: 108.74 - lr: 0.100000
2022-11-06 21:33:37,603 epoch 51 - iter 266/386 - loss 0.11650269 - samples/sec: 102.00 - lr: 0.100000
2022-11-06 21:33:43,427 epoch 51 - iter 304/386 - loss 0.11665112 - samples/sec: 104.46 - lr: 0.100000
2022-11-06 21:33:49,009 epoch 51 - iter 342/386 - loss 0.11723027 - samples/sec: 108.98 - lr: 0.100000
2022-11-06 21:33:54,280 epoch 51 - iter 380/386 - loss 0.11702633 - samples/sec: 115.41 - lr: 0.100000
2022-11-06 21:33:55,304 ----------------------------------------------------------------------------------------------------
2022-11-06 21:33:55,304 EPOCH 51 done: loss 0.1173 - lr 0.100000
2022-11-06 21:34:04,866 Evaluating as a multi-label problem: False
2022-11-06 21:34:04,983 TEST : loss 0.0740566998720169 - f1-score (micro avg)  0.9782
2022-11-06 21:34:05,097 BAD EPOCHS (no improvement): 0
2022-11-06 21:34:05,303 ----------------------------------------------------------------------------------------------------
2022-11-06 21:34:10,727 epoch 52 - iter 38/386 - loss 0.11155641 - samples/sec: 112.18 - lr: 0.100000
2022-11-06 21:34:15,463 epoch 52 - iter 76/386 - loss 0.10635453 - samples/sec: 128.47 - lr: 0.100000
2022-11-06 21:34:21,886 epoch 52 - iter 114/386 - loss 0.10919505 - samples/sec: 94.71 - lr: 0.100000
2022-11-06 21:34:27,388 epoch 52 - iter 152/386 - loss 0.11221453 - samples/sec: 110.56 - lr: 0.100000
2022-11-06 21:34:33,430 epoch 52 - iter 190/386 - loss 0.11321872 - samples/sec: 100.69 - lr: 0.100000
2022-11-06 21:34:39,236 epoch 52 - iter 228/386 - loss 0.11335050 - samples/sec: 104.76 - lr: 0.100000
2022-11-06 21:34:44,401 epoch 52 - iter 266/386 - loss 0.11362461 - samples/sec: 117.80 - lr: 0.100000
2022-11-06 21:34:49,871 epoch 52 - iter 304/386 - loss 0.11499895 - samples/sec: 111.23 - lr: 0.100000
2022-11-06 21:34:55,416 epoch 52 - iter 342/386 - loss 0.11483124 - samples/sec: 109.70 - lr: 0.100000
2022-11-06 21:35:00,713 epoch 52 - iter 380/386 - loss 0.11433020 - samples/sec: 114.85 - lr: 0.100000
2022-11-06 21:35:01,535 ----------------------------------------------------------------------------------------------------
2022-11-06 21:35:01,535 EPOCH 52 done: loss 0.1147 - lr 0.100000
2022-11-06 21:35:11,116 Evaluating as a multi-label problem: False
2022-11-06 21:35:11,232 TEST : loss 0.07622171938419342 - f1-score (micro avg)  0.9777
2022-11-06 21:35:11,346 BAD EPOCHS (no improvement): 0
2022-11-06 21:35:11,555 ----------------------------------------------------------------------------------------------------
2022-11-06 21:35:16,892 epoch 53 - iter 38/386 - loss 0.11911110 - samples/sec: 114.04 - lr: 0.100000
2022-11-06 21:35:22,478 epoch 53 - iter 76/386 - loss 0.11354567 - samples/sec: 108.90 - lr: 0.100000
2022-11-06 21:35:27,479 epoch 53 - iter 114/386 - loss 0.11330347 - samples/sec: 121.65 - lr: 0.100000
2022-11-06 21:35:32,942 epoch 53 - iter 152/386 - loss 0.11457219 - samples/sec: 111.37 - lr: 0.100000
2022-11-06 21:35:38,294 epoch 53 - iter 190/386 - loss 0.11374010 - samples/sec: 113.67 - lr: 0.100000
2022-11-06 21:35:44,439 epoch 53 - iter 228/386 - loss 0.11472213 - samples/sec: 98.99 - lr: 0.100000
2022-11-06 21:35:49,935 epoch 53 - iter 266/386 - loss 0.11446083 - samples/sec: 110.69 - lr: 0.100000
2022-11-06 21:35:55,321 epoch 53 - iter 304/386 - loss 0.11480098 - samples/sec: 112.95 - lr: 0.100000
2022-11-06 21:36:01,025 epoch 53 - iter 342/386 - loss 0.11431744 - samples/sec: 106.65 - lr: 0.100000
2022-11-06 21:36:06,693 epoch 53 - iter 380/386 - loss 0.11353443 - samples/sec: 107.33 - lr: 0.100000
2022-11-06 21:36:07,519 ----------------------------------------------------------------------------------------------------
2022-11-06 21:36:07,519 EPOCH 53 done: loss 0.1142 - lr 0.100000
2022-11-06 21:36:17,026 Evaluating as a multi-label problem: False
2022-11-06 21:36:17,170 TEST : loss 0.07737206667661667 - f1-score (micro avg)  0.9773
2022-11-06 21:36:17,289 BAD EPOCHS (no improvement): 0
2022-11-06 21:36:17,516 ----------------------------------------------------------------------------------------------------
2022-11-06 21:36:23,135 epoch 54 - iter 38/386 - loss 0.11378117 - samples/sec: 108.31 - lr: 0.100000
2022-11-06 21:36:28,739 epoch 54 - iter 76/386 - loss 0.11354071 - samples/sec: 108.56 - lr: 0.100000
2022-11-06 21:36:34,885 epoch 54 - iter 114/386 - loss 0.11360766 - samples/sec: 98.97 - lr: 0.100000
2022-11-06 21:36:40,077 epoch 54 - iter 152/386 - loss 0.11208863 - samples/sec: 117.19 - lr: 0.100000
2022-11-06 21:36:45,443 epoch 54 - iter 190/386 - loss 0.11447499 - samples/sec: 113.37 - lr: 0.100000
2022-11-06 21:36:51,117 epoch 54 - iter 228/386 - loss 0.11376877 - samples/sec: 107.22 - lr: 0.100000
2022-11-06 21:36:56,600 epoch 54 - iter 266/386 - loss 0.11313088 - samples/sec: 110.96 - lr: 0.100000
2022-11-06 21:37:02,149 epoch 54 - iter 304/386 - loss 0.11250098 - samples/sec: 109.63 - lr: 0.100000
2022-11-06 21:37:07,918 epoch 54 - iter 342/386 - loss 0.11255859 - samples/sec: 105.45 - lr: 0.100000
2022-11-06 21:37:13,229 epoch 54 - iter 380/386 - loss 0.11233373 - samples/sec: 114.54 - lr: 0.100000
2022-11-06 21:37:13,950 ----------------------------------------------------------------------------------------------------
2022-11-06 21:37:13,950 EPOCH 54 done: loss 0.1124 - lr 0.100000
2022-11-06 21:37:23,552 Evaluating as a multi-label problem: False
2022-11-06 21:37:23,669 TEST : loss 0.07463442534208298 - f1-score (micro avg)  0.9784
2022-11-06 21:37:23,783 BAD EPOCHS (no improvement): 0
2022-11-06 21:37:23,992 ----------------------------------------------------------------------------------------------------
2022-11-06 21:37:29,904 epoch 55 - iter 38/386 - loss 0.11729128 - samples/sec: 102.92 - lr: 0.100000
2022-11-06 21:37:35,325 epoch 55 - iter 76/386 - loss 0.11251135 - samples/sec: 112.21 - lr: 0.100000
2022-11-06 21:37:41,114 epoch 55 - iter 114/386 - loss 0.10996077 - samples/sec: 105.09 - lr: 0.100000
2022-11-06 21:37:46,552 epoch 55 - iter 152/386 - loss 0.11022640 - samples/sec: 111.86 - lr: 0.100000
2022-11-06 21:37:52,451 epoch 55 - iter 190/386 - loss 0.10943894 - samples/sec: 103.13 - lr: 0.100000
2022-11-06 21:37:57,751 epoch 55 - iter 228/386 - loss 0.10922557 - samples/sec: 114.80 - lr: 0.100000
2022-11-06 21:38:03,543 epoch 55 - iter 266/386 - loss 0.11133408 - samples/sec: 105.03 - lr: 0.100000
2022-11-06 21:38:08,825 epoch 55 - iter 304/386 - loss 0.11169533 - samples/sec: 115.16 - lr: 0.100000
2022-11-06 21:38:13,916 epoch 55 - iter 342/386 - loss 0.11234160 - samples/sec: 119.52 - lr: 0.100000
2022-11-06 21:38:19,174 epoch 55 - iter 380/386 - loss 0.11184340 - samples/sec: 115.69 - lr: 0.100000
2022-11-06 21:38:20,110 ----------------------------------------------------------------------------------------------------
2022-11-06 21:38:20,110 EPOCH 55 done: loss 0.1120 - lr 0.100000
2022-11-06 21:38:29,735 Evaluating as a multi-label problem: False
2022-11-06 21:38:29,852 TEST : loss 0.07638020068407059 - f1-score (micro avg)  0.9794
2022-11-06 21:38:29,966 BAD EPOCHS (no improvement): 0
2022-11-06 21:38:30,172 ----------------------------------------------------------------------------------------------------
2022-11-06 21:38:36,103 epoch 56 - iter 38/386 - loss 0.11105095 - samples/sec: 102.58 - lr: 0.100000
2022-11-06 21:38:41,324 epoch 56 - iter 76/386 - loss 0.11292715 - samples/sec: 116.54 - lr: 0.100000
2022-11-06 21:38:46,970 epoch 56 - iter 114/386 - loss 0.11197317 - samples/sec: 107.75 - lr: 0.100000
2022-11-06 21:38:52,483 epoch 56 - iter 152/386 - loss 0.10861220 - samples/sec: 110.34 - lr: 0.100000
2022-11-06 21:38:58,226 epoch 56 - iter 190/386 - loss 0.11033258 - samples/sec: 105.94 - lr: 0.100000
2022-11-06 21:39:03,351 epoch 56 - iter 228/386 - loss 0.11314777 - samples/sec: 118.70 - lr: 0.100000
2022-11-06 21:39:08,750 epoch 56 - iter 266/386 - loss 0.11319016 - samples/sec: 112.69 - lr: 0.100000
2022-11-06 21:39:14,663 epoch 56 - iter 304/386 - loss 0.11310103 - samples/sec: 102.88 - lr: 0.100000
2022-11-06 21:39:19,683 epoch 56 - iter 342/386 - loss 0.11376647 - samples/sec: 121.19 - lr: 0.100000
2022-11-06 21:39:25,519 epoch 56 - iter 380/386 - loss 0.11373646 - samples/sec: 104.22 - lr: 0.100000
2022-11-06 21:39:26,221 ----------------------------------------------------------------------------------------------------
2022-11-06 21:39:26,221 EPOCH 56 done: loss 0.1136 - lr 0.100000
2022-11-06 21:39:38,259 Evaluating as a multi-label problem: False
2022-11-06 21:39:38,376 TEST : loss 0.07799383252859116 - f1-score (micro avg)  0.9774
2022-11-06 21:39:38,489 BAD EPOCHS (no improvement): 1
2022-11-06 21:39:38,695 ----------------------------------------------------------------------------------------------------
2022-11-06 21:39:43,986 epoch 57 - iter 38/386 - loss 0.10619651 - samples/sec: 115.01 - lr: 0.100000
2022-11-06 21:39:49,781 epoch 57 - iter 76/386 - loss 0.10675645 - samples/sec: 104.98 - lr: 0.100000
2022-11-06 21:39:55,535 epoch 57 - iter 114/386 - loss 0.10678482 - samples/sec: 105.72 - lr: 0.100000
2022-11-06 21:40:01,371 epoch 57 - iter 152/386 - loss 0.10370251 - samples/sec: 104.24 - lr: 0.100000
2022-11-06 21:40:06,881 epoch 57 - iter 190/386 - loss 0.10679265 - samples/sec: 110.41 - lr: 0.100000
2022-11-06 21:40:12,219 epoch 57 - iter 228/386 - loss 0.10708625 - samples/sec: 113.97 - lr: 0.100000
2022-11-06 21:40:17,514 epoch 57 - iter 266/386 - loss 0.10891728 - samples/sec: 114.88 - lr: 0.100000
2022-11-06 21:40:22,851 epoch 57 - iter 304/386 - loss 0.10862710 - samples/sec: 113.99 - lr: 0.100000
2022-11-06 21:40:28,460 epoch 57 - iter 342/386 - loss 0.11015940 - samples/sec: 109.29 - lr: 0.100000
2022-11-06 21:40:34,126 epoch 57 - iter 380/386 - loss 0.10992567 - samples/sec: 107.37 - lr: 0.100000
2022-11-06 21:40:34,921 ----------------------------------------------------------------------------------------------------
2022-11-06 21:40:34,921 EPOCH 57 done: loss 0.1101 - lr 0.100000
2022-11-06 21:40:44,609 Evaluating as a multi-label problem: False
2022-11-06 21:40:44,727 TEST : loss 0.07584260404109955 - f1-score (micro avg)  0.9782
2022-11-06 21:40:44,841 BAD EPOCHS (no improvement): 0
2022-11-06 21:40:45,039 ----------------------------------------------------------------------------------------------------
2022-11-06 21:40:50,995 epoch 58 - iter 38/386 - loss 0.10393475 - samples/sec: 102.16 - lr: 0.100000
2022-11-06 21:40:56,311 epoch 58 - iter 76/386 - loss 0.10775986 - samples/sec: 114.45 - lr: 0.100000
2022-11-06 21:41:01,589 epoch 58 - iter 114/386 - loss 0.10667533 - samples/sec: 115.27 - lr: 0.100000
2022-11-06 21:41:07,012 epoch 58 - iter 152/386 - loss 0.10719735 - samples/sec: 112.16 - lr: 0.100000
2022-11-06 21:41:12,616 epoch 58 - iter 190/386 - loss 0.10740467 - samples/sec: 108.57 - lr: 0.100000
2022-11-06 21:41:18,171 epoch 58 - iter 228/386 - loss 0.10698504 - samples/sec: 109.50 - lr: 0.100000
2022-11-06 21:41:23,781 epoch 58 - iter 266/386 - loss 0.10806348 - samples/sec: 108.45 - lr: 0.100000
2022-11-06 21:41:29,415 epoch 58 - iter 304/386 - loss 0.10804363 - samples/sec: 107.98 - lr: 0.100000
2022-11-06 21:41:34,923 epoch 58 - iter 342/386 - loss 0.10848937 - samples/sec: 110.44 - lr: 0.100000
2022-11-06 21:41:40,542 epoch 58 - iter 380/386 - loss 0.10878650 - samples/sec: 108.27 - lr: 0.100000
2022-11-06 21:41:41,317 ----------------------------------------------------------------------------------------------------
2022-11-06 21:41:41,317 EPOCH 58 done: loss 0.1089 - lr 0.100000
2022-11-06 21:41:51,029 Evaluating as a multi-label problem: False
2022-11-06 21:41:51,146 TEST : loss 0.07553786039352417 - f1-score (micro avg)  0.9777
2022-11-06 21:41:51,259 BAD EPOCHS (no improvement): 0
2022-11-06 21:41:51,476 ----------------------------------------------------------------------------------------------------
2022-11-06 21:41:57,194 epoch 59 - iter 38/386 - loss 0.10729746 - samples/sec: 106.42 - lr: 0.100000
2022-11-06 21:42:02,764 epoch 59 - iter 76/386 - loss 0.10706038 - samples/sec: 109.21 - lr: 0.100000
2022-11-06 21:42:08,164 epoch 59 - iter 114/386 - loss 0.10819463 - samples/sec: 112.65 - lr: 0.100000
2022-11-06 21:42:13,862 epoch 59 - iter 152/386 - loss 0.11092300 - samples/sec: 107.23 - lr: 0.100000
2022-11-06 21:42:19,449 epoch 59 - iter 190/386 - loss 0.11033596 - samples/sec: 108.88 - lr: 0.100000
2022-11-06 21:42:25,236 epoch 59 - iter 228/386 - loss 0.10859445 - samples/sec: 105.11 - lr: 0.100000
2022-11-06 21:42:30,916 epoch 59 - iter 266/386 - loss 0.10859639 - samples/sec: 107.12 - lr: 0.100000
2022-11-06 21:42:36,552 epoch 59 - iter 304/386 - loss 0.10838577 - samples/sec: 107.93 - lr: 0.100000
2022-11-06 21:42:41,937 epoch 59 - iter 342/386 - loss 0.10856409 - samples/sec: 112.96 - lr: 0.100000
2022-11-06 21:42:47,304 epoch 59 - iter 380/386 - loss 0.10888417 - samples/sec: 113.36 - lr: 0.100000
2022-11-06 21:42:48,120 ----------------------------------------------------------------------------------------------------
2022-11-06 21:42:48,121 EPOCH 59 done: loss 0.1092 - lr 0.100000
2022-11-06 21:42:57,722 Evaluating as a multi-label problem: False
2022-11-06 21:42:57,837 TEST : loss 0.07385119795799255 - f1-score (micro avg)  0.9784
2022-11-06 21:42:57,951 BAD EPOCHS (no improvement): 1
2022-11-06 21:42:58,161 ----------------------------------------------------------------------------------------------------
2022-11-06 21:43:03,698 epoch 60 - iter 38/386 - loss 0.10381911 - samples/sec: 109.91 - lr: 0.100000
2022-11-06 21:43:09,144 epoch 60 - iter 76/386 - loss 0.10904296 - samples/sec: 111.69 - lr: 0.100000
2022-11-06 21:43:14,641 epoch 60 - iter 114/386 - loss 0.10938936 - samples/sec: 111.54 - lr: 0.100000
2022-11-06 21:43:20,357 epoch 60 - iter 152/386 - loss 0.10910729 - samples/sec: 106.41 - lr: 0.100000
2022-11-06 21:43:26,035 epoch 60 - iter 190/386 - loss 0.10992253 - samples/sec: 107.58 - lr: 0.100000
2022-11-06 21:43:31,751 epoch 60 - iter 228/386 - loss 0.10991650 - samples/sec: 106.43 - lr: 0.100000
2022-11-06 21:43:37,812 epoch 60 - iter 266/386 - loss 0.11025661 - samples/sec: 100.37 - lr: 0.100000
2022-11-06 21:43:43,686 epoch 60 - iter 304/386 - loss 0.11020600 - samples/sec: 103.55 - lr: 0.100000
2022-11-06 21:43:48,655 epoch 60 - iter 342/386 - loss 0.11033435 - samples/sec: 122.44 - lr: 0.100000
2022-11-06 21:43:54,168 epoch 60 - iter 380/386 - loss 0.11091046 - samples/sec: 110.35 - lr: 0.100000
2022-11-06 21:43:54,941 ----------------------------------------------------------------------------------------------------
2022-11-06 21:43:54,941 EPOCH 60 done: loss 0.1108 - lr 0.100000
2022-11-06 21:44:04,122 Evaluating as a multi-label problem: False
2022-11-06 21:44:04,237 TEST : loss 0.07543539255857468 - f1-score (micro avg)  0.9787
2022-11-06 21:44:04,349 BAD EPOCHS (no improvement): 2
2022-11-06 21:44:04,562 ----------------------------------------------------------------------------------------------------
2022-11-06 21:44:10,584 epoch 61 - iter 38/386 - loss 0.12045508 - samples/sec: 101.02 - lr: 0.100000
2022-11-06 21:44:16,219 epoch 61 - iter 76/386 - loss 0.11946764 - samples/sec: 107.97 - lr: 0.100000
2022-11-06 21:44:21,669 epoch 61 - iter 114/386 - loss 0.11543090 - samples/sec: 111.62 - lr: 0.100000
2022-11-06 21:44:27,225 epoch 61 - iter 152/386 - loss 0.11605390 - samples/sec: 109.48 - lr: 0.100000
2022-11-06 21:44:33,223 epoch 61 - iter 190/386 - loss 0.11461676 - samples/sec: 101.42 - lr: 0.100000
2022-11-06 21:44:39,012 epoch 61 - iter 228/386 - loss 0.11382792 - samples/sec: 105.09 - lr: 0.100000
2022-11-06 21:44:44,401 epoch 61 - iter 266/386 - loss 0.11310712 - samples/sec: 113.76 - lr: 0.100000
2022-11-06 21:44:49,754 epoch 61 - iter 304/386 - loss 0.11212259 - samples/sec: 113.65 - lr: 0.100000
2022-11-06 21:44:55,345 epoch 61 - iter 342/386 - loss 0.11132594 - samples/sec: 108.80 - lr: 0.100000
2022-11-06 21:45:00,835 epoch 61 - iter 380/386 - loss 0.11213902 - samples/sec: 110.81 - lr: 0.100000
2022-11-06 21:45:01,644 ----------------------------------------------------------------------------------------------------
2022-11-06 21:45:01,645 EPOCH 61 done: loss 0.1122 - lr 0.100000
2022-11-06 21:45:10,326 Evaluating as a multi-label problem: False
2022-11-06 21:45:10,441 TEST : loss 0.07580757886171341 - f1-score (micro avg)  0.9781
2022-11-06 21:45:10,554 BAD EPOCHS (no improvement): 3
2022-11-06 21:45:10,759 ----------------------------------------------------------------------------------------------------
2022-11-06 21:45:16,107 epoch 62 - iter 38/386 - loss 0.11185314 - samples/sec: 113.78 - lr: 0.100000
2022-11-06 21:45:21,736 epoch 62 - iter 76/386 - loss 0.10673749 - samples/sec: 108.07 - lr: 0.100000
2022-11-06 21:45:27,662 epoch 62 - iter 114/386 - loss 0.10907345 - samples/sec: 102.66 - lr: 0.100000
2022-11-06 21:45:33,872 epoch 62 - iter 152/386 - loss 0.10767255 - samples/sec: 97.95 - lr: 0.100000
2022-11-06 21:45:39,107 epoch 62 - iter 190/386 - loss 0.10876200 - samples/sec: 116.22 - lr: 0.100000
2022-11-06 21:45:44,769 epoch 62 - iter 228/386 - loss 0.10956018 - samples/sec: 107.44 - lr: 0.100000
2022-11-06 21:45:50,459 epoch 62 - iter 266/386 - loss 0.11019035 - samples/sec: 106.91 - lr: 0.100000
2022-11-06 21:45:56,323 epoch 62 - iter 304/386 - loss 0.11093248 - samples/sec: 103.73 - lr: 0.100000
2022-11-06 21:46:01,923 epoch 62 - iter 342/386 - loss 0.11064050 - samples/sec: 108.64 - lr: 0.100000
2022-11-06 21:46:07,180 epoch 62 - iter 380/386 - loss 0.11057009 - samples/sec: 115.72 - lr: 0.100000
2022-11-06 21:46:08,019 ----------------------------------------------------------------------------------------------------
2022-11-06 21:46:08,019 EPOCH 62 done: loss 0.1102 - lr 0.100000
2022-11-06 21:46:17,339 Evaluating as a multi-label problem: False
2022-11-06 21:46:17,453 TEST : loss 0.07879139482975006 - f1-score (micro avg)  0.9781
2022-11-06 21:46:17,565 Epoch    62: reducing learning rate of group 0 to 5.0000e-02.
2022-11-06 21:46:17,565 BAD EPOCHS (no improvement): 4
2022-11-06 21:46:17,766 ----------------------------------------------------------------------------------------------------
2022-11-06 21:46:22,757 epoch 63 - iter 38/386 - loss 0.10658703 - samples/sec: 121.93 - lr: 0.050000
2022-11-06 21:46:27,969 epoch 63 - iter 76/386 - loss 0.09978209 - samples/sec: 116.72 - lr: 0.050000
2022-11-06 21:46:33,517 epoch 63 - iter 114/386 - loss 0.10149720 - samples/sec: 109.64 - lr: 0.050000
2022-11-06 21:46:39,162 epoch 63 - iter 152/386 - loss 0.10215730 - samples/sec: 107.77 - lr: 0.050000
2022-11-06 21:46:44,390 epoch 63 - iter 190/386 - loss 0.10305351 - samples/sec: 116.35 - lr: 0.050000
2022-11-06 21:46:50,527 epoch 63 - iter 228/386 - loss 0.10224865 - samples/sec: 99.11 - lr: 0.050000
2022-11-06 21:46:56,167 epoch 63 - iter 266/386 - loss 0.10338093 - samples/sec: 107.87 - lr: 0.050000
2022-11-06 21:47:02,026 epoch 63 - iter 304/386 - loss 0.10281964 - samples/sec: 103.82 - lr: 0.050000
2022-11-06 21:47:07,641 epoch 63 - iter 342/386 - loss 0.10326028 - samples/sec: 108.34 - lr: 0.050000
2022-11-06 21:47:13,252 epoch 63 - iter 380/386 - loss 0.10281205 - samples/sec: 108.42 - lr: 0.050000
2022-11-06 21:47:14,056 ----------------------------------------------------------------------------------------------------
2022-11-06 21:47:14,056 EPOCH 63 done: loss 0.1023 - lr 0.050000
2022-11-06 21:47:23,528 Evaluating as a multi-label problem: False
2022-11-06 21:47:23,642 TEST : loss 0.07534310221672058 - f1-score (micro avg)  0.9785
2022-11-06 21:47:23,755 BAD EPOCHS (no improvement): 0
2022-11-06 21:47:23,957 ----------------------------------------------------------------------------------------------------
2022-11-06 21:47:29,857 epoch 64 - iter 38/386 - loss 0.09442249 - samples/sec: 103.14 - lr: 0.050000
2022-11-06 21:47:35,255 epoch 64 - iter 76/386 - loss 0.09624885 - samples/sec: 112.69 - lr: 0.050000
2022-11-06 21:47:40,478 epoch 64 - iter 114/386 - loss 0.09654897 - samples/sec: 116.46 - lr: 0.050000
2022-11-06 21:47:46,285 epoch 64 - iter 152/386 - loss 0.09732478 - samples/sec: 104.76 - lr: 0.050000
2022-11-06 21:47:51,986 epoch 64 - iter 190/386 - loss 0.09745275 - samples/sec: 106.70 - lr: 0.050000
2022-11-06 21:47:57,364 epoch 64 - iter 228/386 - loss 0.09955387 - samples/sec: 113.11 - lr: 0.050000
2022-11-06 21:48:02,959 epoch 64 - iter 266/386 - loss 0.10073669 - samples/sec: 108.74 - lr: 0.050000
2022-11-06 21:48:08,329 epoch 64 - iter 304/386 - loss 0.10014693 - samples/sec: 113.27 - lr: 0.050000
2022-11-06 21:48:13,610 epoch 64 - iter 342/386 - loss 0.09955591 - samples/sec: 115.19 - lr: 0.050000
2022-11-06 21:48:19,482 epoch 64 - iter 380/386 - loss 0.10003809 - samples/sec: 103.60 - lr: 0.050000
2022-11-06 21:48:20,306 ----------------------------------------------------------------------------------------------------
2022-11-06 21:48:20,306 EPOCH 64 done: loss 0.1000 - lr 0.050000
2022-11-06 21:48:29,824 Evaluating as a multi-label problem: False
2022-11-06 21:48:29,939 TEST : loss 0.07464543730020523 - f1-score (micro avg)  0.9787
2022-11-06 21:48:30,052 BAD EPOCHS (no improvement): 0
2022-11-06 21:48:30,265 ----------------------------------------------------------------------------------------------------
2022-11-06 21:48:36,046 epoch 65 - iter 38/386 - loss 0.09887412 - samples/sec: 105.25 - lr: 0.050000
2022-11-06 21:48:41,537 epoch 65 - iter 76/386 - loss 0.10023593 - samples/sec: 110.80 - lr: 0.050000
2022-11-06 21:48:47,002 epoch 65 - iter 114/386 - loss 0.09668348 - samples/sec: 111.31 - lr: 0.050000
2022-11-06 21:48:52,703 epoch 65 - iter 152/386 - loss 0.09943600 - samples/sec: 106.71 - lr: 0.050000
2022-11-06 21:48:57,968 epoch 65 - iter 190/386 - loss 0.09869457 - samples/sec: 115.55 - lr: 0.050000
2022-11-06 21:49:03,341 epoch 65 - iter 228/386 - loss 0.09852745 - samples/sec: 113.21 - lr: 0.050000
2022-11-06 21:49:08,708 epoch 65 - iter 266/386 - loss 0.09876531 - samples/sec: 113.37 - lr: 0.050000
2022-11-06 21:49:14,273 epoch 65 - iter 304/386 - loss 0.09762860 - samples/sec: 109.29 - lr: 0.050000
2022-11-06 21:49:19,749 epoch 65 - iter 342/386 - loss 0.09794980 - samples/sec: 111.10 - lr: 0.050000
2022-11-06 21:49:25,372 epoch 65 - iter 380/386 - loss 0.09788718 - samples/sec: 108.17 - lr: 0.050000
2022-11-06 21:49:26,241 ----------------------------------------------------------------------------------------------------
2022-11-06 21:49:26,242 EPOCH 65 done: loss 0.0977 - lr 0.050000
2022-11-06 21:49:35,664 Evaluating as a multi-label problem: False
2022-11-06 21:49:35,779 TEST : loss 0.0754692405462265 - f1-score (micro avg)  0.9788
2022-11-06 21:49:35,891 BAD EPOCHS (no improvement): 0
2022-11-06 21:49:36,102 ----------------------------------------------------------------------------------------------------
2022-11-06 21:49:41,628 epoch 66 - iter 38/386 - loss 0.10147858 - samples/sec: 110.11 - lr: 0.050000
2022-11-06 21:49:47,280 epoch 66 - iter 76/386 - loss 0.10001964 - samples/sec: 107.63 - lr: 0.050000
2022-11-06 21:49:52,958 epoch 66 - iter 114/386 - loss 0.09909022 - samples/sec: 107.14 - lr: 0.050000
2022-11-06 21:49:58,085 epoch 66 - iter 152/386 - loss 0.09947914 - samples/sec: 118.65 - lr: 0.050000
2022-11-06 21:50:03,139 epoch 66 - iter 190/386 - loss 0.09872543 - samples/sec: 120.39 - lr: 0.050000
2022-11-06 21:50:09,214 epoch 66 - iter 228/386 - loss 0.09837586 - samples/sec: 100.13 - lr: 0.050000
2022-11-06 21:50:14,663 epoch 66 - iter 266/386 - loss 0.09818549 - samples/sec: 111.64 - lr: 0.050000
2022-11-06 21:50:20,201 epoch 66 - iter 304/386 - loss 0.09828617 - samples/sec: 109.85 - lr: 0.050000
2022-11-06 21:50:25,865 epoch 66 - iter 342/386 - loss 0.09844885 - samples/sec: 107.40 - lr: 0.050000
2022-11-06 21:50:31,143 epoch 66 - iter 380/386 - loss 0.09810462 - samples/sec: 115.26 - lr: 0.050000
2022-11-06 21:50:32,093 ----------------------------------------------------------------------------------------------------
2022-11-06 21:50:32,093 EPOCH 66 done: loss 0.0985 - lr 0.050000
2022-11-06 21:50:44,000 Evaluating as a multi-label problem: False
2022-11-06 21:50:44,114 TEST : loss 0.07432317733764648 - f1-score (micro avg)  0.9786
2022-11-06 21:50:44,226 BAD EPOCHS (no improvement): 1
2022-11-06 21:50:44,434 ----------------------------------------------------------------------------------------------------
2022-11-06 21:50:50,060 epoch 67 - iter 38/386 - loss 0.09547788 - samples/sec: 108.15 - lr: 0.050000
2022-11-06 21:50:55,291 epoch 67 - iter 76/386 - loss 0.09522140 - samples/sec: 116.30 - lr: 0.050000
2022-11-06 21:51:00,893 epoch 67 - iter 114/386 - loss 0.09466178 - samples/sec: 108.59 - lr: 0.050000
2022-11-06 21:51:06,833 epoch 67 - iter 152/386 - loss 0.09304239 - samples/sec: 102.40 - lr: 0.050000
2022-11-06 21:51:12,028 epoch 67 - iter 190/386 - loss 0.09333640 - samples/sec: 117.11 - lr: 0.050000
2022-11-06 21:51:17,096 epoch 67 - iter 228/386 - loss 0.09409673 - samples/sec: 120.04 - lr: 0.050000
2022-11-06 21:51:22,697 epoch 67 - iter 266/386 - loss 0.09443416 - samples/sec: 108.62 - lr: 0.050000
2022-11-06 21:51:28,403 epoch 67 - iter 304/386 - loss 0.09389862 - samples/sec: 106.60 - lr: 0.050000
2022-11-06 21:51:34,208 epoch 67 - iter 342/386 - loss 0.09431186 - samples/sec: 105.56 - lr: 0.050000
2022-11-06 21:51:39,915 epoch 67 - iter 380/386 - loss 0.09465824 - samples/sec: 106.59 - lr: 0.050000
2022-11-06 21:51:40,804 ----------------------------------------------------------------------------------------------------
2022-11-06 21:51:40,805 EPOCH 67 done: loss 0.0947 - lr 0.050000
2022-11-06 21:51:50,263 Evaluating as a multi-label problem: False
2022-11-06 21:51:50,378 TEST : loss 0.07349660992622375 - f1-score (micro avg)  0.9798
2022-11-06 21:51:50,492 BAD EPOCHS (no improvement): 0
2022-11-06 21:51:50,702 ----------------------------------------------------------------------------------------------------
2022-11-06 21:51:56,209 epoch 68 - iter 38/386 - loss 0.09137315 - samples/sec: 110.51 - lr: 0.050000
2022-11-06 21:52:01,826 epoch 68 - iter 76/386 - loss 0.09330429 - samples/sec: 108.30 - lr: 0.050000
2022-11-06 21:52:07,193 epoch 68 - iter 114/386 - loss 0.09387846 - samples/sec: 113.35 - lr: 0.050000
2022-11-06 21:52:12,840 epoch 68 - iter 152/386 - loss 0.09271632 - samples/sec: 107.72 - lr: 0.050000
2022-11-06 21:52:18,316 epoch 68 - iter 190/386 - loss 0.09315752 - samples/sec: 111.09 - lr: 0.050000
2022-11-06 21:52:23,742 epoch 68 - iter 228/386 - loss 0.09312014 - samples/sec: 112.13 - lr: 0.050000
2022-11-06 21:52:28,716 epoch 68 - iter 266/386 - loss 0.09332579 - samples/sec: 122.31 - lr: 0.050000
2022-11-06 21:52:34,044 epoch 68 - iter 304/386 - loss 0.09372537 - samples/sec: 114.16 - lr: 0.050000
2022-11-06 21:52:39,864 epoch 68 - iter 342/386 - loss 0.09456013 - samples/sec: 104.54 - lr: 0.050000
2022-11-06 21:52:45,686 epoch 68 - iter 380/386 - loss 0.09506871 - samples/sec: 104.47 - lr: 0.050000
2022-11-06 21:52:46,446 ----------------------------------------------------------------------------------------------------
2022-11-06 21:52:46,446 EPOCH 68 done: loss 0.0954 - lr 0.050000
2022-11-06 21:52:55,924 Evaluating as a multi-label problem: False
2022-11-06 21:52:56,039 TEST : loss 0.07435259222984314 - f1-score (micro avg)  0.9791
2022-11-06 21:52:56,152 BAD EPOCHS (no improvement): 1
2022-11-06 21:52:56,363 ----------------------------------------------------------------------------------------------------
2022-11-06 21:53:01,852 epoch 69 - iter 38/386 - loss 0.09120895 - samples/sec: 110.84 - lr: 0.050000
2022-11-06 21:53:07,266 epoch 69 - iter 76/386 - loss 0.09158650 - samples/sec: 112.38 - lr: 0.050000
2022-11-06 21:53:13,000 epoch 69 - iter 114/386 - loss 0.09354837 - samples/sec: 106.09 - lr: 0.050000
2022-11-06 21:53:18,752 epoch 69 - iter 152/386 - loss 0.09241557 - samples/sec: 106.54 - lr: 0.050000
2022-11-06 21:53:24,432 epoch 69 - iter 190/386 - loss 0.09405392 - samples/sec: 107.10 - lr: 0.050000
2022-11-06 21:53:29,942 epoch 69 - iter 228/386 - loss 0.09437177 - samples/sec: 110.42 - lr: 0.050000
2022-11-06 21:53:35,360 epoch 69 - iter 266/386 - loss 0.09345038 - samples/sec: 112.28 - lr: 0.050000
2022-11-06 21:53:40,749 epoch 69 - iter 304/386 - loss 0.09349443 - samples/sec: 112.88 - lr: 0.050000
2022-11-06 21:53:46,313 epoch 69 - iter 342/386 - loss 0.09350680 - samples/sec: 109.33 - lr: 0.050000
2022-11-06 21:53:51,756 epoch 69 - iter 380/386 - loss 0.09377817 - samples/sec: 111.77 - lr: 0.050000
2022-11-06 21:53:52,543 ----------------------------------------------------------------------------------------------------
2022-11-06 21:53:52,543 EPOCH 69 done: loss 0.0937 - lr 0.050000
2022-11-06 21:54:02,057 Evaluating as a multi-label problem: False
2022-11-06 21:54:02,171 TEST : loss 0.0757945254445076 - f1-score (micro avg)  0.9784
2022-11-06 21:54:02,284 BAD EPOCHS (no improvement): 0
2022-11-06 21:54:02,486 ----------------------------------------------------------------------------------------------------
2022-11-06 21:54:08,097 epoch 70 - iter 38/386 - loss 0.08890860 - samples/sec: 108.45 - lr: 0.050000
2022-11-06 21:54:13,612 epoch 70 - iter 76/386 - loss 0.09276883 - samples/sec: 110.30 - lr: 0.050000
2022-11-06 21:54:19,103 epoch 70 - iter 114/386 - loss 0.09169168 - samples/sec: 110.78 - lr: 0.050000
2022-11-06 21:54:24,503 epoch 70 - iter 152/386 - loss 0.09332129 - samples/sec: 112.65 - lr: 0.050000
2022-11-06 21:54:30,183 epoch 70 - iter 190/386 - loss 0.09109459 - samples/sec: 107.10 - lr: 0.050000
2022-11-06 21:54:35,735 epoch 70 - iter 228/386 - loss 0.09359296 - samples/sec: 109.56 - lr: 0.050000
2022-11-06 21:54:41,443 epoch 70 - iter 266/386 - loss 0.09350137 - samples/sec: 106.59 - lr: 0.050000
2022-11-06 21:54:46,719 epoch 70 - iter 304/386 - loss 0.09343522 - samples/sec: 115.31 - lr: 0.050000
2022-11-06 21:54:52,170 epoch 70 - iter 342/386 - loss 0.09365079 - samples/sec: 111.59 - lr: 0.050000
2022-11-06 21:54:57,826 epoch 70 - iter 380/386 - loss 0.09379290 - samples/sec: 107.55 - lr: 0.050000
2022-11-06 21:54:58,474 ----------------------------------------------------------------------------------------------------
2022-11-06 21:54:58,474 EPOCH 70 done: loss 0.0937 - lr 0.050000
2022-11-06 21:55:07,791 Evaluating as a multi-label problem: False
2022-11-06 21:55:07,905 TEST : loss 0.0764009952545166 - f1-score (micro avg)  0.9789
2022-11-06 21:55:08,017 BAD EPOCHS (no improvement): 0
2022-11-06 21:55:08,221 ----------------------------------------------------------------------------------------------------
2022-11-06 21:55:13,770 epoch 71 - iter 38/386 - loss 0.08554802 - samples/sec: 109.64 - lr: 0.050000
2022-11-06 21:55:19,301 epoch 71 - iter 76/386 - loss 0.09025236 - samples/sec: 110.00 - lr: 0.050000
2022-11-06 21:55:25,041 epoch 71 - iter 114/386 - loss 0.09217128 - samples/sec: 105.97 - lr: 0.050000
2022-11-06 21:55:30,809 epoch 71 - iter 152/386 - loss 0.09300167 - samples/sec: 105.47 - lr: 0.050000
2022-11-06 21:55:36,154 epoch 71 - iter 190/386 - loss 0.09282890 - samples/sec: 113.80 - lr: 0.050000
2022-11-06 21:55:41,243 epoch 71 - iter 228/386 - loss 0.09400901 - samples/sec: 119.54 - lr: 0.050000
2022-11-06 21:55:46,720 epoch 71 - iter 266/386 - loss 0.09346036 - samples/sec: 111.93 - lr: 0.050000
2022-11-06 21:55:52,245 epoch 71 - iter 304/386 - loss 0.09346459 - samples/sec: 110.11 - lr: 0.050000
2022-11-06 21:55:58,282 epoch 71 - iter 342/386 - loss 0.09398476 - samples/sec: 100.75 - lr: 0.050000
2022-11-06 21:56:03,625 epoch 71 - iter 380/386 - loss 0.09421206 - samples/sec: 113.87 - lr: 0.050000
2022-11-06 21:56:04,435 ----------------------------------------------------------------------------------------------------
2022-11-06 21:56:04,435 EPOCH 71 done: loss 0.0942 - lr 0.050000
2022-11-06 21:56:13,395 Evaluating as a multi-label problem: False
2022-11-06 21:56:13,509 TEST : loss 0.07746423035860062 - f1-score (micro avg)  0.9776
2022-11-06 21:56:13,620 BAD EPOCHS (no improvement): 1
2022-11-06 21:56:13,824 ----------------------------------------------------------------------------------------------------
2022-11-06 21:56:19,279 epoch 72 - iter 38/386 - loss 0.08836120 - samples/sec: 111.56 - lr: 0.050000
2022-11-06 21:56:25,113 epoch 72 - iter 76/386 - loss 0.09152661 - samples/sec: 104.27 - lr: 0.050000
2022-11-06 21:56:30,762 epoch 72 - iter 114/386 - loss 0.09266384 - samples/sec: 107.67 - lr: 0.050000
2022-11-06 21:56:36,310 epoch 72 - iter 152/386 - loss 0.09210641 - samples/sec: 109.66 - lr: 0.050000
2022-11-06 21:56:41,389 epoch 72 - iter 190/386 - loss 0.09198951 - samples/sec: 119.76 - lr: 0.050000
2022-11-06 21:56:46,984 epoch 72 - iter 228/386 - loss 0.09362383 - samples/sec: 108.73 - lr: 0.050000
2022-11-06 21:56:52,622 epoch 72 - iter 266/386 - loss 0.09271150 - samples/sec: 107.89 - lr: 0.050000
2022-11-06 21:56:58,105 epoch 72 - iter 304/386 - loss 0.09327678 - samples/sec: 110.95 - lr: 0.050000
2022-11-06 21:57:03,413 epoch 72 - iter 342/386 - loss 0.09330768 - samples/sec: 114.62 - lr: 0.050000
2022-11-06 21:57:09,064 epoch 72 - iter 380/386 - loss 0.09305626 - samples/sec: 107.65 - lr: 0.050000
2022-11-06 21:57:09,872 ----------------------------------------------------------------------------------------------------
2022-11-06 21:57:09,872 EPOCH 72 done: loss 0.0932 - lr 0.050000
2022-11-06 21:57:18,688 Evaluating as a multi-label problem: False
2022-11-06 21:57:18,802 TEST : loss 0.07610904425382614 - f1-score (micro avg)  0.9783
2022-11-06 21:57:18,912 BAD EPOCHS (no improvement): 0
2022-11-06 21:57:19,120 ----------------------------------------------------------------------------------------------------
2022-11-06 21:57:24,632 epoch 73 - iter 38/386 - loss 0.08300037 - samples/sec: 110.39 - lr: 0.050000
2022-11-06 21:57:30,262 epoch 73 - iter 76/386 - loss 0.08575533 - samples/sec: 108.06 - lr: 0.050000
2022-11-06 21:57:35,831 epoch 73 - iter 114/386 - loss 0.08793053 - samples/sec: 109.98 - lr: 0.050000
2022-11-06 21:57:41,583 epoch 73 - iter 152/386 - loss 0.09031249 - samples/sec: 105.76 - lr: 0.050000
2022-11-06 21:57:47,239 epoch 73 - iter 190/386 - loss 0.09171636 - samples/sec: 107.55 - lr: 0.050000
2022-11-06 21:57:52,452 epoch 73 - iter 228/386 - loss 0.09110892 - samples/sec: 117.66 - lr: 0.050000
2022-11-06 21:57:58,120 epoch 73 - iter 266/386 - loss 0.09069697 - samples/sec: 107.33 - lr: 0.050000
2022-11-06 21:58:03,045 epoch 73 - iter 304/386 - loss 0.09137763 - samples/sec: 123.52 - lr: 0.050000
2022-11-06 21:58:08,421 epoch 73 - iter 342/386 - loss 0.09163594 - samples/sec: 113.15 - lr: 0.050000
2022-11-06 21:58:14,624 epoch 73 - iter 380/386 - loss 0.09233790 - samples/sec: 98.07 - lr: 0.050000
2022-11-06 21:58:15,352 ----------------------------------------------------------------------------------------------------
2022-11-06 21:58:15,352 EPOCH 73 done: loss 0.0927 - lr 0.050000
2022-11-06 21:58:24,784 Evaluating as a multi-label problem: False
2022-11-06 21:58:24,897 TEST : loss 0.07682343572378159 - f1-score (micro avg)  0.9791
2022-11-06 21:58:25,009 BAD EPOCHS (no improvement): 0
2022-11-06 21:58:25,213 ----------------------------------------------------------------------------------------------------
2022-11-06 21:58:30,702 epoch 74 - iter 38/386 - loss 0.09071120 - samples/sec: 110.85 - lr: 0.050000
2022-11-06 21:58:36,204 epoch 74 - iter 76/386 - loss 0.09116074 - samples/sec: 110.56 - lr: 0.050000
2022-11-06 21:58:41,481 epoch 74 - iter 114/386 - loss 0.09187654 - samples/sec: 115.28 - lr: 0.050000
2022-11-06 21:58:46,655 epoch 74 - iter 152/386 - loss 0.09141319 - samples/sec: 117.58 - lr: 0.050000
2022-11-06 21:58:52,078 epoch 74 - iter 190/386 - loss 0.09142797 - samples/sec: 112.17 - lr: 0.050000
2022-11-06 21:58:57,689 epoch 74 - iter 228/386 - loss 0.08984326 - samples/sec: 108.42 - lr: 0.050000
2022-11-06 21:59:03,721 epoch 74 - iter 266/386 - loss 0.08897908 - samples/sec: 100.84 - lr: 0.050000
2022-11-06 21:59:08,915 epoch 74 - iter 304/386 - loss 0.08840306 - samples/sec: 117.13 - lr: 0.050000
2022-11-06 21:59:14,226 epoch 74 - iter 342/386 - loss 0.08851215 - samples/sec: 114.55 - lr: 0.050000
2022-11-06 21:59:19,603 epoch 74 - iter 380/386 - loss 0.08856454 - samples/sec: 113.13 - lr: 0.050000
2022-11-06 21:59:20,499 ----------------------------------------------------------------------------------------------------
2022-11-06 21:59:20,499 EPOCH 74 done: loss 0.0887 - lr 0.050000
2022-11-06 21:59:29,816 Evaluating as a multi-label problem: False
2022-11-06 21:59:29,929 TEST : loss 0.07699835300445557 - f1-score (micro avg)  0.9795
2022-11-06 21:59:30,041 BAD EPOCHS (no improvement): 0
2022-11-06 21:59:30,248 ----------------------------------------------------------------------------------------------------
2022-11-06 21:59:35,938 epoch 75 - iter 38/386 - loss 0.09010983 - samples/sec: 106.93 - lr: 0.050000
2022-11-06 21:59:41,512 epoch 75 - iter 76/386 - loss 0.08888721 - samples/sec: 109.14 - lr: 0.050000
2022-11-06 21:59:46,674 epoch 75 - iter 114/386 - loss 0.08627651 - samples/sec: 117.85 - lr: 0.050000
2022-11-06 21:59:51,815 epoch 75 - iter 152/386 - loss 0.08648960 - samples/sec: 118.34 - lr: 0.050000
2022-11-06 21:59:57,162 epoch 75 - iter 190/386 - loss 0.08750875 - samples/sec: 113.77 - lr: 0.050000
2022-11-06 22:00:02,844 epoch 75 - iter 228/386 - loss 0.08733463 - samples/sec: 107.06 - lr: 0.050000
2022-11-06 22:00:08,984 epoch 75 - iter 266/386 - loss 0.08776781 - samples/sec: 99.07 - lr: 0.050000
2022-11-06 22:00:14,611 epoch 75 - iter 304/386 - loss 0.08859041 - samples/sec: 108.11 - lr: 0.050000
2022-11-06 22:00:19,915 epoch 75 - iter 342/386 - loss 0.09008267 - samples/sec: 114.70 - lr: 0.050000
2022-11-06 22:00:25,381 epoch 75 - iter 380/386 - loss 0.09035732 - samples/sec: 111.29 - lr: 0.050000
2022-11-06 22:00:26,276 ----------------------------------------------------------------------------------------------------
2022-11-06 22:00:26,277 EPOCH 75 done: loss 0.0905 - lr 0.050000
2022-11-06 22:00:35,742 Evaluating as a multi-label problem: False
2022-11-06 22:00:35,857 TEST : loss 0.07650885730981827 - f1-score (micro avg)  0.9794
2022-11-06 22:00:35,969 BAD EPOCHS (no improvement): 1
2022-11-06 22:00:36,169 ----------------------------------------------------------------------------------------------------
2022-11-06 22:00:41,371 epoch 76 - iter 38/386 - loss 0.08535642 - samples/sec: 116.98 - lr: 0.050000
2022-11-06 22:00:46,936 epoch 76 - iter 76/386 - loss 0.08909989 - samples/sec: 109.30 - lr: 0.050000
2022-11-06 22:00:52,273 epoch 76 - iter 114/386 - loss 0.08858041 - samples/sec: 114.00 - lr: 0.050000
2022-11-06 22:00:57,019 epoch 76 - iter 152/386 - loss 0.09111687 - samples/sec: 128.16 - lr: 0.050000
2022-11-06 22:01:01,932 epoch 76 - iter 190/386 - loss 0.09184363 - samples/sec: 123.84 - lr: 0.050000
2022-11-06 22:01:07,359 epoch 76 - iter 228/386 - loss 0.09209636 - samples/sec: 112.10 - lr: 0.050000
2022-11-06 22:01:12,927 epoch 76 - iter 266/386 - loss 0.09302243 - samples/sec: 109.24 - lr: 0.050000
2022-11-06 22:01:18,650 epoch 76 - iter 304/386 - loss 0.09212630 - samples/sec: 106.30 - lr: 0.050000
2022-11-06 22:01:24,682 epoch 76 - iter 342/386 - loss 0.09211552 - samples/sec: 100.85 - lr: 0.050000
2022-11-06 22:01:30,494 epoch 76 - iter 380/386 - loss 0.09221232 - samples/sec: 104.67 - lr: 0.050000
2022-11-06 22:01:31,413 ----------------------------------------------------------------------------------------------------
2022-11-06 22:01:31,413 EPOCH 76 done: loss 0.0920 - lr 0.050000
2022-11-06 22:01:43,220 Evaluating as a multi-label problem: False
2022-11-06 22:01:43,334 TEST : loss 0.07444333285093307 - f1-score (micro avg)  0.9793
2022-11-06 22:01:43,445 BAD EPOCHS (no improvement): 2
2022-11-06 22:01:43,657 ----------------------------------------------------------------------------------------------------
2022-11-06 22:01:49,340 epoch 77 - iter 38/386 - loss 0.08895759 - samples/sec: 107.07 - lr: 0.050000
2022-11-06 22:01:54,722 epoch 77 - iter 76/386 - loss 0.08888293 - samples/sec: 113.03 - lr: 0.050000
2022-11-06 22:02:00,637 epoch 77 - iter 114/386 - loss 0.09145351 - samples/sec: 102.84 - lr: 0.050000
2022-11-06 22:02:05,857 epoch 77 - iter 152/386 - loss 0.09274616 - samples/sec: 116.55 - lr: 0.050000
2022-11-06 22:02:10,767 epoch 77 - iter 190/386 - loss 0.09381220 - samples/sec: 123.90 - lr: 0.050000
2022-11-06 22:02:16,246 epoch 77 - iter 228/386 - loss 0.09315648 - samples/sec: 111.03 - lr: 0.050000
2022-11-06 22:02:21,442 epoch 77 - iter 266/386 - loss 0.09256458 - samples/sec: 118.03 - lr: 0.050000
2022-11-06 22:02:27,103 epoch 77 - iter 304/386 - loss 0.09210060 - samples/sec: 107.46 - lr: 0.050000
2022-11-06 22:02:32,763 epoch 77 - iter 342/386 - loss 0.09166523 - samples/sec: 107.48 - lr: 0.050000
2022-11-06 22:02:38,387 epoch 77 - iter 380/386 - loss 0.09144354 - samples/sec: 108.15 - lr: 0.050000
2022-11-06 22:02:39,265 ----------------------------------------------------------------------------------------------------
2022-11-06 22:02:39,266 EPOCH 77 done: loss 0.0915 - lr 0.050000
2022-11-06 22:02:48,671 Evaluating as a multi-label problem: False
2022-11-06 22:02:48,785 TEST : loss 0.07569604367017746 - f1-score (micro avg)  0.9792
2022-11-06 22:02:48,897 BAD EPOCHS (no improvement): 3
2022-11-06 22:02:49,105 ----------------------------------------------------------------------------------------------------
2022-11-06 22:02:54,891 epoch 78 - iter 38/386 - loss 0.08376892 - samples/sec: 105.17 - lr: 0.050000
2022-11-06 22:03:00,207 epoch 78 - iter 76/386 - loss 0.08734464 - samples/sec: 114.43 - lr: 0.050000
2022-11-06 22:03:05,970 epoch 78 - iter 114/386 - loss 0.08772487 - samples/sec: 105.54 - lr: 0.050000
2022-11-06 22:03:11,595 epoch 78 - iter 152/386 - loss 0.08741174 - samples/sec: 108.15 - lr: 0.050000
2022-11-06 22:03:17,144 epoch 78 - iter 190/386 - loss 0.08621154 - samples/sec: 109.62 - lr: 0.050000
2022-11-06 22:03:22,343 epoch 78 - iter 228/386 - loss 0.08552517 - samples/sec: 117.01 - lr: 0.050000
2022-11-06 22:03:27,433 epoch 78 - iter 266/386 - loss 0.08659634 - samples/sec: 119.53 - lr: 0.050000
2022-11-06 22:03:32,676 epoch 78 - iter 304/386 - loss 0.08698140 - samples/sec: 116.03 - lr: 0.050000
2022-11-06 22:03:38,658 epoch 78 - iter 342/386 - loss 0.08706887 - samples/sec: 101.69 - lr: 0.050000
2022-11-06 22:03:44,138 epoch 78 - iter 380/386 - loss 0.08741793 - samples/sec: 111.00 - lr: 0.050000
2022-11-06 22:03:44,857 ----------------------------------------------------------------------------------------------------
2022-11-06 22:03:44,857 EPOCH 78 done: loss 0.0875 - lr 0.050000
2022-11-06 22:03:54,244 Evaluating as a multi-label problem: False
2022-11-06 22:03:54,358 TEST : loss 0.07991818338632584 - f1-score (micro avg)  0.9787
2022-11-06 22:03:54,471 BAD EPOCHS (no improvement): 0
2022-11-06 22:03:54,685 ----------------------------------------------------------------------------------------------------
2022-11-06 22:03:59,993 epoch 79 - iter 38/386 - loss 0.08928639 - samples/sec: 114.62 - lr: 0.050000
2022-11-06 22:04:05,218 epoch 79 - iter 76/386 - loss 0.08696352 - samples/sec: 116.44 - lr: 0.050000
2022-11-06 22:04:10,821 epoch 79 - iter 114/386 - loss 0.08802286 - samples/sec: 108.57 - lr: 0.050000
2022-11-06 22:04:16,869 epoch 79 - iter 152/386 - loss 0.08901779 - samples/sec: 100.58 - lr: 0.050000
2022-11-06 22:04:22,263 epoch 79 - iter 190/386 - loss 0.08795694 - samples/sec: 112.78 - lr: 0.050000
2022-11-06 22:04:27,565 epoch 79 - iter 228/386 - loss 0.08824170 - samples/sec: 114.73 - lr: 0.050000
2022-11-06 22:04:32,608 epoch 79 - iter 266/386 - loss 0.08800000 - samples/sec: 120.63 - lr: 0.050000
2022-11-06 22:04:37,722 epoch 79 - iter 304/386 - loss 0.08685455 - samples/sec: 118.97 - lr: 0.050000
2022-11-06 22:04:43,314 epoch 79 - iter 342/386 - loss 0.08722570 - samples/sec: 108.77 - lr: 0.050000
2022-11-06 22:04:49,093 epoch 79 - iter 380/386 - loss 0.08745041 - samples/sec: 105.27 - lr: 0.050000
2022-11-06 22:04:50,042 ----------------------------------------------------------------------------------------------------
2022-11-06 22:04:50,042 EPOCH 79 done: loss 0.0875 - lr 0.050000
2022-11-06 22:04:59,310 Evaluating as a multi-label problem: False
2022-11-06 22:04:59,424 TEST : loss 0.07551249861717224 - f1-score (micro avg)  0.9797
2022-11-06 22:04:59,535 BAD EPOCHS (no improvement): 0
2022-11-06 22:04:59,744 ----------------------------------------------------------------------------------------------------
2022-11-06 22:05:04,922 epoch 80 - iter 38/386 - loss 0.09880198 - samples/sec: 117.52 - lr: 0.050000
2022-11-06 22:05:11,034 epoch 80 - iter 76/386 - loss 0.09604834 - samples/sec: 99.52 - lr: 0.050000
2022-11-06 22:05:16,842 epoch 80 - iter 114/386 - loss 0.09443440 - samples/sec: 104.74 - lr: 0.050000
2022-11-06 22:05:22,343 epoch 80 - iter 152/386 - loss 0.09369188 - samples/sec: 110.59 - lr: 0.050000
2022-11-06 22:05:27,484 epoch 80 - iter 190/386 - loss 0.09212382 - samples/sec: 118.33 - lr: 0.050000
2022-11-06 22:05:32,960 epoch 80 - iter 228/386 - loss 0.09101292 - samples/sec: 111.09 - lr: 0.050000
2022-11-06 22:05:38,305 epoch 80 - iter 266/386 - loss 0.09099899 - samples/sec: 113.82 - lr: 0.050000
2022-11-06 22:05:44,025 epoch 80 - iter 304/386 - loss 0.09116268 - samples/sec: 106.36 - lr: 0.050000
2022-11-06 22:05:49,444 epoch 80 - iter 342/386 - loss 0.09095614 - samples/sec: 112.25 - lr: 0.050000
2022-11-06 22:05:54,693 epoch 80 - iter 380/386 - loss 0.09117192 - samples/sec: 115.91 - lr: 0.050000
2022-11-06 22:05:55,455 ----------------------------------------------------------------------------------------------------
2022-11-06 22:05:55,455 EPOCH 80 done: loss 0.0910 - lr 0.050000
2022-11-06 22:06:04,822 Evaluating as a multi-label problem: False
2022-11-06 22:06:04,939 TEST : loss 0.07765697687864304 - f1-score (micro avg)  0.9791
2022-11-06 22:06:05,051 BAD EPOCHS (no improvement): 1
2022-11-06 22:06:05,262 ----------------------------------------------------------------------------------------------------
2022-11-06 22:06:10,885 epoch 81 - iter 38/386 - loss 0.08081290 - samples/sec: 108.20 - lr: 0.050000
2022-11-06 22:06:16,437 epoch 81 - iter 76/386 - loss 0.08337375 - samples/sec: 109.57 - lr: 0.050000
2022-11-06 22:06:22,013 epoch 81 - iter 114/386 - loss 0.08302250 - samples/sec: 109.10 - lr: 0.050000
2022-11-06 22:06:27,395 epoch 81 - iter 152/386 - loss 0.08480407 - samples/sec: 113.93 - lr: 0.050000
2022-11-06 22:06:33,387 epoch 81 - iter 190/386 - loss 0.08609702 - samples/sec: 101.51 - lr: 0.050000
2022-11-06 22:06:39,214 epoch 81 - iter 228/386 - loss 0.08554252 - samples/sec: 104.41 - lr: 0.050000
2022-11-06 22:06:44,743 epoch 81 - iter 266/386 - loss 0.08462515 - samples/sec: 110.01 - lr: 0.050000
2022-11-06 22:06:50,380 epoch 81 - iter 304/386 - loss 0.08538954 - samples/sec: 107.91 - lr: 0.050000
2022-11-06 22:06:55,651 epoch 81 - iter 342/386 - loss 0.08586110 - samples/sec: 115.41 - lr: 0.050000
2022-11-06 22:07:00,762 epoch 81 - iter 380/386 - loss 0.08543691 - samples/sec: 119.04 - lr: 0.050000
2022-11-06 22:07:01,391 ----------------------------------------------------------------------------------------------------
2022-11-06 22:07:01,391 EPOCH 81 done: loss 0.0858 - lr 0.050000
2022-11-06 22:07:10,242 Evaluating as a multi-label problem: False
2022-11-06 22:07:10,356 TEST : loss 0.07825277745723724 - f1-score (micro avg)  0.9793
2022-11-06 22:07:10,468 BAD EPOCHS (no improvement): 0
2022-11-06 22:07:10,670 ----------------------------------------------------------------------------------------------------
2022-11-06 22:07:16,234 epoch 82 - iter 38/386 - loss 0.08629919 - samples/sec: 109.36 - lr: 0.050000
2022-11-06 22:07:22,344 epoch 82 - iter 76/386 - loss 0.08451248 - samples/sec: 99.56 - lr: 0.050000
2022-11-06 22:07:28,020 epoch 82 - iter 114/386 - loss 0.08580786 - samples/sec: 107.17 - lr: 0.050000
2022-11-06 22:07:33,590 epoch 82 - iter 152/386 - loss 0.08754692 - samples/sec: 109.21 - lr: 0.050000
2022-11-06 22:07:38,703 epoch 82 - iter 190/386 - loss 0.08805859 - samples/sec: 118.99 - lr: 0.050000
2022-11-06 22:07:44,067 epoch 82 - iter 228/386 - loss 0.08781350 - samples/sec: 113.42 - lr: 0.050000
2022-11-06 22:07:49,722 epoch 82 - iter 266/386 - loss 0.08812045 - samples/sec: 107.57 - lr: 0.050000
2022-11-06 22:07:55,087 epoch 82 - iter 304/386 - loss 0.08978244 - samples/sec: 113.38 - lr: 0.050000
2022-11-06 22:08:00,793 epoch 82 - iter 342/386 - loss 0.08986460 - samples/sec: 106.62 - lr: 0.050000
2022-11-06 22:08:05,834 epoch 82 - iter 380/386 - loss 0.08970849 - samples/sec: 120.69 - lr: 0.050000
2022-11-06 22:08:06,579 ----------------------------------------------------------------------------------------------------
2022-11-06 22:08:06,579 EPOCH 82 done: loss 0.0899 - lr 0.050000
2022-11-06 22:08:15,556 Evaluating as a multi-label problem: False
2022-11-06 22:08:15,670 TEST : loss 0.077557772397995 - f1-score (micro avg)  0.9795
2022-11-06 22:08:15,782 BAD EPOCHS (no improvement): 1
2022-11-06 22:08:15,988 ----------------------------------------------------------------------------------------------------
2022-11-06 22:08:21,824 epoch 83 - iter 38/386 - loss 0.08818104 - samples/sec: 104.27 - lr: 0.050000
2022-11-06 22:08:27,128 epoch 83 - iter 76/386 - loss 0.08980860 - samples/sec: 114.68 - lr: 0.050000
2022-11-06 22:08:32,632 epoch 83 - iter 114/386 - loss 0.08931832 - samples/sec: 110.53 - lr: 0.050000
2022-11-06 22:08:37,949 epoch 83 - iter 152/386 - loss 0.08688520 - samples/sec: 114.43 - lr: 0.050000
2022-11-06 22:08:43,185 epoch 83 - iter 190/386 - loss 0.08696988 - samples/sec: 116.17 - lr: 0.050000
2022-11-06 22:08:48,329 epoch 83 - iter 228/386 - loss 0.08623230 - samples/sec: 118.28 - lr: 0.050000
2022-11-06 22:08:54,180 epoch 83 - iter 266/386 - loss 0.08715665 - samples/sec: 103.96 - lr: 0.050000
2022-11-06 22:08:59,938 epoch 83 - iter 304/386 - loss 0.08655812 - samples/sec: 105.64 - lr: 0.050000
2022-11-06 22:09:05,407 epoch 83 - iter 342/386 - loss 0.08648025 - samples/sec: 111.23 - lr: 0.050000
2022-11-06 22:09:11,416 epoch 83 - iter 380/386 - loss 0.08651596 - samples/sec: 101.25 - lr: 0.050000
2022-11-06 22:09:12,286 ----------------------------------------------------------------------------------------------------
2022-11-06 22:09:12,286 EPOCH 83 done: loss 0.0868 - lr 0.050000
2022-11-06 22:09:21,669 Evaluating as a multi-label problem: False
2022-11-06 22:09:21,783 TEST : loss 0.07837608456611633 - f1-score (micro avg)  0.9794
2022-11-06 22:09:21,895 BAD EPOCHS (no improvement): 2
2022-11-06 22:09:22,100 ----------------------------------------------------------------------------------------------------
2022-11-06 22:09:27,084 epoch 84 - iter 38/386 - loss 0.08085540 - samples/sec: 122.10 - lr: 0.050000
2022-11-06 22:09:32,394 epoch 84 - iter 76/386 - loss 0.08316482 - samples/sec: 114.55 - lr: 0.050000
2022-11-06 22:09:37,928 epoch 84 - iter 114/386 - loss 0.08390017 - samples/sec: 109.92 - lr: 0.050000
2022-11-06 22:09:43,188 epoch 84 - iter 152/386 - loss 0.08477912 - samples/sec: 115.65 - lr: 0.050000
2022-11-06 22:09:48,647 epoch 84 - iter 190/386 - loss 0.08779591 - samples/sec: 111.44 - lr: 0.050000
2022-11-06 22:09:54,140 epoch 84 - iter 228/386 - loss 0.08604904 - samples/sec: 110.75 - lr: 0.050000
2022-11-06 22:09:59,696 epoch 84 - iter 266/386 - loss 0.08526498 - samples/sec: 109.50 - lr: 0.050000
2022-11-06 22:10:05,344 epoch 84 - iter 304/386 - loss 0.08543825 - samples/sec: 107.71 - lr: 0.050000
2022-11-06 22:10:11,119 epoch 84 - iter 342/386 - loss 0.08616034 - samples/sec: 105.33 - lr: 0.050000
2022-11-06 22:10:16,300 epoch 84 - iter 380/386 - loss 0.08594080 - samples/sec: 117.42 - lr: 0.050000
2022-11-06 22:10:17,085 ----------------------------------------------------------------------------------------------------
2022-11-06 22:10:17,085 EPOCH 84 done: loss 0.0859 - lr 0.050000
2022-11-06 22:10:26,482 Evaluating as a multi-label problem: False
2022-11-06 22:10:26,595 TEST : loss 0.07908571511507034 - f1-score (micro avg)  0.9791
2022-11-06 22:10:26,707 BAD EPOCHS (no improvement): 3
2022-11-06 22:10:26,916 ----------------------------------------------------------------------------------------------------
2022-11-06 22:10:32,295 epoch 85 - iter 38/386 - loss 0.08409247 - samples/sec: 113.11 - lr: 0.050000
2022-11-06 22:10:37,764 epoch 85 - iter 76/386 - loss 0.08732911 - samples/sec: 111.25 - lr: 0.050000
2022-11-06 22:10:42,541 epoch 85 - iter 114/386 - loss 0.08752875 - samples/sec: 127.34 - lr: 0.050000
2022-11-06 22:10:47,789 epoch 85 - iter 152/386 - loss 0.08668668 - samples/sec: 115.92 - lr: 0.050000
2022-11-06 22:10:53,048 epoch 85 - iter 190/386 - loss 0.08746045 - samples/sec: 115.67 - lr: 0.050000
2022-11-06 22:10:58,323 epoch 85 - iter 228/386 - loss 0.08632880 - samples/sec: 115.32 - lr: 0.050000
2022-11-06 22:11:03,801 epoch 85 - iter 266/386 - loss 0.08607122 - samples/sec: 111.06 - lr: 0.050000
2022-11-06 22:11:10,221 epoch 85 - iter 304/386 - loss 0.08680703 - samples/sec: 94.74 - lr: 0.050000
2022-11-06 22:11:15,817 epoch 85 - iter 342/386 - loss 0.08675650 - samples/sec: 108.71 - lr: 0.050000
2022-11-06 22:11:21,365 epoch 85 - iter 380/386 - loss 0.08631388 - samples/sec: 109.66 - lr: 0.050000
2022-11-06 22:11:22,266 ----------------------------------------------------------------------------------------------------
2022-11-06 22:11:22,267 EPOCH 85 done: loss 0.0860 - lr 0.050000
2022-11-06 22:11:31,819 Evaluating as a multi-label problem: False
2022-11-06 22:11:31,935 TEST : loss 0.07693811506032944 - f1-score (micro avg)  0.9796
2022-11-06 22:11:32,049 Epoch    85: reducing learning rate of group 0 to 2.5000e-02.
2022-11-06 22:11:32,049 BAD EPOCHS (no improvement): 4
2022-11-06 22:11:32,261 ----------------------------------------------------------------------------------------------------
2022-11-06 22:11:38,275 epoch 86 - iter 38/386 - loss 0.09401872 - samples/sec: 101.17 - lr: 0.025000
2022-11-06 22:11:43,699 epoch 86 - iter 76/386 - loss 0.09432225 - samples/sec: 112.17 - lr: 0.025000
2022-11-06 22:11:49,718 epoch 86 - iter 114/386 - loss 0.08964112 - samples/sec: 101.77 - lr: 0.025000
2022-11-06 22:11:54,809 epoch 86 - iter 152/386 - loss 0.08763708 - samples/sec: 119.50 - lr: 0.025000
2022-11-06 22:12:00,232 epoch 86 - iter 190/386 - loss 0.08731319 - samples/sec: 112.18 - lr: 0.025000
2022-11-06 22:12:05,644 epoch 86 - iter 228/386 - loss 0.08663491 - samples/sec: 112.41 - lr: 0.025000
2022-11-06 22:12:11,665 epoch 86 - iter 266/386 - loss 0.08581371 - samples/sec: 101.05 - lr: 0.025000
2022-11-06 22:12:17,252 epoch 86 - iter 304/386 - loss 0.08535848 - samples/sec: 108.88 - lr: 0.025000
2022-11-06 22:12:22,510 epoch 86 - iter 342/386 - loss 0.08557678 - samples/sec: 115.69 - lr: 0.025000
2022-11-06 22:12:28,286 epoch 86 - iter 380/386 - loss 0.08575220 - samples/sec: 105.33 - lr: 0.025000
2022-11-06 22:12:29,093 ----------------------------------------------------------------------------------------------------
2022-11-06 22:12:29,093 EPOCH 86 done: loss 0.0860 - lr 0.025000
2022-11-06 22:12:38,762 Evaluating as a multi-label problem: False
2022-11-06 22:12:38,878 TEST : loss 0.07507522404193878 - f1-score (micro avg)  0.9797
2022-11-06 22:12:38,992 BAD EPOCHS (no improvement): 1
2022-11-06 22:12:39,205 ----------------------------------------------------------------------------------------------------
2022-11-06 22:12:44,844 epoch 87 - iter 38/386 - loss 0.08439559 - samples/sec: 107.91 - lr: 0.025000
2022-11-06 22:12:50,265 epoch 87 - iter 76/386 - loss 0.08054664 - samples/sec: 112.21 - lr: 0.025000
2022-11-06 22:12:55,855 epoch 87 - iter 114/386 - loss 0.08111561 - samples/sec: 108.83 - lr: 0.025000
2022-11-06 22:13:01,318 epoch 87 - iter 152/386 - loss 0.08025030 - samples/sec: 111.36 - lr: 0.025000
2022-11-06 22:13:06,932 epoch 87 - iter 190/386 - loss 0.08014814 - samples/sec: 108.37 - lr: 0.025000
2022-11-06 22:13:12,282 epoch 87 - iter 228/386 - loss 0.07974041 - samples/sec: 113.70 - lr: 0.025000
2022-11-06 22:13:17,692 epoch 87 - iter 266/386 - loss 0.07913362 - samples/sec: 112.45 - lr: 0.025000
2022-11-06 22:13:23,418 epoch 87 - iter 304/386 - loss 0.07971830 - samples/sec: 106.25 - lr: 0.025000
2022-11-06 22:13:28,893 epoch 87 - iter 342/386 - loss 0.08018386 - samples/sec: 111.12 - lr: 0.025000
2022-11-06 22:13:34,703 epoch 87 - iter 380/386 - loss 0.08080162 - samples/sec: 104.70 - lr: 0.025000
2022-11-06 22:13:35,597 ----------------------------------------------------------------------------------------------------
2022-11-06 22:13:35,597 EPOCH 87 done: loss 0.0809 - lr 0.025000
2022-11-06 22:13:47,565 Evaluating as a multi-label problem: False
2022-11-06 22:13:47,681 TEST : loss 0.0789749026298523 - f1-score (micro avg)  0.9794
2022-11-06 22:13:47,795 BAD EPOCHS (no improvement): 0
2022-11-06 22:13:47,998 ----------------------------------------------------------------------------------------------------
2022-11-06 22:13:53,872 epoch 88 - iter 38/386 - loss 0.07960722 - samples/sec: 103.57 - lr: 0.025000
2022-11-06 22:13:59,254 epoch 88 - iter 76/386 - loss 0.08122546 - samples/sec: 113.04 - lr: 0.025000
2022-11-06 22:14:04,434 epoch 88 - iter 114/386 - loss 0.07933891 - samples/sec: 117.44 - lr: 0.025000
2022-11-06 22:14:09,961 epoch 88 - iter 152/386 - loss 0.07896805 - samples/sec: 110.07 - lr: 0.025000
2022-11-06 22:14:16,177 epoch 88 - iter 190/386 - loss 0.08116421 - samples/sec: 98.16 - lr: 0.025000
2022-11-06 22:14:21,535 epoch 88 - iter 228/386 - loss 0.08035744 - samples/sec: 113.55 - lr: 0.025000
2022-11-06 22:14:26,609 epoch 88 - iter 266/386 - loss 0.08058892 - samples/sec: 119.89 - lr: 0.025000
2022-11-06 22:14:32,263 epoch 88 - iter 304/386 - loss 0.08057870 - samples/sec: 107.59 - lr: 0.025000
2022-11-06 22:14:37,985 epoch 88 - iter 342/386 - loss 0.08112992 - samples/sec: 106.32 - lr: 0.025000
2022-11-06 22:14:43,722 epoch 88 - iter 380/386 - loss 0.08050531 - samples/sec: 106.03 - lr: 0.025000
2022-11-06 22:14:44,574 ----------------------------------------------------------------------------------------------------
2022-11-06 22:14:44,574 EPOCH 88 done: loss 0.0806 - lr 0.025000
2022-11-06 22:14:54,171 Evaluating as a multi-label problem: False
2022-11-06 22:14:54,289 TEST : loss 0.07823394984006882 - f1-score (micro avg)  0.9803
2022-11-06 22:14:54,403 BAD EPOCHS (no improvement): 0
2022-11-06 22:14:54,614 ----------------------------------------------------------------------------------------------------
2022-11-06 22:15:00,149 epoch 89 - iter 38/386 - loss 0.08881669 - samples/sec: 109.94 - lr: 0.025000
2022-11-06 22:15:05,572 epoch 89 - iter 76/386 - loss 0.08617115 - samples/sec: 112.18 - lr: 0.025000
2022-11-06 22:15:11,757 epoch 89 - iter 114/386 - loss 0.08675312 - samples/sec: 98.35 - lr: 0.025000
2022-11-06 22:15:17,611 epoch 89 - iter 152/386 - loss 0.08471759 - samples/sec: 103.91 - lr: 0.025000
2022-11-06 22:15:23,183 epoch 89 - iter 190/386 - loss 0.08466736 - samples/sec: 109.18 - lr: 0.025000
2022-11-06 22:15:29,113 epoch 89 - iter 228/386 - loss 0.08438120 - samples/sec: 102.59 - lr: 0.025000
2022-11-06 22:15:34,144 epoch 89 - iter 266/386 - loss 0.08433213 - samples/sec: 120.91 - lr: 0.025000
2022-11-06 22:15:39,249 epoch 89 - iter 304/386 - loss 0.08327686 - samples/sec: 119.17 - lr: 0.025000
2022-11-06 22:15:44,762 epoch 89 - iter 342/386 - loss 0.08302938 - samples/sec: 110.35 - lr: 0.025000
2022-11-06 22:15:49,944 epoch 89 - iter 380/386 - loss 0.08333523 - samples/sec: 117.41 - lr: 0.025000
2022-11-06 22:15:50,759 ----------------------------------------------------------------------------------------------------
2022-11-06 22:15:50,760 EPOCH 89 done: loss 0.0834 - lr 0.025000
2022-11-06 22:16:00,390 Evaluating as a multi-label problem: False
2022-11-06 22:16:00,506 TEST : loss 0.07800823450088501 - f1-score (micro avg)  0.9801
2022-11-06 22:16:00,619 BAD EPOCHS (no improvement): 1
2022-11-06 22:16:00,827 ----------------------------------------------------------------------------------------------------
2022-11-06 22:16:06,217 epoch 90 - iter 38/386 - loss 0.07277550 - samples/sec: 112.90 - lr: 0.025000
2022-11-06 22:16:12,219 epoch 90 - iter 76/386 - loss 0.07701800 - samples/sec: 101.35 - lr: 0.025000
2022-11-06 22:16:17,987 epoch 90 - iter 114/386 - loss 0.07742446 - samples/sec: 105.47 - lr: 0.025000
2022-11-06 22:16:23,938 epoch 90 - iter 152/386 - loss 0.07881106 - samples/sec: 102.22 - lr: 0.025000
2022-11-06 22:16:29,683 epoch 90 - iter 190/386 - loss 0.07802511 - samples/sec: 105.90 - lr: 0.025000
2022-11-06 22:16:35,320 epoch 90 - iter 228/386 - loss 0.07783453 - samples/sec: 107.92 - lr: 0.025000
2022-11-06 22:16:40,941 epoch 90 - iter 266/386 - loss 0.07841678 - samples/sec: 108.23 - lr: 0.025000
2022-11-06 22:16:46,376 epoch 90 - iter 304/386 - loss 0.07848769 - samples/sec: 111.93 - lr: 0.025000
2022-11-06 22:16:51,326 epoch 90 - iter 342/386 - loss 0.07989413 - samples/sec: 122.91 - lr: 0.025000
2022-11-06 22:16:56,567 epoch 90 - iter 380/386 - loss 0.07990854 - samples/sec: 116.09 - lr: 0.025000
2022-11-06 22:16:57,414 ----------------------------------------------------------------------------------------------------
2022-11-06 22:16:57,414 EPOCH 90 done: loss 0.0798 - lr 0.025000
2022-11-06 22:17:07,040 Evaluating as a multi-label problem: False
2022-11-06 22:17:07,155 TEST : loss 0.0782727301120758 - f1-score (micro avg)  0.9797
2022-11-06 22:17:07,269 BAD EPOCHS (no improvement): 0
2022-11-06 22:17:07,484 ----------------------------------------------------------------------------------------------------
2022-11-06 22:17:13,293 epoch 91 - iter 38/386 - loss 0.07733783 - samples/sec: 104.74 - lr: 0.025000
2022-11-06 22:17:18,780 epoch 91 - iter 76/386 - loss 0.07882994 - samples/sec: 110.88 - lr: 0.025000
2022-11-06 22:17:24,473 epoch 91 - iter 114/386 - loss 0.07801837 - samples/sec: 106.85 - lr: 0.025000
2022-11-06 22:17:29,980 epoch 91 - iter 152/386 - loss 0.07769611 - samples/sec: 110.48 - lr: 0.025000
2022-11-06 22:17:35,570 epoch 91 - iter 190/386 - loss 0.07877727 - samples/sec: 108.83 - lr: 0.025000
2022-11-06 22:17:41,695 epoch 91 - iter 228/386 - loss 0.08001718 - samples/sec: 99.31 - lr: 0.025000
2022-11-06 22:17:47,341 epoch 91 - iter 266/386 - loss 0.08042378 - samples/sec: 107.74 - lr: 0.025000
2022-11-06 22:17:52,607 epoch 91 - iter 304/386 - loss 0.08061679 - samples/sec: 115.53 - lr: 0.025000
2022-11-06 22:17:58,187 epoch 91 - iter 342/386 - loss 0.08023143 - samples/sec: 109.03 - lr: 0.025000
2022-11-06 22:18:02,883 epoch 91 - iter 380/386 - loss 0.08028607 - samples/sec: 129.55 - lr: 0.025000
2022-11-06 22:18:03,642 ----------------------------------------------------------------------------------------------------
2022-11-06 22:18:03,643 EPOCH 91 done: loss 0.0802 - lr 0.025000
2022-11-06 22:18:13,097 Evaluating as a multi-label problem: False
2022-11-06 22:18:13,212 TEST : loss 0.07592158764600754 - f1-score (micro avg)  0.9801
2022-11-06 22:18:13,325 BAD EPOCHS (no improvement): 1
2022-11-06 22:18:13,537 ----------------------------------------------------------------------------------------------------
2022-11-06 22:18:19,331 epoch 92 - iter 38/386 - loss 0.08023383 - samples/sec: 105.02 - lr: 0.025000
2022-11-06 22:18:24,596 epoch 92 - iter 76/386 - loss 0.07880003 - samples/sec: 115.55 - lr: 0.025000
2022-11-06 22:18:30,071 epoch 92 - iter 114/386 - loss 0.07966319 - samples/sec: 111.10 - lr: 0.025000
2022-11-06 22:18:35,373 epoch 92 - iter 152/386 - loss 0.07820587 - samples/sec: 114.74 - lr: 0.025000
2022-11-06 22:18:40,814 epoch 92 - iter 190/386 - loss 0.07957457 - samples/sec: 111.81 - lr: 0.025000
2022-11-06 22:18:46,314 epoch 92 - iter 228/386 - loss 0.08100660 - samples/sec: 110.60 - lr: 0.025000
2022-11-06 22:18:51,788 epoch 92 - iter 266/386 - loss 0.08021248 - samples/sec: 111.15 - lr: 0.025000
2022-11-06 22:18:57,733 epoch 92 - iter 304/386 - loss 0.08025273 - samples/sec: 102.32 - lr: 0.025000
2022-11-06 22:19:03,667 epoch 92 - iter 342/386 - loss 0.08017579 - samples/sec: 102.51 - lr: 0.025000
2022-11-06 22:19:09,758 epoch 92 - iter 380/386 - loss 0.08044134 - samples/sec: 99.87 - lr: 0.025000
2022-11-06 22:19:10,656 ----------------------------------------------------------------------------------------------------
2022-11-06 22:19:10,656 EPOCH 92 done: loss 0.0804 - lr 0.025000
2022-11-06 22:19:19,504 Evaluating as a multi-label problem: False
2022-11-06 22:19:19,620 TEST : loss 0.07693848758935928 - f1-score (micro avg)  0.9794
2022-11-06 22:19:19,734 BAD EPOCHS (no improvement): 2
2022-11-06 22:19:19,946 ----------------------------------------------------------------------------------------------------
2022-11-06 22:19:25,255 epoch 93 - iter 38/386 - loss 0.07236939 - samples/sec: 114.63 - lr: 0.025000
2022-11-06 22:19:30,943 epoch 93 - iter 76/386 - loss 0.07614718 - samples/sec: 106.95 - lr: 0.025000
2022-11-06 22:19:36,710 epoch 93 - iter 114/386 - loss 0.07729937 - samples/sec: 105.48 - lr: 0.025000
2022-11-06 22:19:42,344 epoch 93 - iter 152/386 - loss 0.07799549 - samples/sec: 107.97 - lr: 0.025000
2022-11-06 22:19:48,026 epoch 93 - iter 190/386 - loss 0.07765939 - samples/sec: 107.06 - lr: 0.025000
2022-11-06 22:19:53,694 epoch 93 - iter 228/386 - loss 0.07913237 - samples/sec: 107.33 - lr: 0.025000
2022-11-06 22:19:59,951 epoch 93 - iter 266/386 - loss 0.07940271 - samples/sec: 97.22 - lr: 0.025000
2022-11-06 22:20:05,381 epoch 93 - iter 304/386 - loss 0.08045973 - samples/sec: 112.05 - lr: 0.025000
2022-11-06 22:20:10,874 epoch 93 - iter 342/386 - loss 0.08003574 - samples/sec: 110.75 - lr: 0.025000
2022-11-06 22:20:16,619 epoch 93 - iter 380/386 - loss 0.07979854 - samples/sec: 105.88 - lr: 0.025000
2022-11-06 22:20:17,372 ----------------------------------------------------------------------------------------------------
2022-11-06 22:20:17,373 EPOCH 93 done: loss 0.0799 - lr 0.025000
2022-11-06 22:20:26,550 Evaluating as a multi-label problem: False
2022-11-06 22:20:26,665 TEST : loss 0.07909691333770752 - f1-score (micro avg)  0.9797
2022-11-06 22:20:26,778 BAD EPOCHS (no improvement): 3
2022-11-06 22:20:26,979 ----------------------------------------------------------------------------------------------------
2022-11-06 22:20:32,580 epoch 94 - iter 38/386 - loss 0.07446764 - samples/sec: 108.63 - lr: 0.025000
2022-11-06 22:20:37,820 epoch 94 - iter 76/386 - loss 0.07660519 - samples/sec: 116.10 - lr: 0.025000
2022-11-06 22:20:43,411 epoch 94 - iter 114/386 - loss 0.07713177 - samples/sec: 108.80 - lr: 0.025000
2022-11-06 22:20:48,823 epoch 94 - iter 152/386 - loss 0.07876191 - samples/sec: 112.40 - lr: 0.025000
2022-11-06 22:20:54,987 epoch 94 - iter 190/386 - loss 0.07891465 - samples/sec: 98.70 - lr: 0.025000
2022-11-06 22:21:00,715 epoch 94 - iter 228/386 - loss 0.08002992 - samples/sec: 106.19 - lr: 0.025000
2022-11-06 22:21:06,057 epoch 94 - iter 266/386 - loss 0.08085213 - samples/sec: 113.89 - lr: 0.025000
2022-11-06 22:21:11,648 epoch 94 - iter 304/386 - loss 0.08032064 - samples/sec: 108.79 - lr: 0.025000
2022-11-06 22:21:17,202 epoch 94 - iter 342/386 - loss 0.08072521 - samples/sec: 109.52 - lr: 0.025000
2022-11-06 22:21:22,895 epoch 94 - iter 380/386 - loss 0.08026007 - samples/sec: 106.87 - lr: 0.025000
2022-11-06 22:21:23,735 ----------------------------------------------------------------------------------------------------
2022-11-06 22:21:23,735 EPOCH 94 done: loss 0.0799 - lr 0.025000
2022-11-06 22:21:33,272 Evaluating as a multi-label problem: False
2022-11-06 22:21:33,386 TEST : loss 0.07736696302890778 - f1-score (micro avg)  0.98
2022-11-06 22:21:33,499 Epoch    94: reducing learning rate of group 0 to 1.2500e-02.
2022-11-06 22:21:33,499 BAD EPOCHS (no improvement): 4
2022-11-06 22:21:33,708 ----------------------------------------------------------------------------------------------------
2022-11-06 22:21:39,107 epoch 95 - iter 38/386 - loss 0.08174345 - samples/sec: 112.71 - lr: 0.012500
2022-11-06 22:21:44,470 epoch 95 - iter 76/386 - loss 0.07654626 - samples/sec: 113.43 - lr: 0.012500
2022-11-06 22:21:50,355 epoch 95 - iter 114/386 - loss 0.07662746 - samples/sec: 103.36 - lr: 0.012500
2022-11-06 22:21:55,951 epoch 95 - iter 152/386 - loss 0.07713288 - samples/sec: 108.71 - lr: 0.012500
2022-11-06 22:22:01,525 epoch 95 - iter 190/386 - loss 0.07768088 - samples/sec: 109.15 - lr: 0.012500
2022-11-06 22:22:07,333 epoch 95 - iter 228/386 - loss 0.07691802 - samples/sec: 104.74 - lr: 0.012500
2022-11-06 22:22:12,698 epoch 95 - iter 266/386 - loss 0.07735595 - samples/sec: 113.38 - lr: 0.012500
2022-11-06 22:22:17,950 epoch 95 - iter 304/386 - loss 0.07722152 - samples/sec: 115.84 - lr: 0.012500
2022-11-06 22:22:23,779 epoch 95 - iter 342/386 - loss 0.07755445 - samples/sec: 104.34 - lr: 0.012500
2022-11-06 22:22:29,040 epoch 95 - iter 380/386 - loss 0.07761664 - samples/sec: 115.64 - lr: 0.012500
2022-11-06 22:22:29,870 ----------------------------------------------------------------------------------------------------
2022-11-06 22:22:29,870 EPOCH 95 done: loss 0.0775 - lr 0.012500
2022-11-06 22:22:39,433 Evaluating as a multi-label problem: False
2022-11-06 22:22:39,548 TEST : loss 0.07741290330886841 - f1-score (micro avg)  0.9799
2022-11-06 22:22:39,660 BAD EPOCHS (no improvement): 0
2022-11-06 22:22:39,868 ----------------------------------------------------------------------------------------------------
2022-11-06 22:22:45,073 epoch 96 - iter 38/386 - loss 0.07749330 - samples/sec: 116.90 - lr: 0.012500
2022-11-06 22:22:50,290 epoch 96 - iter 76/386 - loss 0.07728624 - samples/sec: 116.60 - lr: 0.012500
2022-11-06 22:22:55,456 epoch 96 - iter 114/386 - loss 0.07852333 - samples/sec: 117.77 - lr: 0.012500
2022-11-06 22:23:00,968 epoch 96 - iter 152/386 - loss 0.07840505 - samples/sec: 110.38 - lr: 0.012500
2022-11-06 22:23:06,683 epoch 96 - iter 190/386 - loss 0.07797949 - samples/sec: 107.23 - lr: 0.012500
2022-11-06 22:23:12,055 epoch 96 - iter 228/386 - loss 0.07937941 - samples/sec: 113.25 - lr: 0.012500
2022-11-06 22:23:17,534 epoch 96 - iter 266/386 - loss 0.07834560 - samples/sec: 111.03 - lr: 0.012500
2022-11-06 22:23:23,499 epoch 96 - iter 304/386 - loss 0.07818574 - samples/sec: 101.98 - lr: 0.012500
2022-11-06 22:23:29,172 epoch 96 - iter 342/386 - loss 0.07823185 - samples/sec: 107.23 - lr: 0.012500
2022-11-06 22:23:34,750 epoch 96 - iter 380/386 - loss 0.07889026 - samples/sec: 109.06 - lr: 0.012500
2022-11-06 22:23:35,658 ----------------------------------------------------------------------------------------------------
2022-11-06 22:23:35,659 EPOCH 96 done: loss 0.0789 - lr 0.012500
2022-11-06 22:23:45,210 Evaluating as a multi-label problem: False
2022-11-06 22:23:45,326 TEST : loss 0.07733169943094254 - f1-score (micro avg)  0.9796
2022-11-06 22:23:45,439 BAD EPOCHS (no improvement): 1
2022-11-06 22:23:45,649 ----------------------------------------------------------------------------------------------------
2022-11-06 22:23:50,915 epoch 97 - iter 38/386 - loss 0.08544884 - samples/sec: 115.57 - lr: 0.012500
2022-11-06 22:23:56,576 epoch 97 - iter 76/386 - loss 0.08138444 - samples/sec: 107.45 - lr: 0.012500
2022-11-06 22:24:01,972 epoch 97 - iter 114/386 - loss 0.07902100 - samples/sec: 112.74 - lr: 0.012500
2022-11-06 22:24:07,363 epoch 97 - iter 152/386 - loss 0.07840143 - samples/sec: 112.84 - lr: 0.012500
2022-11-06 22:24:12,825 epoch 97 - iter 190/386 - loss 0.07712703 - samples/sec: 111.37 - lr: 0.012500
2022-11-06 22:24:18,787 epoch 97 - iter 228/386 - loss 0.07678814 - samples/sec: 102.77 - lr: 0.012500
2022-11-06 22:24:24,633 epoch 97 - iter 266/386 - loss 0.07676126 - samples/sec: 104.05 - lr: 0.012500
2022-11-06 22:24:30,835 epoch 97 - iter 304/386 - loss 0.07801854 - samples/sec: 98.08 - lr: 0.012500
2022-11-06 22:24:36,203 epoch 97 - iter 342/386 - loss 0.07840287 - samples/sec: 113.33 - lr: 0.012500
2022-11-06 22:24:41,478 epoch 97 - iter 380/386 - loss 0.07841984 - samples/sec: 115.32 - lr: 0.012500
2022-11-06 22:24:42,301 ----------------------------------------------------------------------------------------------------
2022-11-06 22:24:42,301 EPOCH 97 done: loss 0.0783 - lr 0.012500
2022-11-06 22:24:54,117 Evaluating as a multi-label problem: False
2022-11-06 22:24:54,232 TEST : loss 0.07772345840930939 - f1-score (micro avg)  0.98
2022-11-06 22:24:54,344 BAD EPOCHS (no improvement): 2
2022-11-06 22:24:54,551 ----------------------------------------------------------------------------------------------------
2022-11-06 22:25:00,111 epoch 98 - iter 38/386 - loss 0.07439980 - samples/sec: 109.44 - lr: 0.012500
2022-11-06 22:25:05,686 epoch 98 - iter 76/386 - loss 0.07645508 - samples/sec: 109.11 - lr: 0.012500
2022-11-06 22:25:11,184 epoch 98 - iter 114/386 - loss 0.07708381 - samples/sec: 110.65 - lr: 0.012500
2022-11-06 22:25:16,337 epoch 98 - iter 152/386 - loss 0.08009789 - samples/sec: 118.07 - lr: 0.012500
2022-11-06 22:25:21,314 epoch 98 - iter 190/386 - loss 0.07936476 - samples/sec: 122.22 - lr: 0.012500
2022-11-06 22:25:26,767 epoch 98 - iter 228/386 - loss 0.07906153 - samples/sec: 111.56 - lr: 0.012500
2022-11-06 22:25:32,821 epoch 98 - iter 266/386 - loss 0.07918697 - samples/sec: 100.50 - lr: 0.012500
2022-11-06 22:25:38,261 epoch 98 - iter 304/386 - loss 0.07882593 - samples/sec: 111.82 - lr: 0.012500
2022-11-06 22:25:43,440 epoch 98 - iter 342/386 - loss 0.07839498 - samples/sec: 117.47 - lr: 0.012500
2022-11-06 22:25:49,435 epoch 98 - iter 380/386 - loss 0.07899311 - samples/sec: 101.47 - lr: 0.012500
2022-11-06 22:25:50,290 ----------------------------------------------------------------------------------------------------
2022-11-06 22:25:50,290 EPOCH 98 done: loss 0.0790 - lr 0.012500
2022-11-06 22:25:59,749 Evaluating as a multi-label problem: False
2022-11-06 22:25:59,865 TEST : loss 0.07763128727674484 - f1-score (micro avg)  0.9803
2022-11-06 22:25:59,979 BAD EPOCHS (no improvement): 3
2022-11-06 22:26:00,189 ----------------------------------------------------------------------------------------------------
2022-11-06 22:26:06,142 epoch 99 - iter 38/386 - loss 0.07254806 - samples/sec: 102.21 - lr: 0.012500
2022-11-06 22:26:11,686 epoch 99 - iter 76/386 - loss 0.07331350 - samples/sec: 109.74 - lr: 0.012500
2022-11-06 22:26:17,577 epoch 99 - iter 114/386 - loss 0.07299872 - samples/sec: 103.26 - lr: 0.012500
2022-11-06 22:26:23,460 epoch 99 - iter 152/386 - loss 0.07443824 - samples/sec: 103.39 - lr: 0.012500
2022-11-06 22:26:28,808 epoch 99 - iter 190/386 - loss 0.07449089 - samples/sec: 113.75 - lr: 0.012500
2022-11-06 22:26:33,908 epoch 99 - iter 228/386 - loss 0.07509719 - samples/sec: 119.29 - lr: 0.012500
2022-11-06 22:26:39,140 epoch 99 - iter 266/386 - loss 0.07561839 - samples/sec: 116.29 - lr: 0.012500
2022-11-06 22:26:44,840 epoch 99 - iter 304/386 - loss 0.07630032 - samples/sec: 106.71 - lr: 0.012500
2022-11-06 22:26:49,959 epoch 99 - iter 342/386 - loss 0.07606443 - samples/sec: 118.84 - lr: 0.012500
2022-11-06 22:26:55,370 epoch 99 - iter 380/386 - loss 0.07638476 - samples/sec: 113.33 - lr: 0.012500
2022-11-06 22:26:56,359 ----------------------------------------------------------------------------------------------------
2022-11-06 22:26:56,359 EPOCH 99 done: loss 0.0766 - lr 0.012500
2022-11-06 22:27:05,824 Evaluating as a multi-label problem: False
2022-11-06 22:27:05,939 TEST : loss 0.07717061787843704 - f1-score (micro avg)  0.9801
2022-11-06 22:27:06,052 BAD EPOCHS (no improvement): 0
2022-11-06 22:27:06,257 ----------------------------------------------------------------------------------------------------
2022-11-06 22:27:11,941 epoch 100 - iter 38/386 - loss 0.08360850 - samples/sec: 107.04 - lr: 0.012500
2022-11-06 22:27:17,484 epoch 100 - iter 76/386 - loss 0.07889395 - samples/sec: 109.75 - lr: 0.012500
2022-11-06 22:27:23,204 epoch 100 - iter 114/386 - loss 0.08078996 - samples/sec: 106.34 - lr: 0.012500
2022-11-06 22:27:28,890 epoch 100 - iter 152/386 - loss 0.08157095 - samples/sec: 106.99 - lr: 0.012500
2022-11-06 22:27:34,405 epoch 100 - iter 190/386 - loss 0.08048207 - samples/sec: 110.31 - lr: 0.012500
2022-11-06 22:27:39,771 epoch 100 - iter 228/386 - loss 0.07920505 - samples/sec: 113.35 - lr: 0.012500
2022-11-06 22:27:45,192 epoch 100 - iter 266/386 - loss 0.07736238 - samples/sec: 112.23 - lr: 0.012500
2022-11-06 22:27:50,358 epoch 100 - iter 304/386 - loss 0.07652413 - samples/sec: 117.75 - lr: 0.012500
2022-11-06 22:27:55,824 epoch 100 - iter 342/386 - loss 0.07592693 - samples/sec: 111.31 - lr: 0.012500
2022-11-06 22:28:01,279 epoch 100 - iter 380/386 - loss 0.07600602 - samples/sec: 111.51 - lr: 0.012500
2022-11-06 22:28:02,152 ----------------------------------------------------------------------------------------------------
2022-11-06 22:28:02,152 EPOCH 100 done: loss 0.0759 - lr 0.012500
2022-11-06 22:28:11,635 Evaluating as a multi-label problem: False
2022-11-06 22:28:11,753 TEST : loss 0.07758809626102448 - f1-score (micro avg)  0.9803
2022-11-06 22:28:11,866 BAD EPOCHS (no improvement): 0
2022-11-06 22:28:12,070 ----------------------------------------------------------------------------------------------------
2022-11-06 22:28:17,706 epoch 101 - iter 38/386 - loss 0.07388983 - samples/sec: 107.96 - lr: 0.012500
2022-11-06 22:28:23,437 epoch 101 - iter 76/386 - loss 0.07406827 - samples/sec: 106.16 - lr: 0.012500
2022-11-06 22:28:28,733 epoch 101 - iter 114/386 - loss 0.07275898 - samples/sec: 114.86 - lr: 0.012500
2022-11-06 22:28:34,583 epoch 101 - iter 152/386 - loss 0.07457340 - samples/sec: 104.00 - lr: 0.012500
2022-11-06 22:28:39,730 epoch 101 - iter 190/386 - loss 0.07526331 - samples/sec: 118.19 - lr: 0.012500
2022-11-06 22:28:45,750 epoch 101 - iter 228/386 - loss 0.07519061 - samples/sec: 101.05 - lr: 0.012500
2022-11-06 22:28:51,489 epoch 101 - iter 266/386 - loss 0.07529028 - samples/sec: 105.99 - lr: 0.012500
2022-11-06 22:28:56,953 epoch 101 - iter 304/386 - loss 0.07552666 - samples/sec: 111.34 - lr: 0.012500
2022-11-06 22:29:01,707 epoch 101 - iter 342/386 - loss 0.07603837 - samples/sec: 127.98 - lr: 0.012500
2022-11-06 22:29:06,807 epoch 101 - iter 380/386 - loss 0.07630310 - samples/sec: 119.28 - lr: 0.012500
2022-11-06 22:29:07,609 ----------------------------------------------------------------------------------------------------
2022-11-06 22:29:07,609 EPOCH 101 done: loss 0.0765 - lr 0.012500
2022-11-06 22:29:17,153 Evaluating as a multi-label problem: False
2022-11-06 22:29:17,268 TEST : loss 0.07733462750911713 - f1-score (micro avg)  0.9801
2022-11-06 22:29:17,380 BAD EPOCHS (no improvement): 1
2022-11-06 22:29:17,589 ----------------------------------------------------------------------------------------------------
2022-11-06 22:29:22,875 epoch 102 - iter 38/386 - loss 0.08028161 - samples/sec: 115.12 - lr: 0.012500
2022-11-06 22:29:28,787 epoch 102 - iter 76/386 - loss 0.07647839 - samples/sec: 102.89 - lr: 0.012500
2022-11-06 22:29:34,241 epoch 102 - iter 114/386 - loss 0.07459047 - samples/sec: 111.53 - lr: 0.012500
2022-11-06 22:29:39,930 epoch 102 - iter 152/386 - loss 0.07461720 - samples/sec: 106.95 - lr: 0.012500
2022-11-06 22:29:45,892 epoch 102 - iter 190/386 - loss 0.07589447 - samples/sec: 102.02 - lr: 0.012500
2022-11-06 22:29:51,280 epoch 102 - iter 228/386 - loss 0.07462336 - samples/sec: 112.92 - lr: 0.012500
2022-11-06 22:29:56,688 epoch 102 - iter 266/386 - loss 0.07534371 - samples/sec: 112.75 - lr: 0.012500
2022-11-06 22:30:02,427 epoch 102 - iter 304/386 - loss 0.07531681 - samples/sec: 106.00 - lr: 0.012500
2022-11-06 22:30:08,110 epoch 102 - iter 342/386 - loss 0.07515869 - samples/sec: 107.02 - lr: 0.012500
2022-11-06 22:30:13,062 epoch 102 - iter 380/386 - loss 0.07486919 - samples/sec: 122.85 - lr: 0.012500
2022-11-06 22:30:13,878 ----------------------------------------------------------------------------------------------------
2022-11-06 22:30:13,878 EPOCH 102 done: loss 0.0751 - lr 0.012500
2022-11-06 22:30:23,042 Evaluating as a multi-label problem: False
2022-11-06 22:30:23,157 TEST : loss 0.07761669158935547 - f1-score (micro avg)  0.9801
2022-11-06 22:30:23,269 BAD EPOCHS (no improvement): 0
2022-11-06 22:30:23,477 ----------------------------------------------------------------------------------------------------
2022-11-06 22:30:29,131 epoch 103 - iter 38/386 - loss 0.07445893 - samples/sec: 107.61 - lr: 0.012500
2022-11-06 22:30:34,529 epoch 103 - iter 76/386 - loss 0.07775874 - samples/sec: 112.69 - lr: 0.012500
2022-11-06 22:30:39,927 epoch 103 - iter 114/386 - loss 0.07897023 - samples/sec: 112.71 - lr: 0.012500
2022-11-06 22:30:45,537 epoch 103 - iter 152/386 - loss 0.07848129 - samples/sec: 108.44 - lr: 0.012500
2022-11-06 22:30:51,233 epoch 103 - iter 190/386 - loss 0.07676500 - samples/sec: 106.79 - lr: 0.012500
2022-11-06 22:30:56,738 epoch 103 - iter 228/386 - loss 0.07555006 - samples/sec: 110.51 - lr: 0.012500
2022-11-06 22:31:02,068 epoch 103 - iter 266/386 - loss 0.07606481 - samples/sec: 114.13 - lr: 0.012500
2022-11-06 22:31:07,290 epoch 103 - iter 304/386 - loss 0.07608797 - samples/sec: 116.48 - lr: 0.012500
2022-11-06 22:31:13,424 epoch 103 - iter 342/386 - loss 0.07538846 - samples/sec: 99.72 - lr: 0.012500
2022-11-06 22:31:19,479 epoch 103 - iter 380/386 - loss 0.07560503 - samples/sec: 100.47 - lr: 0.012500
2022-11-06 22:31:20,161 ----------------------------------------------------------------------------------------------------
2022-11-06 22:31:20,162 EPOCH 103 done: loss 0.0753 - lr 0.012500
2022-11-06 22:31:29,000 Evaluating as a multi-label problem: False
2022-11-06 22:31:29,114 TEST : loss 0.07814455777406693 - f1-score (micro avg)  0.9797
2022-11-06 22:31:29,226 BAD EPOCHS (no improvement): 1
2022-11-06 22:31:29,435 ----------------------------------------------------------------------------------------------------
2022-11-06 22:31:35,248 epoch 104 - iter 38/386 - loss 0.06466635 - samples/sec: 104.67 - lr: 0.012500
2022-11-06 22:31:40,662 epoch 104 - iter 76/386 - loss 0.06932147 - samples/sec: 112.38 - lr: 0.012500
2022-11-06 22:31:46,456 epoch 104 - iter 114/386 - loss 0.07324214 - samples/sec: 104.99 - lr: 0.012500
2022-11-06 22:31:52,249 epoch 104 - iter 152/386 - loss 0.07342158 - samples/sec: 105.01 - lr: 0.012500
2022-11-06 22:31:57,692 epoch 104 - iter 190/386 - loss 0.07451835 - samples/sec: 111.76 - lr: 0.012500
2022-11-06 22:32:03,008 epoch 104 - iter 228/386 - loss 0.07500854 - samples/sec: 114.46 - lr: 0.012500
2022-11-06 22:32:08,916 epoch 104 - iter 266/386 - loss 0.07423502 - samples/sec: 102.95 - lr: 0.012500
2022-11-06 22:32:14,693 epoch 104 - iter 304/386 - loss 0.07465836 - samples/sec: 105.30 - lr: 0.012500
2022-11-06 22:32:20,353 epoch 104 - iter 342/386 - loss 0.07547961 - samples/sec: 107.48 - lr: 0.012500
2022-11-06 22:32:26,022 epoch 104 - iter 380/386 - loss 0.07525945 - samples/sec: 107.31 - lr: 0.012500
2022-11-06 22:32:26,914 ----------------------------------------------------------------------------------------------------
2022-11-06 22:32:26,914 EPOCH 104 done: loss 0.0754 - lr 0.012500
2022-11-06 22:32:36,375 Evaluating as a multi-label problem: False
2022-11-06 22:32:36,490 TEST : loss 0.07854548841714859 - f1-score (micro avg)  0.9799
2022-11-06 22:32:36,604 BAD EPOCHS (no improvement): 2
2022-11-06 22:32:36,873 ----------------------------------------------------------------------------------------------------
2022-11-06 22:32:42,092 epoch 105 - iter 38/386 - loss 0.07411338 - samples/sec: 116.62 - lr: 0.012500
2022-11-06 22:32:47,358 epoch 105 - iter 76/386 - loss 0.07593740 - samples/sec: 115.52 - lr: 0.012500
2022-11-06 22:32:52,835 epoch 105 - iter 114/386 - loss 0.07967368 - samples/sec: 111.94 - lr: 0.012500
2022-11-06 22:32:58,386 epoch 105 - iter 152/386 - loss 0.07724821 - samples/sec: 109.58 - lr: 0.012500
2022-11-06 22:33:04,547 epoch 105 - iter 190/386 - loss 0.07662746 - samples/sec: 98.74 - lr: 0.012500
2022-11-06 22:33:10,019 epoch 105 - iter 228/386 - loss 0.07663282 - samples/sec: 111.18 - lr: 0.012500
2022-11-06 22:33:15,439 epoch 105 - iter 266/386 - loss 0.07641141 - samples/sec: 112.23 - lr: 0.012500
2022-11-06 22:33:21,105 epoch 105 - iter 304/386 - loss 0.07529226 - samples/sec: 107.37 - lr: 0.012500
2022-11-06 22:33:27,073 epoch 105 - iter 342/386 - loss 0.07538330 - samples/sec: 101.92 - lr: 0.012500
2022-11-06 22:33:32,649 epoch 105 - iter 380/386 - loss 0.07513659 - samples/sec: 109.10 - lr: 0.012500
2022-11-06 22:33:33,521 ----------------------------------------------------------------------------------------------------
2022-11-06 22:33:33,521 EPOCH 105 done: loss 0.0751 - lr 0.012500
2022-11-06 22:33:43,099 Evaluating as a multi-label problem: False
2022-11-06 22:33:43,215 TEST : loss 0.07858723402023315 - f1-score (micro avg)  0.9794
2022-11-06 22:33:43,330 BAD EPOCHS (no improvement): 0
2022-11-06 22:33:43,625 ----------------------------------------------------------------------------------------------------
2022-11-06 22:33:49,689 epoch 106 - iter 38/386 - loss 0.06727736 - samples/sec: 100.35 - lr: 0.012500
2022-11-06 22:33:54,733 epoch 106 - iter 76/386 - loss 0.06934926 - samples/sec: 120.61 - lr: 0.012500
2022-11-06 22:34:00,089 epoch 106 - iter 114/386 - loss 0.07156163 - samples/sec: 113.60 - lr: 0.012500
2022-11-06 22:34:05,485 epoch 106 - iter 152/386 - loss 0.07347557 - samples/sec: 112.73 - lr: 0.012500
2022-11-06 22:34:10,897 epoch 106 - iter 190/386 - loss 0.07486589 - samples/sec: 112.42 - lr: 0.012500
2022-11-06 22:34:16,610 epoch 106 - iter 228/386 - loss 0.07406187 - samples/sec: 106.49 - lr: 0.012500
2022-11-06 22:34:22,290 epoch 106 - iter 266/386 - loss 0.07504310 - samples/sec: 107.09 - lr: 0.012500
2022-11-06 22:34:27,902 epoch 106 - iter 304/386 - loss 0.07553583 - samples/sec: 108.40 - lr: 0.012500
2022-11-06 22:34:33,820 epoch 106 - iter 342/386 - loss 0.07586313 - samples/sec: 102.79 - lr: 0.012500
2022-11-06 22:34:39,531 epoch 106 - iter 380/386 - loss 0.07565249 - samples/sec: 106.52 - lr: 0.012500
2022-11-06 22:34:40,287 ----------------------------------------------------------------------------------------------------
2022-11-06 22:34:40,287 EPOCH 106 done: loss 0.0757 - lr 0.012500
2022-11-06 22:34:49,940 Evaluating as a multi-label problem: False
2022-11-06 22:34:50,056 TEST : loss 0.0764971524477005 - f1-score (micro avg)  0.9797
2022-11-06 22:34:50,168 BAD EPOCHS (no improvement): 1
2022-11-06 22:34:50,465 ----------------------------------------------------------------------------------------------------
2022-11-06 22:34:55,872 epoch 107 - iter 38/386 - loss 0.07793043 - samples/sec: 112.54 - lr: 0.012500
2022-11-06 22:35:01,477 epoch 107 - iter 76/386 - loss 0.07886203 - samples/sec: 108.53 - lr: 0.012500
2022-11-06 22:35:06,360 epoch 107 - iter 114/386 - loss 0.07789126 - samples/sec: 124.61 - lr: 0.012500
2022-11-06 22:35:11,369 epoch 107 - iter 152/386 - loss 0.07771686 - samples/sec: 121.44 - lr: 0.012500
2022-11-06 22:35:17,286 epoch 107 - iter 190/386 - loss 0.07679357 - samples/sec: 102.82 - lr: 0.012500
2022-11-06 22:35:22,885 epoch 107 - iter 228/386 - loss 0.07780927 - samples/sec: 108.65 - lr: 0.012500
2022-11-06 22:35:28,831 epoch 107 - iter 266/386 - loss 0.07691362 - samples/sec: 102.30 - lr: 0.012500
2022-11-06 22:35:34,328 epoch 107 - iter 304/386 - loss 0.07767365 - samples/sec: 110.68 - lr: 0.012500
2022-11-06 22:35:39,973 epoch 107 - iter 342/386 - loss 0.07674244 - samples/sec: 107.75 - lr: 0.012500
2022-11-06 22:35:45,758 epoch 107 - iter 380/386 - loss 0.07682198 - samples/sec: 105.16 - lr: 0.012500
2022-11-06 22:35:46,691 ----------------------------------------------------------------------------------------------------
2022-11-06 22:35:46,691 EPOCH 107 done: loss 0.0768 - lr 0.012500
2022-11-06 22:35:58,826 Evaluating as a multi-label problem: False
2022-11-06 22:35:58,940 TEST : loss 0.07759314030408859 - f1-score (micro avg)  0.9797
2022-11-06 22:35:59,054 BAD EPOCHS (no improvement): 2
2022-11-06 22:35:59,288 ----------------------------------------------------------------------------------------------------
2022-11-06 22:36:04,886 epoch 108 - iter 38/386 - loss 0.07772745 - samples/sec: 108.70 - lr: 0.012500
2022-11-06 22:36:10,217 epoch 108 - iter 76/386 - loss 0.07956371 - samples/sec: 114.12 - lr: 0.012500
2022-11-06 22:36:15,669 epoch 108 - iter 114/386 - loss 0.07712381 - samples/sec: 111.56 - lr: 0.012500
2022-11-06 22:36:20,706 epoch 108 - iter 152/386 - loss 0.07614295 - samples/sec: 120.78 - lr: 0.012500
2022-11-06 22:36:26,206 epoch 108 - iter 190/386 - loss 0.07566320 - samples/sec: 110.62 - lr: 0.012500
2022-11-06 22:36:31,915 epoch 108 - iter 228/386 - loss 0.07528023 - samples/sec: 106.54 - lr: 0.012500
2022-11-06 22:36:37,490 epoch 108 - iter 266/386 - loss 0.07548655 - samples/sec: 109.12 - lr: 0.012500
2022-11-06 22:36:43,171 epoch 108 - iter 304/386 - loss 0.07645383 - samples/sec: 107.09 - lr: 0.012500
2022-11-06 22:36:48,792 epoch 108 - iter 342/386 - loss 0.07723662 - samples/sec: 108.22 - lr: 0.012500
2022-11-06 22:36:54,537 epoch 108 - iter 380/386 - loss 0.07675000 - samples/sec: 105.89 - lr: 0.012500
2022-11-06 22:36:55,359 ----------------------------------------------------------------------------------------------------
2022-11-06 22:36:55,359 EPOCH 108 done: loss 0.0769 - lr 0.012500
2022-11-06 22:37:05,010 Evaluating as a multi-label problem: False
2022-11-06 22:37:05,125 TEST : loss 0.07701174914836884 - f1-score (micro avg)  0.9797
2022-11-06 22:37:05,238 BAD EPOCHS (no improvement): 3
2022-11-06 22:37:05,447 ----------------------------------------------------------------------------------------------------
2022-11-06 22:37:11,421 epoch 109 - iter 38/386 - loss 0.07682666 - samples/sec: 101.86 - lr: 0.012500
2022-11-06 22:37:16,860 epoch 109 - iter 76/386 - loss 0.07576946 - samples/sec: 111.86 - lr: 0.012500
2022-11-06 22:37:23,112 epoch 109 - iter 114/386 - loss 0.07493292 - samples/sec: 97.29 - lr: 0.012500
2022-11-06 22:37:28,787 epoch 109 - iter 152/386 - loss 0.07609361 - samples/sec: 107.20 - lr: 0.012500
2022-11-06 22:37:33,989 epoch 109 - iter 190/386 - loss 0.07586317 - samples/sec: 116.94 - lr: 0.012500
2022-11-06 22:37:39,671 epoch 109 - iter 228/386 - loss 0.07565590 - samples/sec: 107.06 - lr: 0.012500
2022-11-06 22:37:44,772 epoch 109 - iter 266/386 - loss 0.07547549 - samples/sec: 119.27 - lr: 0.012500
2022-11-06 22:37:49,966 epoch 109 - iter 304/386 - loss 0.07521647 - samples/sec: 117.13 - lr: 0.012500
2022-11-06 22:37:55,223 epoch 109 - iter 342/386 - loss 0.07531028 - samples/sec: 115.74 - lr: 0.012500
2022-11-06 22:38:00,867 epoch 109 - iter 380/386 - loss 0.07562079 - samples/sec: 107.78 - lr: 0.012500
2022-11-06 22:38:01,854 ----------------------------------------------------------------------------------------------------
2022-11-06 22:38:01,854 EPOCH 109 done: loss 0.0754 - lr 0.012500
2022-11-06 22:38:11,582 Evaluating as a multi-label problem: False
2022-11-06 22:38:11,697 TEST : loss 0.07831114530563354 - f1-score (micro avg)  0.9796
2022-11-06 22:38:11,810 Epoch   109: reducing learning rate of group 0 to 6.2500e-03.
2022-11-06 22:38:11,811 BAD EPOCHS (no improvement): 4
2022-11-06 22:38:12,018 ----------------------------------------------------------------------------------------------------
2022-11-06 22:38:17,685 epoch 110 - iter 38/386 - loss 0.08174241 - samples/sec: 107.37 - lr: 0.006250
2022-11-06 22:38:23,300 epoch 110 - iter 76/386 - loss 0.07864406 - samples/sec: 108.34 - lr: 0.006250
2022-11-06 22:38:28,712 epoch 110 - iter 114/386 - loss 0.07705464 - samples/sec: 112.40 - lr: 0.006250
2022-11-06 22:38:34,063 epoch 110 - iter 152/386 - loss 0.07474375 - samples/sec: 113.69 - lr: 0.006250
2022-11-06 22:38:39,781 epoch 110 - iter 190/386 - loss 0.07452670 - samples/sec: 106.40 - lr: 0.006250
2022-11-06 22:38:45,050 epoch 110 - iter 228/386 - loss 0.07418272 - samples/sec: 115.45 - lr: 0.006250
2022-11-06 22:38:49,859 epoch 110 - iter 266/386 - loss 0.07402425 - samples/sec: 126.51 - lr: 0.006250
2022-11-06 22:38:55,578 epoch 110 - iter 304/386 - loss 0.07402912 - samples/sec: 106.36 - lr: 0.006250
2022-11-06 22:39:01,063 epoch 110 - iter 342/386 - loss 0.07401083 - samples/sec: 110.92 - lr: 0.006250
2022-11-06 22:39:06,947 epoch 110 - iter 380/386 - loss 0.07465410 - samples/sec: 103.39 - lr: 0.006250
2022-11-06 22:39:07,954 ----------------------------------------------------------------------------------------------------
2022-11-06 22:39:07,954 EPOCH 110 done: loss 0.0747 - lr 0.006250
2022-11-06 22:39:17,722 Evaluating as a multi-label problem: False
2022-11-06 22:39:17,837 TEST : loss 0.07766838371753693 - f1-score (micro avg)  0.9796
2022-11-06 22:39:17,950 BAD EPOCHS (no improvement): 0
2022-11-06 22:39:18,158 ----------------------------------------------------------------------------------------------------
2022-11-06 22:39:23,273 epoch 111 - iter 38/386 - loss 0.07438457 - samples/sec: 118.96 - lr: 0.006250
2022-11-06 22:39:28,793 epoch 111 - iter 76/386 - loss 0.07338315 - samples/sec: 110.20 - lr: 0.006250
2022-11-06 22:39:34,098 epoch 111 - iter 114/386 - loss 0.07331771 - samples/sec: 114.68 - lr: 0.006250
2022-11-06 22:39:39,860 epoch 111 - iter 152/386 - loss 0.07467265 - samples/sec: 105.58 - lr: 0.006250
2022-11-06 22:39:45,521 epoch 111 - iter 190/386 - loss 0.07408059 - samples/sec: 107.46 - lr: 0.006250
2022-11-06 22:39:51,422 epoch 111 - iter 228/386 - loss 0.07348917 - samples/sec: 103.08 - lr: 0.006250
2022-11-06 22:39:57,321 epoch 111 - iter 266/386 - loss 0.07367028 - samples/sec: 103.12 - lr: 0.006250
2022-11-06 22:40:02,596 epoch 111 - iter 304/386 - loss 0.07349484 - samples/sec: 115.33 - lr: 0.006250
2022-11-06 22:40:08,382 epoch 111 - iter 342/386 - loss 0.07372678 - samples/sec: 105.14 - lr: 0.006250
2022-11-06 22:40:13,289 epoch 111 - iter 380/386 - loss 0.07366151 - samples/sec: 123.97 - lr: 0.006250
2022-11-06 22:40:14,051 ----------------------------------------------------------------------------------------------------
2022-11-06 22:40:14,051 EPOCH 111 done: loss 0.0736 - lr 0.006250
2022-11-06 22:40:23,690 Evaluating as a multi-label problem: False
2022-11-06 22:40:23,804 TEST : loss 0.07827350497245789 - f1-score (micro avg)  0.9799
2022-11-06 22:40:23,916 BAD EPOCHS (no improvement): 0
2022-11-06 22:40:24,123 ----------------------------------------------------------------------------------------------------
2022-11-06 22:40:29,099 epoch 112 - iter 38/386 - loss 0.07457649 - samples/sec: 122.30 - lr: 0.006250
2022-11-06 22:40:34,672 epoch 112 - iter 76/386 - loss 0.07390976 - samples/sec: 109.16 - lr: 0.006250
2022-11-06 22:40:40,401 epoch 112 - iter 114/386 - loss 0.07481698 - samples/sec: 106.17 - lr: 0.006250
2022-11-06 22:40:46,367 epoch 112 - iter 152/386 - loss 0.07362836 - samples/sec: 101.98 - lr: 0.006250
2022-11-06 22:40:52,448 epoch 112 - iter 190/386 - loss 0.07372337 - samples/sec: 100.02 - lr: 0.006250
2022-11-06 22:40:57,973 epoch 112 - iter 228/386 - loss 0.07390448 - samples/sec: 110.11 - lr: 0.006250
2022-11-06 22:41:03,671 epoch 112 - iter 266/386 - loss 0.07383284 - samples/sec: 106.77 - lr: 0.006250
2022-11-06 22:41:09,516 epoch 112 - iter 304/386 - loss 0.07359920 - samples/sec: 104.07 - lr: 0.006250
2022-11-06 22:41:14,542 epoch 112 - iter 342/386 - loss 0.07330693 - samples/sec: 121.05 - lr: 0.006250
2022-11-06 22:41:19,768 epoch 112 - iter 380/386 - loss 0.07359435 - samples/sec: 116.41 - lr: 0.006250
2022-11-06 22:41:20,506 ----------------------------------------------------------------------------------------------------
2022-11-06 22:41:20,506 EPOCH 112 done: loss 0.0736 - lr 0.006250
2022-11-06 22:41:30,178 Evaluating as a multi-label problem: False
2022-11-06 22:41:30,292 TEST : loss 0.0784047469496727 - f1-score (micro avg)  0.9796
2022-11-06 22:41:30,405 BAD EPOCHS (no improvement): 0
2022-11-06 22:41:30,603 ----------------------------------------------------------------------------------------------------
2022-11-06 22:41:36,132 epoch 113 - iter 38/386 - loss 0.06745935 - samples/sec: 110.06 - lr: 0.006250
2022-11-06 22:41:41,642 epoch 113 - iter 76/386 - loss 0.07312497 - samples/sec: 110.41 - lr: 0.006250
2022-11-06 22:41:47,251 epoch 113 - iter 114/386 - loss 0.07487375 - samples/sec: 108.46 - lr: 0.006250
2022-11-06 22:41:53,374 epoch 113 - iter 152/386 - loss 0.07448522 - samples/sec: 99.34 - lr: 0.006250
2022-11-06 22:41:58,986 epoch 113 - iter 190/386 - loss 0.07481588 - samples/sec: 108.39 - lr: 0.006250
2022-11-06 22:42:04,661 epoch 113 - iter 228/386 - loss 0.07481104 - samples/sec: 107.19 - lr: 0.006250
2022-11-06 22:42:09,868 epoch 113 - iter 266/386 - loss 0.07450630 - samples/sec: 116.85 - lr: 0.006250
2022-11-06 22:42:15,444 epoch 113 - iter 304/386 - loss 0.07432014 - samples/sec: 109.09 - lr: 0.006250
2022-11-06 22:42:20,828 epoch 113 - iter 342/386 - loss 0.07418859 - samples/sec: 113.00 - lr: 0.006250
2022-11-06 22:42:26,222 epoch 113 - iter 380/386 - loss 0.07414788 - samples/sec: 112.77 - lr: 0.006250
2022-11-06 22:42:27,047 ----------------------------------------------------------------------------------------------------
2022-11-06 22:42:27,047 EPOCH 113 done: loss 0.0740 - lr 0.006250
2022-11-06 22:42:36,351 Evaluating as a multi-label problem: False
2022-11-06 22:42:36,466 TEST : loss 0.0782204121351242 - f1-score (micro avg)  0.9798
2022-11-06 22:42:36,579 BAD EPOCHS (no improvement): 1
2022-11-06 22:42:36,779 ----------------------------------------------------------------------------------------------------
2022-11-06 22:42:42,018 epoch 114 - iter 38/386 - loss 0.06587890 - samples/sec: 116.14 - lr: 0.006250
2022-11-06 22:42:48,243 epoch 114 - iter 76/386 - loss 0.06948695 - samples/sec: 97.72 - lr: 0.006250
2022-11-06 22:42:53,714 epoch 114 - iter 114/386 - loss 0.06935897 - samples/sec: 111.20 - lr: 0.006250
2022-11-06 22:42:59,267 epoch 114 - iter 152/386 - loss 0.06830812 - samples/sec: 109.55 - lr: 0.006250
2022-11-06 22:43:05,012 epoch 114 - iter 190/386 - loss 0.06990073 - samples/sec: 105.90 - lr: 0.006250
2022-11-06 22:43:10,273 epoch 114 - iter 228/386 - loss 0.07031777 - samples/sec: 115.63 - lr: 0.006250
2022-11-06 22:43:15,874 epoch 114 - iter 266/386 - loss 0.07140795 - samples/sec: 108.60 - lr: 0.006250
2022-11-06 22:43:21,628 epoch 114 - iter 304/386 - loss 0.07147415 - samples/sec: 105.72 - lr: 0.006250
2022-11-06 22:43:27,261 epoch 114 - iter 342/386 - loss 0.07159018 - samples/sec: 107.99 - lr: 0.006250
2022-11-06 22:43:32,736 epoch 114 - iter 380/386 - loss 0.07193801 - samples/sec: 111.14 - lr: 0.006250
2022-11-06 22:43:33,684 ----------------------------------------------------------------------------------------------------
2022-11-06 22:43:33,684 EPOCH 114 done: loss 0.0717 - lr 0.006250
2022-11-06 22:43:42,618 Evaluating as a multi-label problem: False
2022-11-06 22:43:42,733 TEST : loss 0.07809162139892578 - f1-score (micro avg)  0.9798
2022-11-06 22:43:42,846 BAD EPOCHS (no improvement): 0
2022-11-06 22:43:43,053 ----------------------------------------------------------------------------------------------------
2022-11-06 22:43:48,689 epoch 115 - iter 38/386 - loss 0.08079929 - samples/sec: 107.96 - lr: 0.006250
2022-11-06 22:43:54,157 epoch 115 - iter 76/386 - loss 0.07503846 - samples/sec: 111.25 - lr: 0.006250
2022-11-06 22:43:59,851 epoch 115 - iter 114/386 - loss 0.07552664 - samples/sec: 106.83 - lr: 0.006250
2022-11-06 22:44:05,412 epoch 115 - iter 152/386 - loss 0.07313925 - samples/sec: 109.41 - lr: 0.006250
2022-11-06 22:44:10,998 epoch 115 - iter 190/386 - loss 0.07399548 - samples/sec: 108.90 - lr: 0.006250
2022-11-06 22:44:17,159 epoch 115 - iter 228/386 - loss 0.07418077 - samples/sec: 98.73 - lr: 0.006250
2022-11-06 22:44:22,490 epoch 115 - iter 266/386 - loss 0.07427701 - samples/sec: 114.12 - lr: 0.006250
2022-11-06 22:44:27,871 epoch 115 - iter 304/386 - loss 0.07325423 - samples/sec: 113.05 - lr: 0.006250
2022-11-06 22:44:33,096 epoch 115 - iter 342/386 - loss 0.07281653 - samples/sec: 116.43 - lr: 0.006250
2022-11-06 22:44:38,839 epoch 115 - iter 380/386 - loss 0.07338386 - samples/sec: 105.93 - lr: 0.006250
2022-11-06 22:44:39,763 ----------------------------------------------------------------------------------------------------
2022-11-06 22:44:39,763 EPOCH 115 done: loss 0.0737 - lr 0.006250
2022-11-06 22:44:49,211 Evaluating as a multi-label problem: False
2022-11-06 22:44:49,326 TEST : loss 0.07869032025337219 - f1-score (micro avg)  0.9797
2022-11-06 22:44:49,438 BAD EPOCHS (no improvement): 1
2022-11-06 22:44:49,645 ----------------------------------------------------------------------------------------------------
2022-11-06 22:44:54,808 epoch 116 - iter 38/386 - loss 0.06467089 - samples/sec: 117.87 - lr: 0.006250
2022-11-06 22:45:00,285 epoch 116 - iter 76/386 - loss 0.06757483 - samples/sec: 111.06 - lr: 0.006250
2022-11-06 22:45:05,972 epoch 116 - iter 114/386 - loss 0.07024725 - samples/sec: 106.98 - lr: 0.006250
2022-11-06 22:45:11,528 epoch 116 - iter 152/386 - loss 0.07050239 - samples/sec: 109.48 - lr: 0.006250
2022-11-06 22:45:16,928 epoch 116 - iter 190/386 - loss 0.07115237 - samples/sec: 112.66 - lr: 0.006250
2022-11-06 22:45:23,168 epoch 116 - iter 228/386 - loss 0.07166118 - samples/sec: 97.49 - lr: 0.006250
2022-11-06 22:45:28,503 epoch 116 - iter 266/386 - loss 0.07279125 - samples/sec: 114.04 - lr: 0.006250
2022-11-06 22:45:33,863 epoch 116 - iter 304/386 - loss 0.07294731 - samples/sec: 113.50 - lr: 0.006250
2022-11-06 22:45:39,513 epoch 116 - iter 342/386 - loss 0.07319292 - samples/sec: 107.66 - lr: 0.006250
2022-11-06 22:45:45,244 epoch 116 - iter 380/386 - loss 0.07311641 - samples/sec: 106.16 - lr: 0.006250
2022-11-06 22:45:46,149 ----------------------------------------------------------------------------------------------------
2022-11-06 22:45:46,149 EPOCH 116 done: loss 0.0731 - lr 0.006250
2022-11-06 22:45:55,775 Evaluating as a multi-label problem: False
2022-11-06 22:45:55,890 TEST : loss 0.07787258923053741 - f1-score (micro avg)  0.9799
2022-11-06 22:45:56,003 BAD EPOCHS (no improvement): 2
2022-11-06 22:45:56,208 ----------------------------------------------------------------------------------------------------
2022-11-06 22:46:01,914 epoch 117 - iter 38/386 - loss 0.07456506 - samples/sec: 106.63 - lr: 0.006250
2022-11-06 22:46:07,149 epoch 117 - iter 76/386 - loss 0.07301545 - samples/sec: 116.21 - lr: 0.006250
2022-11-06 22:46:12,710 epoch 117 - iter 114/386 - loss 0.07214790 - samples/sec: 109.40 - lr: 0.006250
2022-11-06 22:46:18,389 epoch 117 - iter 152/386 - loss 0.07349199 - samples/sec: 107.12 - lr: 0.006250
2022-11-06 22:46:24,211 epoch 117 - iter 190/386 - loss 0.07438933 - samples/sec: 104.48 - lr: 0.006250
2022-11-06 22:46:29,483 epoch 117 - iter 228/386 - loss 0.07472042 - samples/sec: 115.41 - lr: 0.006250
2022-11-06 22:46:35,736 epoch 117 - iter 266/386 - loss 0.07482219 - samples/sec: 97.28 - lr: 0.006250
2022-11-06 22:46:41,063 epoch 117 - iter 304/386 - loss 0.07409200 - samples/sec: 114.21 - lr: 0.006250
2022-11-06 22:46:46,457 epoch 117 - iter 342/386 - loss 0.07417828 - samples/sec: 112.77 - lr: 0.006250
2022-11-06 22:46:51,990 epoch 117 - iter 380/386 - loss 0.07410059 - samples/sec: 109.95 - lr: 0.006250
2022-11-06 22:46:52,769 ----------------------------------------------------------------------------------------------------
2022-11-06 22:46:52,769 EPOCH 117 done: loss 0.0740 - lr 0.006250
2022-11-06 22:47:02,415 Evaluating as a multi-label problem: False
2022-11-06 22:47:02,530 TEST : loss 0.07921639084815979 - f1-score (micro avg)  0.9794
2022-11-06 22:47:02,643 BAD EPOCHS (no improvement): 3
2022-11-06 22:47:02,849 ----------------------------------------------------------------------------------------------------
2022-11-06 22:47:08,496 epoch 118 - iter 38/386 - loss 0.07675392 - samples/sec: 107.75 - lr: 0.006250
2022-11-06 22:47:14,016 epoch 118 - iter 76/386 - loss 0.07527668 - samples/sec: 110.22 - lr: 0.006250
2022-11-06 22:47:18,927 epoch 118 - iter 114/386 - loss 0.07337067 - samples/sec: 123.87 - lr: 0.006250
2022-11-06 22:47:24,183 epoch 118 - iter 152/386 - loss 0.07340006 - samples/sec: 115.75 - lr: 0.006250
2022-11-06 22:47:29,668 epoch 118 - iter 190/386 - loss 0.07289468 - samples/sec: 110.90 - lr: 0.006250
2022-11-06 22:47:35,382 epoch 118 - iter 228/386 - loss 0.07318162 - samples/sec: 106.47 - lr: 0.006250
2022-11-06 22:47:40,963 epoch 118 - iter 266/386 - loss 0.07385145 - samples/sec: 109.01 - lr: 0.006250
2022-11-06 22:47:46,511 epoch 118 - iter 304/386 - loss 0.07402890 - samples/sec: 109.63 - lr: 0.006250
2022-11-06 22:47:52,857 epoch 118 - iter 342/386 - loss 0.07374341 - samples/sec: 95.87 - lr: 0.006250
2022-11-06 22:47:58,354 epoch 118 - iter 380/386 - loss 0.07366664 - samples/sec: 110.66 - lr: 0.006250
2022-11-06 22:47:59,163 ----------------------------------------------------------------------------------------------------
2022-11-06 22:47:59,163 EPOCH 118 done: loss 0.0738 - lr 0.006250
2022-11-06 22:48:11,151 Evaluating as a multi-label problem: False
2022-11-06 22:48:11,266 TEST : loss 0.07913336902856827 - f1-score (micro avg)  0.9798
2022-11-06 22:48:11,380 Epoch   118: reducing learning rate of group 0 to 3.1250e-03.
2022-11-06 22:48:11,380 BAD EPOCHS (no improvement): 4
2022-11-06 22:48:11,579 ----------------------------------------------------------------------------------------------------
2022-11-06 22:48:17,130 epoch 119 - iter 38/386 - loss 0.08441339 - samples/sec: 109.62 - lr: 0.003125
2022-11-06 22:48:23,068 epoch 119 - iter 76/386 - loss 0.07742126 - samples/sec: 102.45 - lr: 0.003125
2022-11-06 22:48:28,362 epoch 119 - iter 114/386 - loss 0.07506273 - samples/sec: 114.92 - lr: 0.003125
2022-11-06 22:48:33,790 epoch 119 - iter 152/386 - loss 0.07328483 - samples/sec: 112.06 - lr: 0.003125
2022-11-06 22:48:39,044 epoch 119 - iter 190/386 - loss 0.07163464 - samples/sec: 115.78 - lr: 0.003125
2022-11-06 22:48:44,770 epoch 119 - iter 228/386 - loss 0.07048723 - samples/sec: 106.24 - lr: 0.003125
2022-11-06 22:48:50,324 epoch 119 - iter 266/386 - loss 0.07111069 - samples/sec: 109.54 - lr: 0.003125
2022-11-06 22:48:55,700 epoch 119 - iter 304/386 - loss 0.07159411 - samples/sec: 113.16 - lr: 0.003125
2022-11-06 22:49:01,783 epoch 119 - iter 342/386 - loss 0.07142949 - samples/sec: 100.01 - lr: 0.003125
2022-11-06 22:49:06,925 epoch 119 - iter 380/386 - loss 0.07080463 - samples/sec: 118.30 - lr: 0.003125
2022-11-06 22:49:07,684 ----------------------------------------------------------------------------------------------------
2022-11-06 22:49:07,684 EPOCH 119 done: loss 0.0707 - lr 0.003125
2022-11-06 22:49:17,305 Evaluating as a multi-label problem: False
2022-11-06 22:49:17,420 TEST : loss 0.07869245857000351 - f1-score (micro avg)  0.9798
2022-11-06 22:49:17,533 BAD EPOCHS (no improvement): 0
2022-11-06 22:49:17,804 ----------------------------------------------------------------------------------------------------
2022-11-06 22:49:23,240 epoch 120 - iter 38/386 - loss 0.07003334 - samples/sec: 111.93 - lr: 0.003125
2022-11-06 22:49:28,407 epoch 120 - iter 76/386 - loss 0.07241340 - samples/sec: 117.74 - lr: 0.003125
2022-11-06 22:49:34,114 epoch 120 - iter 114/386 - loss 0.07110733 - samples/sec: 106.59 - lr: 0.003125
2022-11-06 22:49:39,401 epoch 120 - iter 152/386 - loss 0.07101024 - samples/sec: 115.06 - lr: 0.003125
2022-11-06 22:49:44,739 epoch 120 - iter 190/386 - loss 0.07154690 - samples/sec: 113.95 - lr: 0.003125
2022-11-06 22:49:51,008 epoch 120 - iter 228/386 - loss 0.07106011 - samples/sec: 97.04 - lr: 0.003125
2022-11-06 22:49:56,441 epoch 120 - iter 266/386 - loss 0.07079481 - samples/sec: 111.97 - lr: 0.003125
2022-11-06 22:50:01,937 epoch 120 - iter 304/386 - loss 0.07116823 - samples/sec: 110.70 - lr: 0.003125
2022-11-06 22:50:07,609 epoch 120 - iter 342/386 - loss 0.07116696 - samples/sec: 107.25 - lr: 0.003125
2022-11-06 22:50:13,211 epoch 120 - iter 380/386 - loss 0.07097452 - samples/sec: 108.59 - lr: 0.003125
2022-11-06 22:50:14,248 ----------------------------------------------------------------------------------------------------
2022-11-06 22:50:14,248 EPOCH 120 done: loss 0.0710 - lr 0.003125
2022-11-06 22:50:23,902 Evaluating as a multi-label problem: False
2022-11-06 22:50:24,018 TEST : loss 0.07862657308578491 - f1-score (micro avg)  0.9795
2022-11-06 22:50:24,131 BAD EPOCHS (no improvement): 1
2022-11-06 22:50:24,426 ----------------------------------------------------------------------------------------------------
2022-11-06 22:50:30,014 epoch 121 - iter 38/386 - loss 0.07008204 - samples/sec: 108.91 - lr: 0.003125
2022-11-06 22:50:35,466 epoch 121 - iter 76/386 - loss 0.07665982 - samples/sec: 111.58 - lr: 0.003125
2022-11-06 22:50:41,151 epoch 121 - iter 114/386 - loss 0.07515720 - samples/sec: 107.01 - lr: 0.003125
2022-11-06 22:50:46,784 epoch 121 - iter 152/386 - loss 0.07385046 - samples/sec: 107.98 - lr: 0.003125
2022-11-06 22:50:52,336 epoch 121 - iter 190/386 - loss 0.07283816 - samples/sec: 109.58 - lr: 0.003125
2022-11-06 22:50:57,812 epoch 121 - iter 228/386 - loss 0.07269037 - samples/sec: 111.10 - lr: 0.003125
2022-11-06 22:51:02,881 epoch 121 - iter 266/386 - loss 0.07269133 - samples/sec: 120.01 - lr: 0.003125
2022-11-06 22:51:08,459 epoch 121 - iter 304/386 - loss 0.07326572 - samples/sec: 109.06 - lr: 0.003125
2022-11-06 22:51:14,108 epoch 121 - iter 342/386 - loss 0.07365154 - samples/sec: 107.69 - lr: 0.003125
2022-11-06 22:51:20,029 epoch 121 - iter 380/386 - loss 0.07361047 - samples/sec: 102.75 - lr: 0.003125
2022-11-06 22:51:20,813 ----------------------------------------------------------------------------------------------------
2022-11-06 22:51:20,813 EPOCH 121 done: loss 0.0738 - lr 0.003125
2022-11-06 22:51:30,343 Evaluating as a multi-label problem: False
2022-11-06 22:51:30,457 TEST : loss 0.07829055935144424 - f1-score (micro avg)  0.9796
2022-11-06 22:51:30,571 BAD EPOCHS (no improvement): 2
2022-11-06 22:51:30,867 ----------------------------------------------------------------------------------------------------
2022-11-06 22:51:36,365 epoch 122 - iter 38/386 - loss 0.07587148 - samples/sec: 110.68 - lr: 0.003125
2022-11-06 22:51:42,507 epoch 122 - iter 76/386 - loss 0.07060888 - samples/sec: 99.04 - lr: 0.003125
2022-11-06 22:51:48,139 epoch 122 - iter 114/386 - loss 0.07060573 - samples/sec: 108.01 - lr: 0.003125
2022-11-06 22:51:53,462 epoch 122 - iter 152/386 - loss 0.07077425 - samples/sec: 114.28 - lr: 0.003125
2022-11-06 22:51:59,291 epoch 122 - iter 190/386 - loss 0.07107700 - samples/sec: 104.36 - lr: 0.003125
2022-11-06 22:52:04,979 epoch 122 - iter 228/386 - loss 0.07241594 - samples/sec: 106.95 - lr: 0.003125
2022-11-06 22:52:10,324 epoch 122 - iter 266/386 - loss 0.07267496 - samples/sec: 113.82 - lr: 0.003125
2022-11-06 22:52:16,139 epoch 122 - iter 304/386 - loss 0.07311927 - samples/sec: 104.63 - lr: 0.003125
2022-11-06 22:52:21,712 epoch 122 - iter 342/386 - loss 0.07384208 - samples/sec: 109.15 - lr: 0.003125
2022-11-06 22:52:26,791 epoch 122 - iter 380/386 - loss 0.07386006 - samples/sec: 119.79 - lr: 0.003125
2022-11-06 22:52:27,544 ----------------------------------------------------------------------------------------------------
2022-11-06 22:52:27,544 EPOCH 122 done: loss 0.0742 - lr 0.003125
2022-11-06 22:52:37,264 Evaluating as a multi-label problem: False
2022-11-06 22:52:37,379 TEST : loss 0.07821225374937057 - f1-score (micro avg)  0.9796
2022-11-06 22:52:37,492 BAD EPOCHS (no improvement): 3
2022-11-06 22:52:37,769 ----------------------------------------------------------------------------------------------------
2022-11-06 22:52:43,801 epoch 123 - iter 38/386 - loss 0.07069385 - samples/sec: 100.86 - lr: 0.003125
2022-11-06 22:52:49,323 epoch 123 - iter 76/386 - loss 0.07225030 - samples/sec: 110.17 - lr: 0.003125
2022-11-06 22:52:55,191 epoch 123 - iter 114/386 - loss 0.07087317 - samples/sec: 103.67 - lr: 0.003125
2022-11-06 22:53:00,530 epoch 123 - iter 152/386 - loss 0.07098515 - samples/sec: 113.94 - lr: 0.003125
2022-11-06 22:53:05,949 epoch 123 - iter 190/386 - loss 0.07226604 - samples/sec: 112.26 - lr: 0.003125
2022-11-06 22:53:11,126 epoch 123 - iter 228/386 - loss 0.07236956 - samples/sec: 117.52 - lr: 0.003125
2022-11-06 22:53:17,082 epoch 123 - iter 266/386 - loss 0.07276559 - samples/sec: 102.15 - lr: 0.003125
2022-11-06 22:53:22,656 epoch 123 - iter 304/386 - loss 0.07227973 - samples/sec: 109.12 - lr: 0.003125
2022-11-06 22:53:28,107 epoch 123 - iter 342/386 - loss 0.07257929 - samples/sec: 111.61 - lr: 0.003125
2022-11-06 22:53:33,469 epoch 123 - iter 380/386 - loss 0.07230997 - samples/sec: 113.46 - lr: 0.003125
2022-11-06 22:53:34,176 ----------------------------------------------------------------------------------------------------
2022-11-06 22:53:34,176 EPOCH 123 done: loss 0.0724 - lr 0.003125
2022-11-06 22:53:43,848 Evaluating as a multi-label problem: False
2022-11-06 22:53:43,963 TEST : loss 0.07795599102973938 - f1-score (micro avg)  0.9795
2022-11-06 22:53:44,077 Epoch   123: reducing learning rate of group 0 to 1.5625e-03.
2022-11-06 22:53:44,077 BAD EPOCHS (no improvement): 4
2022-11-06 22:53:44,282 ----------------------------------------------------------------------------------------------------
2022-11-06 22:53:50,236 epoch 124 - iter 38/386 - loss 0.07453479 - samples/sec: 102.19 - lr: 0.001563
2022-11-06 22:53:55,507 epoch 124 - iter 76/386 - loss 0.07387122 - samples/sec: 115.43 - lr: 0.001563
2022-11-06 22:54:00,969 epoch 124 - iter 114/386 - loss 0.07305453 - samples/sec: 111.37 - lr: 0.001563
2022-11-06 22:54:07,025 epoch 124 - iter 152/386 - loss 0.07218372 - samples/sec: 100.45 - lr: 0.001563
2022-11-06 22:54:12,843 epoch 124 - iter 190/386 - loss 0.07196633 - samples/sec: 104.56 - lr: 0.001563
2022-11-06 22:54:18,154 epoch 124 - iter 228/386 - loss 0.07159715 - samples/sec: 114.53 - lr: 0.001563
2022-11-06 22:54:23,388 epoch 124 - iter 266/386 - loss 0.07198522 - samples/sec: 116.24 - lr: 0.001563
2022-11-06 22:54:29,116 epoch 124 - iter 304/386 - loss 0.07176734 - samples/sec: 106.21 - lr: 0.001563
2022-11-06 22:54:34,933 epoch 124 - iter 342/386 - loss 0.07178848 - samples/sec: 104.56 - lr: 0.001563
2022-11-06 22:54:40,217 epoch 124 - iter 380/386 - loss 0.07159231 - samples/sec: 115.14 - lr: 0.001563
2022-11-06 22:54:40,898 ----------------------------------------------------------------------------------------------------
2022-11-06 22:54:40,898 EPOCH 124 done: loss 0.0716 - lr 0.001563
2022-11-06 22:54:50,281 Evaluating as a multi-label problem: False
2022-11-06 22:54:50,395 TEST : loss 0.0781024768948555 - f1-score (micro avg)  0.9795
2022-11-06 22:54:50,508 BAD EPOCHS (no improvement): 1
2022-11-06 22:54:50,716 ----------------------------------------------------------------------------------------------------
2022-11-06 22:54:56,516 epoch 125 - iter 38/386 - loss 0.06603111 - samples/sec: 104.91 - lr: 0.001563
2022-11-06 22:55:02,113 epoch 125 - iter 76/386 - loss 0.07181574 - samples/sec: 108.70 - lr: 0.001563
2022-11-06 22:55:07,785 epoch 125 - iter 114/386 - loss 0.07095853 - samples/sec: 107.24 - lr: 0.001563
2022-11-06 22:55:13,685 epoch 125 - iter 152/386 - loss 0.06870419 - samples/sec: 103.11 - lr: 0.001563
2022-11-06 22:55:19,200 epoch 125 - iter 190/386 - loss 0.06850812 - samples/sec: 110.30 - lr: 0.001563
2022-11-06 22:55:24,478 epoch 125 - iter 228/386 - loss 0.06907321 - samples/sec: 115.27 - lr: 0.001563
2022-11-06 22:55:29,890 epoch 125 - iter 266/386 - loss 0.07039809 - samples/sec: 112.39 - lr: 0.001563
2022-11-06 22:55:35,805 epoch 125 - iter 304/386 - loss 0.07069692 - samples/sec: 102.84 - lr: 0.001563
2022-11-06 22:55:41,538 epoch 125 - iter 342/386 - loss 0.07081859 - samples/sec: 106.11 - lr: 0.001563
2022-11-06 22:55:46,898 epoch 125 - iter 380/386 - loss 0.07078155 - samples/sec: 113.51 - lr: 0.001563
2022-11-06 22:55:47,710 ----------------------------------------------------------------------------------------------------
2022-11-06 22:55:47,710 EPOCH 125 done: loss 0.0713 - lr 0.001563
2022-11-06 22:55:56,543 Evaluating as a multi-label problem: False
2022-11-06 22:55:56,659 TEST : loss 0.0782727301120758 - f1-score (micro avg)  0.9793
2022-11-06 22:55:56,772 BAD EPOCHS (no improvement): 2
2022-11-06 22:55:56,972 ----------------------------------------------------------------------------------------------------
2022-11-06 22:56:02,610 epoch 126 - iter 38/386 - loss 0.07739603 - samples/sec: 107.91 - lr: 0.001563
2022-11-06 22:56:08,430 epoch 126 - iter 76/386 - loss 0.07644368 - samples/sec: 104.53 - lr: 0.001563
2022-11-06 22:56:13,909 epoch 126 - iter 114/386 - loss 0.07472416 - samples/sec: 111.03 - lr: 0.001563
2022-11-06 22:56:19,773 epoch 126 - iter 152/386 - loss 0.07530828 - samples/sec: 103.74 - lr: 0.001563
2022-11-06 22:56:25,801 epoch 126 - iter 190/386 - loss 0.07487976 - samples/sec: 100.92 - lr: 0.001563
2022-11-06 22:56:31,148 epoch 126 - iter 228/386 - loss 0.07432315 - samples/sec: 113.77 - lr: 0.001563
2022-11-06 22:56:36,614 epoch 126 - iter 266/386 - loss 0.07569476 - samples/sec: 111.29 - lr: 0.001563
2022-11-06 22:56:42,041 epoch 126 - iter 304/386 - loss 0.07498686 - samples/sec: 112.11 - lr: 0.001563
2022-11-06 22:56:47,304 epoch 126 - iter 342/386 - loss 0.07493999 - samples/sec: 115.59 - lr: 0.001563
2022-11-06 22:56:53,067 epoch 126 - iter 380/386 - loss 0.07474151 - samples/sec: 105.56 - lr: 0.001563
2022-11-06 22:56:54,028 ----------------------------------------------------------------------------------------------------
2022-11-06 22:56:54,028 EPOCH 126 done: loss 0.0750 - lr 0.001563
2022-11-06 22:57:03,343 Evaluating as a multi-label problem: False
2022-11-06 22:57:03,458 TEST : loss 0.07818238437175751 - f1-score (micro avg)  0.9794
2022-11-06 22:57:03,571 BAD EPOCHS (no improvement): 3
2022-11-06 22:57:03,777 ----------------------------------------------------------------------------------------------------
2022-11-06 22:57:08,565 epoch 127 - iter 38/386 - loss 0.07566822 - samples/sec: 127.10 - lr: 0.001563
2022-11-06 22:57:13,988 epoch 127 - iter 76/386 - loss 0.07792866 - samples/sec: 112.19 - lr: 0.001563
2022-11-06 22:57:19,657 epoch 127 - iter 114/386 - loss 0.07648305 - samples/sec: 107.29 - lr: 0.001563
2022-11-06 22:57:25,348 epoch 127 - iter 152/386 - loss 0.07462793 - samples/sec: 106.89 - lr: 0.001563
2022-11-06 22:57:31,158 epoch 127 - iter 190/386 - loss 0.07373016 - samples/sec: 104.70 - lr: 0.001563
2022-11-06 22:57:36,849 epoch 127 - iter 228/386 - loss 0.07276951 - samples/sec: 106.90 - lr: 0.001563
2022-11-06 22:57:42,857 epoch 127 - iter 266/386 - loss 0.07281459 - samples/sec: 101.26 - lr: 0.001563
2022-11-06 22:57:48,385 epoch 127 - iter 304/386 - loss 0.07252182 - samples/sec: 110.05 - lr: 0.001563
2022-11-06 22:57:53,642 epoch 127 - iter 342/386 - loss 0.07222995 - samples/sec: 115.71 - lr: 0.001563
2022-11-06 22:57:59,416 epoch 127 - iter 380/386 - loss 0.07296185 - samples/sec: 105.37 - lr: 0.001563
2022-11-06 22:58:00,242 ----------------------------------------------------------------------------------------------------
2022-11-06 22:58:00,242 EPOCH 127 done: loss 0.0729 - lr 0.001563
2022-11-06 22:58:09,831 Evaluating as a multi-label problem: False
2022-11-06 22:58:09,945 TEST : loss 0.07828076183795929 - f1-score (micro avg)  0.9793
2022-11-06 22:58:10,058 Epoch   127: reducing learning rate of group 0 to 7.8125e-04.
2022-11-06 22:58:10,059 BAD EPOCHS (no improvement): 4
2022-11-06 22:58:10,266 ----------------------------------------------------------------------------------------------------
2022-11-06 22:58:15,464 epoch 128 - iter 38/386 - loss 0.06787719 - samples/sec: 117.08 - lr: 0.000781
2022-11-06 22:58:20,646 epoch 128 - iter 76/386 - loss 0.06892049 - samples/sec: 117.40 - lr: 0.000781
2022-11-06 22:58:26,003 epoch 128 - iter 114/386 - loss 0.06771139 - samples/sec: 113.54 - lr: 0.000781
2022-11-06 22:58:32,117 epoch 128 - iter 152/386 - loss 0.06817545 - samples/sec: 99.51 - lr: 0.000781
2022-11-06 22:58:37,740 epoch 128 - iter 190/386 - loss 0.06973778 - samples/sec: 108.18 - lr: 0.000781
2022-11-06 22:58:43,253 epoch 128 - iter 228/386 - loss 0.06980534 - samples/sec: 110.34 - lr: 0.000781
2022-11-06 22:58:49,035 epoch 128 - iter 266/386 - loss 0.07035821 - samples/sec: 105.22 - lr: 0.000781
2022-11-06 22:58:54,939 epoch 128 - iter 304/386 - loss 0.07045187 - samples/sec: 103.03 - lr: 0.000781
2022-11-06 22:59:00,489 epoch 128 - iter 342/386 - loss 0.07072151 - samples/sec: 109.62 - lr: 0.000781
2022-11-06 22:59:05,643 epoch 128 - iter 380/386 - loss 0.07044890 - samples/sec: 118.04 - lr: 0.000781
2022-11-06 22:59:06,646 ----------------------------------------------------------------------------------------------------
2022-11-06 22:59:06,646 EPOCH 128 done: loss 0.0703 - lr 0.000781
2022-11-06 22:59:18,654 Evaluating as a multi-label problem: False
2022-11-06 22:59:18,768 TEST : loss 0.07819060236215591 - f1-score (micro avg)  0.9793
2022-11-06 22:59:18,881 BAD EPOCHS (no improvement): 0
2022-11-06 22:59:19,088 ----------------------------------------------------------------------------------------------------
2022-11-06 22:59:24,916 epoch 129 - iter 38/386 - loss 0.07275281 - samples/sec: 104.40 - lr: 0.000781
2022-11-06 22:59:29,978 epoch 129 - iter 76/386 - loss 0.07363556 - samples/sec: 120.18 - lr: 0.000781
2022-11-06 22:59:35,388 epoch 129 - iter 114/386 - loss 0.07430612 - samples/sec: 112.45 - lr: 0.000781
2022-11-06 22:59:40,922 epoch 129 - iter 152/386 - loss 0.07419195 - samples/sec: 109.93 - lr: 0.000781
2022-11-06 22:59:46,863 epoch 129 - iter 190/386 - loss 0.07384624 - samples/sec: 102.40 - lr: 0.000781
2022-11-06 22:59:52,430 epoch 129 - iter 228/386 - loss 0.07418418 - samples/sec: 109.27 - lr: 0.000781
2022-11-06 22:59:58,146 epoch 129 - iter 266/386 - loss 0.07356684 - samples/sec: 106.43 - lr: 0.000781
2022-11-06 23:00:03,937 epoch 129 - iter 304/386 - loss 0.07393466 - samples/sec: 105.05 - lr: 0.000781
2022-11-06 23:00:09,128 epoch 129 - iter 342/386 - loss 0.07341780 - samples/sec: 117.19 - lr: 0.000781
2022-11-06 23:00:14,745 epoch 129 - iter 380/386 - loss 0.07290983 - samples/sec: 108.30 - lr: 0.000781
2022-11-06 23:00:15,530 ----------------------------------------------------------------------------------------------------
2022-11-06 23:00:15,530 EPOCH 129 done: loss 0.0730 - lr 0.000781
2022-11-06 23:00:25,171 Evaluating as a multi-label problem: False
2022-11-06 23:00:25,286 TEST : loss 0.07834754884243011 - f1-score (micro avg)  0.9793
2022-11-06 23:00:25,398 BAD EPOCHS (no improvement): 1
2022-11-06 23:00:25,604 ----------------------------------------------------------------------------------------------------
2022-11-06 23:00:31,190 epoch 130 - iter 38/386 - loss 0.07424163 - samples/sec: 108.93 - lr: 0.000781
2022-11-06 23:00:37,401 epoch 130 - iter 76/386 - loss 0.07589137 - samples/sec: 97.93 - lr: 0.000781
2022-11-06 23:00:42,682 epoch 130 - iter 114/386 - loss 0.07505534 - samples/sec: 115.21 - lr: 0.000781
2022-11-06 23:00:48,121 epoch 130 - iter 152/386 - loss 0.07513815 - samples/sec: 111.85 - lr: 0.000781
2022-11-06 23:00:53,956 epoch 130 - iter 190/386 - loss 0.07341735 - samples/sec: 104.26 - lr: 0.000781
2022-11-06 23:00:59,379 epoch 130 - iter 228/386 - loss 0.07319684 - samples/sec: 112.18 - lr: 0.000781
2022-11-06 23:01:04,834 epoch 130 - iter 266/386 - loss 0.07297365 - samples/sec: 111.50 - lr: 0.000781
2022-11-06 23:01:10,560 epoch 130 - iter 304/386 - loss 0.07221610 - samples/sec: 106.24 - lr: 0.000781
2022-11-06 23:01:16,153 epoch 130 - iter 342/386 - loss 0.07171895 - samples/sec: 108.77 - lr: 0.000781
2022-11-06 23:01:21,459 epoch 130 - iter 380/386 - loss 0.07161407 - samples/sec: 114.65 - lr: 0.000781
2022-11-06 23:01:22,369 ----------------------------------------------------------------------------------------------------
2022-11-06 23:01:22,369 EPOCH 130 done: loss 0.0716 - lr 0.000781
2022-11-06 23:01:31,982 Evaluating as a multi-label problem: False
2022-11-06 23:01:32,097 TEST : loss 0.07843586802482605 - f1-score (micro avg)  0.9793
2022-11-06 23:01:32,209 BAD EPOCHS (no improvement): 2
2022-11-06 23:01:32,410 ----------------------------------------------------------------------------------------------------
2022-11-06 23:01:38,329 epoch 131 - iter 38/386 - loss 0.06891126 - samples/sec: 102.79 - lr: 0.000781
2022-11-06 23:01:44,462 epoch 131 - iter 76/386 - loss 0.07240625 - samples/sec: 99.19 - lr: 0.000781
2022-11-06 23:01:49,997 epoch 131 - iter 114/386 - loss 0.06907713 - samples/sec: 109.91 - lr: 0.000781
2022-11-06 23:01:55,666 epoch 131 - iter 152/386 - loss 0.06824256 - samples/sec: 107.30 - lr: 0.000781
2022-11-06 23:02:00,565 epoch 131 - iter 190/386 - loss 0.06781263 - samples/sec: 124.19 - lr: 0.000781
2022-11-06 23:02:06,017 epoch 131 - iter 228/386 - loss 0.06909911 - samples/sec: 111.59 - lr: 0.000781
2022-11-06 23:02:11,619 epoch 131 - iter 266/386 - loss 0.06976854 - samples/sec: 108.59 - lr: 0.000781
2022-11-06 23:02:17,071 epoch 131 - iter 304/386 - loss 0.07020506 - samples/sec: 111.58 - lr: 0.000781
2022-11-06 23:02:22,544 epoch 131 - iter 342/386 - loss 0.07057120 - samples/sec: 111.14 - lr: 0.000781
2022-11-06 23:02:28,026 epoch 131 - iter 380/386 - loss 0.07018851 - samples/sec: 110.98 - lr: 0.000781
2022-11-06 23:02:28,830 ----------------------------------------------------------------------------------------------------
2022-11-06 23:02:28,830 EPOCH 131 done: loss 0.0703 - lr 0.000781
2022-11-06 23:02:38,525 Evaluating as a multi-label problem: False
2022-11-06 23:02:38,640 TEST : loss 0.07843144983053207 - f1-score (micro avg)  0.9793
2022-11-06 23:02:38,753 BAD EPOCHS (no improvement): 3
2022-11-06 23:02:38,953 ----------------------------------------------------------------------------------------------------
2022-11-06 23:02:44,737 epoch 132 - iter 38/386 - loss 0.06893361 - samples/sec: 105.20 - lr: 0.000781
2022-11-06 23:02:50,682 epoch 132 - iter 76/386 - loss 0.07274241 - samples/sec: 102.32 - lr: 0.000781
2022-11-06 23:02:56,233 epoch 132 - iter 114/386 - loss 0.07379979 - samples/sec: 109.59 - lr: 0.000781
2022-11-06 23:03:01,739 epoch 132 - iter 152/386 - loss 0.07395336 - samples/sec: 110.49 - lr: 0.000781
2022-11-06 23:03:07,196 epoch 132 - iter 190/386 - loss 0.07211236 - samples/sec: 111.49 - lr: 0.000781
2022-11-06 23:03:12,542 epoch 132 - iter 228/386 - loss 0.07159589 - samples/sec: 113.79 - lr: 0.000781
2022-11-06 23:03:18,250 epoch 132 - iter 266/386 - loss 0.07132845 - samples/sec: 106.58 - lr: 0.000781
2022-11-06 23:03:23,643 epoch 132 - iter 304/386 - loss 0.07088838 - samples/sec: 112.80 - lr: 0.000781
2022-11-06 23:03:29,147 epoch 132 - iter 342/386 - loss 0.07061821 - samples/sec: 110.53 - lr: 0.000781
2022-11-06 23:03:34,744 epoch 132 - iter 380/386 - loss 0.07135944 - samples/sec: 108.68 - lr: 0.000781
2022-11-06 23:03:35,383 ----------------------------------------------------------------------------------------------------
2022-11-06 23:03:35,383 EPOCH 132 done: loss 0.0712 - lr 0.000781
2022-11-06 23:03:45,044 Evaluating as a multi-label problem: False
2022-11-06 23:03:45,159 TEST : loss 0.07832777500152588 - f1-score (micro avg)  0.9793
2022-11-06 23:03:45,272 Epoch   132: reducing learning rate of group 0 to 3.9063e-04.
2022-11-06 23:03:45,273 BAD EPOCHS (no improvement): 4
2022-11-06 23:03:45,481 ----------------------------------------------------------------------------------------------------
2022-11-06 23:03:51,549 epoch 133 - iter 38/386 - loss 0.07133258 - samples/sec: 100.26 - lr: 0.000391
2022-11-06 23:03:57,506 epoch 133 - iter 76/386 - loss 0.07133234 - samples/sec: 102.12 - lr: 0.000391
2022-11-06 23:04:03,027 epoch 133 - iter 114/386 - loss 0.07265932 - samples/sec: 110.20 - lr: 0.000391
2022-11-06 23:04:08,538 epoch 133 - iter 152/386 - loss 0.07271682 - samples/sec: 110.38 - lr: 0.000391
2022-11-06 23:04:14,070 epoch 133 - iter 190/386 - loss 0.07173817 - samples/sec: 109.97 - lr: 0.000391
2022-11-06 23:04:19,366 epoch 133 - iter 228/386 - loss 0.07111288 - samples/sec: 114.87 - lr: 0.000391
2022-11-06 23:04:24,572 epoch 133 - iter 266/386 - loss 0.07163658 - samples/sec: 116.86 - lr: 0.000391
2022-11-06 23:04:30,386 epoch 133 - iter 304/386 - loss 0.07191561 - samples/sec: 104.63 - lr: 0.000391
2022-11-06 23:04:35,605 epoch 133 - iter 342/386 - loss 0.07226248 - samples/sec: 116.57 - lr: 0.000391
2022-11-06 23:04:41,353 epoch 133 - iter 380/386 - loss 0.07225441 - samples/sec: 105.83 - lr: 0.000391
2022-11-06 23:04:42,215 ----------------------------------------------------------------------------------------------------
2022-11-06 23:04:42,215 EPOCH 133 done: loss 0.0724 - lr 0.000391
2022-11-06 23:04:51,832 Evaluating as a multi-label problem: False
2022-11-06 23:04:51,947 TEST : loss 0.07831750810146332 - f1-score (micro avg)  0.9792
2022-11-06 23:04:52,060 BAD EPOCHS (no improvement): 1
2022-11-06 23:04:52,265 ----------------------------------------------------------------------------------------------------
2022-11-06 23:04:57,502 epoch 134 - iter 38/386 - loss 0.07272210 - samples/sec: 116.20 - lr: 0.000391
2022-11-06 23:05:03,859 epoch 134 - iter 76/386 - loss 0.07188465 - samples/sec: 95.69 - lr: 0.000391
2022-11-06 23:05:09,578 epoch 134 - iter 114/386 - loss 0.07221689 - samples/sec: 106.38 - lr: 0.000391
2022-11-06 23:05:14,935 epoch 134 - iter 152/386 - loss 0.07164910 - samples/sec: 113.54 - lr: 0.000391
2022-11-06 23:05:20,362 epoch 134 - iter 190/386 - loss 0.07186012 - samples/sec: 112.11 - lr: 0.000391
2022-11-06 23:05:25,922 epoch 134 - iter 228/386 - loss 0.07095586 - samples/sec: 109.41 - lr: 0.000391
2022-11-06 23:05:31,321 epoch 134 - iter 266/386 - loss 0.07005834 - samples/sec: 112.67 - lr: 0.000391
2022-11-06 23:05:36,532 epoch 134 - iter 304/386 - loss 0.06974718 - samples/sec: 116.76 - lr: 0.000391
2022-11-06 23:05:41,664 epoch 134 - iter 342/386 - loss 0.07038373 - samples/sec: 118.55 - lr: 0.000391
2022-11-06 23:05:47,300 epoch 134 - iter 380/386 - loss 0.07138653 - samples/sec: 107.94 - lr: 0.000391
2022-11-06 23:05:48,096 ----------------------------------------------------------------------------------------------------
2022-11-06 23:05:48,096 EPOCH 134 done: loss 0.0713 - lr 0.000391
2022-11-06 23:05:57,677 Evaluating as a multi-label problem: False
2022-11-06 23:05:57,792 TEST : loss 0.07832799106836319 - f1-score (micro avg)  0.9793
2022-11-06 23:05:57,905 BAD EPOCHS (no improvement): 2
2022-11-06 23:05:58,112 ----------------------------------------------------------------------------------------------------
2022-11-06 23:06:03,825 epoch 135 - iter 38/386 - loss 0.07625152 - samples/sec: 106.50 - lr: 0.000391
2022-11-06 23:06:09,420 epoch 135 - iter 76/386 - loss 0.07596756 - samples/sec: 108.74 - lr: 0.000391
2022-11-06 23:06:14,938 epoch 135 - iter 114/386 - loss 0.07537203 - samples/sec: 110.23 - lr: 0.000391
2022-11-06 23:06:20,851 epoch 135 - iter 152/386 - loss 0.07465357 - samples/sec: 102.88 - lr: 0.000391
2022-11-06 23:06:26,437 epoch 135 - iter 190/386 - loss 0.07282803 - samples/sec: 108.92 - lr: 0.000391
2022-11-06 23:06:32,254 epoch 135 - iter 228/386 - loss 0.07223191 - samples/sec: 104.57 - lr: 0.000391
2022-11-06 23:06:37,417 epoch 135 - iter 266/386 - loss 0.07261668 - samples/sec: 117.82 - lr: 0.000391
2022-11-06 23:06:43,327 epoch 135 - iter 304/386 - loss 0.07227402 - samples/sec: 102.93 - lr: 0.000391
2022-11-06 23:06:48,605 epoch 135 - iter 342/386 - loss 0.07149145 - samples/sec: 115.28 - lr: 0.000391
2022-11-06 23:06:53,388 epoch 135 - iter 380/386 - loss 0.07197639 - samples/sec: 127.19 - lr: 0.000391
2022-11-06 23:06:54,256 ----------------------------------------------------------------------------------------------------
2022-11-06 23:06:54,256 EPOCH 135 done: loss 0.0719 - lr 0.000391
2022-11-06 23:07:03,834 Evaluating as a multi-label problem: False
2022-11-06 23:07:03,950 TEST : loss 0.07829069346189499 - f1-score (micro avg)  0.9793
2022-11-06 23:07:04,062 BAD EPOCHS (no improvement): 3
2022-11-06 23:07:04,267 ----------------------------------------------------------------------------------------------------
2022-11-06 23:07:09,727 epoch 136 - iter 38/386 - loss 0.07134941 - samples/sec: 111.46 - lr: 0.000391
2022-11-06 23:07:15,291 epoch 136 - iter 76/386 - loss 0.07170014 - samples/sec: 109.33 - lr: 0.000391
2022-11-06 23:07:21,563 epoch 136 - iter 114/386 - loss 0.07030659 - samples/sec: 96.99 - lr: 0.000391
2022-11-06 23:07:27,126 epoch 136 - iter 152/386 - loss 0.07200756 - samples/sec: 109.34 - lr: 0.000391
2022-11-06 23:07:32,758 epoch 136 - iter 190/386 - loss 0.07243107 - samples/sec: 108.02 - lr: 0.000391
2022-11-06 23:07:38,121 epoch 136 - iter 228/386 - loss 0.07266476 - samples/sec: 113.44 - lr: 0.000391
2022-11-06 23:07:43,764 epoch 136 - iter 266/386 - loss 0.07246653 - samples/sec: 107.81 - lr: 0.000391
2022-11-06 23:07:49,451 epoch 136 - iter 304/386 - loss 0.07247297 - samples/sec: 106.96 - lr: 0.000391
2022-11-06 23:07:55,084 epoch 136 - iter 342/386 - loss 0.07289621 - samples/sec: 107.99 - lr: 0.000391
2022-11-06 23:08:00,375 epoch 136 - iter 380/386 - loss 0.07291326 - samples/sec: 115.00 - lr: 0.000391
2022-11-06 23:08:01,172 ----------------------------------------------------------------------------------------------------
2022-11-06 23:08:01,172 EPOCH 136 done: loss 0.0726 - lr 0.000391
2022-11-06 23:08:10,258 Evaluating as a multi-label problem: False
2022-11-06 23:08:10,372 TEST : loss 0.07828548550605774 - f1-score (micro avg)  0.9793
2022-11-06 23:08:10,485 Epoch   136: reducing learning rate of group 0 to 1.9531e-04.
2022-11-06 23:08:10,486 BAD EPOCHS (no improvement): 4
2022-11-06 23:08:10,684 ----------------------------------------------------------------------------------------------------
2022-11-06 23:08:16,120 epoch 137 - iter 38/386 - loss 0.07268823 - samples/sec: 111.92 - lr: 0.000195
2022-11-06 23:08:21,492 epoch 137 - iter 76/386 - loss 0.07101301 - samples/sec: 113.26 - lr: 0.000195
2022-11-06 23:08:26,957 epoch 137 - iter 114/386 - loss 0.06977042 - samples/sec: 111.31 - lr: 0.000195
2022-11-06 23:08:32,736 epoch 137 - iter 152/386 - loss 0.07180263 - samples/sec: 105.27 - lr: 0.000195
2022-11-06 23:08:38,291 epoch 137 - iter 190/386 - loss 0.07341440 - samples/sec: 109.51 - lr: 0.000195
2022-11-06 23:08:43,944 epoch 137 - iter 228/386 - loss 0.07287976 - samples/sec: 107.61 - lr: 0.000195
2022-11-06 23:08:49,582 epoch 137 - iter 266/386 - loss 0.07302229 - samples/sec: 107.91 - lr: 0.000195
2022-11-06 23:08:55,206 epoch 137 - iter 304/386 - loss 0.07313939 - samples/sec: 108.17 - lr: 0.000195
2022-11-06 23:09:01,352 epoch 137 - iter 342/386 - loss 0.07256527 - samples/sec: 98.97 - lr: 0.000195
2022-11-06 23:09:07,148 epoch 137 - iter 380/386 - loss 0.07234924 - samples/sec: 104.95 - lr: 0.000195
2022-11-06 23:09:07,904 ----------------------------------------------------------------------------------------------------
2022-11-06 23:09:07,904 EPOCH 137 done: loss 0.0723 - lr 0.000195
2022-11-06 23:09:17,011 Evaluating as a multi-label problem: False
2022-11-06 23:09:17,126 TEST : loss 0.07833118736743927 - f1-score (micro avg)  0.9793
2022-11-06 23:09:17,239 BAD EPOCHS (no improvement): 1
2022-11-06 23:09:17,437 ----------------------------------------------------------------------------------------------------
2022-11-06 23:09:23,143 epoch 138 - iter 38/386 - loss 0.07121465 - samples/sec: 106.64 - lr: 0.000195
2022-11-06 23:09:28,758 epoch 138 - iter 76/386 - loss 0.07053113 - samples/sec: 108.34 - lr: 0.000195
2022-11-06 23:09:34,135 epoch 138 - iter 114/386 - loss 0.07217032 - samples/sec: 113.14 - lr: 0.000195
2022-11-06 23:09:39,673 epoch 138 - iter 152/386 - loss 0.07049193 - samples/sec: 109.84 - lr: 0.000195
2022-11-06 23:09:45,545 epoch 138 - iter 190/386 - loss 0.07228868 - samples/sec: 103.61 - lr: 0.000195
2022-11-06 23:09:51,097 epoch 138 - iter 228/386 - loss 0.07213669 - samples/sec: 109.56 - lr: 0.000195
2022-11-06 23:09:56,773 epoch 138 - iter 266/386 - loss 0.07246026 - samples/sec: 107.17 - lr: 0.000195
2022-11-06 23:10:02,194 epoch 138 - iter 304/386 - loss 0.07150123 - samples/sec: 112.22 - lr: 0.000195
2022-11-06 23:10:07,597 epoch 138 - iter 342/386 - loss 0.07211538 - samples/sec: 112.60 - lr: 0.000195
2022-11-06 23:10:13,032 epoch 138 - iter 380/386 - loss 0.07293704 - samples/sec: 111.93 - lr: 0.000195
2022-11-06 23:10:13,786 ----------------------------------------------------------------------------------------------------
2022-11-06 23:10:13,786 EPOCH 138 done: loss 0.0726 - lr 0.000195
2022-11-06 23:10:25,774 Evaluating as a multi-label problem: False
2022-11-06 23:10:25,889 TEST : loss 0.07832229882478714 - f1-score (micro avg)  0.9792
2022-11-06 23:10:26,002 BAD EPOCHS (no improvement): 2
2022-11-06 23:10:26,210 ----------------------------------------------------------------------------------------------------
2022-11-06 23:10:31,431 epoch 139 - iter 38/386 - loss 0.07244392 - samples/sec: 116.55 - lr: 0.000195
2022-11-06 23:10:36,809 epoch 139 - iter 76/386 - loss 0.06971478 - samples/sec: 113.11 - lr: 0.000195
2022-11-06 23:10:42,330 epoch 139 - iter 114/386 - loss 0.06955680 - samples/sec: 110.18 - lr: 0.000195
2022-11-06 23:10:47,907 epoch 139 - iter 152/386 - loss 0.07193651 - samples/sec: 109.09 - lr: 0.000195
2022-11-06 23:10:53,595 epoch 139 - iter 190/386 - loss 0.07346354 - samples/sec: 106.96 - lr: 0.000195
2022-11-06 23:10:59,145 epoch 139 - iter 228/386 - loss 0.07351255 - samples/sec: 109.60 - lr: 0.000195
2022-11-06 23:11:04,574 epoch 139 - iter 266/386 - loss 0.07280062 - samples/sec: 112.06 - lr: 0.000195
2022-11-06 23:11:10,865 epoch 139 - iter 304/386 - loss 0.07154111 - samples/sec: 96.69 - lr: 0.000195
2022-11-06 23:11:16,382 epoch 139 - iter 342/386 - loss 0.07190465 - samples/sec: 110.27 - lr: 0.000195
2022-11-06 23:11:21,840 epoch 139 - iter 380/386 - loss 0.07176361 - samples/sec: 111.46 - lr: 0.000195
2022-11-06 23:11:22,626 ----------------------------------------------------------------------------------------------------
2022-11-06 23:11:22,626 EPOCH 139 done: loss 0.0717 - lr 0.000195
2022-11-06 23:11:32,319 Evaluating as a multi-label problem: False
2022-11-06 23:11:32,434 TEST : loss 0.07830418646335602 - f1-score (micro avg)  0.9792
2022-11-06 23:11:32,547 BAD EPOCHS (no improvement): 3
2022-11-06 23:11:32,756 ----------------------------------------------------------------------------------------------------
2022-11-06 23:11:38,308 epoch 140 - iter 38/386 - loss 0.07596932 - samples/sec: 109.59 - lr: 0.000195
2022-11-06 23:11:43,612 epoch 140 - iter 76/386 - loss 0.07530102 - samples/sec: 114.70 - lr: 0.000195
2022-11-06 23:11:48,989 epoch 140 - iter 114/386 - loss 0.07424606 - samples/sec: 113.14 - lr: 0.000195
2022-11-06 23:11:54,700 epoch 140 - iter 152/386 - loss 0.07306686 - samples/sec: 106.52 - lr: 0.000195
2022-11-06 23:12:00,523 epoch 140 - iter 190/386 - loss 0.07428603 - samples/sec: 104.47 - lr: 0.000195
2022-11-06 23:12:05,472 epoch 140 - iter 228/386 - loss 0.07433713 - samples/sec: 122.93 - lr: 0.000195
2022-11-06 23:12:11,266 epoch 140 - iter 266/386 - loss 0.07343813 - samples/sec: 105.00 - lr: 0.000195
2022-11-06 23:12:17,102 epoch 140 - iter 304/386 - loss 0.07382207 - samples/sec: 104.24 - lr: 0.000195
2022-11-06 23:12:22,701 epoch 140 - iter 342/386 - loss 0.07336550 - samples/sec: 108.65 - lr: 0.000195
2022-11-06 23:12:28,060 epoch 140 - iter 380/386 - loss 0.07330513 - samples/sec: 113.51 - lr: 0.000195
2022-11-06 23:12:28,798 ----------------------------------------------------------------------------------------------------
2022-11-06 23:12:28,798 EPOCH 140 done: loss 0.0733 - lr 0.000195
2022-11-06 23:12:38,412 Evaluating as a multi-label problem: False
2022-11-06 23:12:38,528 TEST : loss 0.07832666486501694 - f1-score (micro avg)  0.9793
2022-11-06 23:12:38,641 Epoch   140: reducing learning rate of group 0 to 9.7656e-05.
2022-11-06 23:12:38,641 BAD EPOCHS (no improvement): 4
2022-11-06 23:12:38,846 ----------------------------------------------------------------------------------------------------
2022-11-06 23:12:38,846 ----------------------------------------------------------------------------------------------------
2022-11-06 23:12:38,846 learning rate too small - quitting training!
2022-11-06 23:12:38,846 ----------------------------------------------------------------------------------------------------
2022-11-06 23:12:38,988 ----------------------------------------------------------------------------------------------------
2022-11-06 23:12:38,988 Testing using last state of model ...
2022-11-06 23:12:48,641 Evaluating as a multi-label problem: False
2022-11-06 23:12:48,755 0.9793	0.9793	0.9793	0.9793
2022-11-06 23:12:48,755 
Results:
- F-score (micro) 0.9793
- F-score (macro) 0.9275
- Accuracy 0.9793

By class:
              precision    recall  f1-score   support

        NOUN     0.9857    0.9851    0.9854      4549
       PUNCT     0.9984    1.0000    0.9992      3097
         ADJ     0.9772    0.9852    0.9812      1959
         ADP     0.9956    0.9968    0.9962      1584
        VERB     0.9891    0.9910    0.9900      1552
         ADV     0.9630    0.9118    0.9367       714
       CCONJ     0.9685    0.9746    0.9715       630
       PROPN     0.9279    0.9472    0.9375       625
         DET     0.9729    0.9698    0.9713       629
        PRON     0.9706    0.9631    0.9669       515
        PART     0.9235    0.8693    0.8956       375
         NUM     0.9722    0.9804    0.9763       357
       SCONJ     0.8768    0.9577    0.9154       260
         AUX     0.8906    0.9500    0.9194       120
           X     0.9833    0.9593    0.9712       123
         SYM     1.0000    0.7059    0.8276        17
        INTJ     0.5556    0.5000    0.5263        10

    accuracy                         0.9793     17116
   macro avg     0.9383    0.9204    0.9275     17116
weighted avg     0.9794    0.9793    0.9792     17116

2022-11-06 23:12:48,755 ----------------------------------------------------------------------------------------------------