--- library_name: peft license: llama3.2 base_model: meta-llama/Llama-3.2-3B tags: - generated_from_trainer model-index: - name: outputs/dippy-2 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.5.0` ```yaml base_model: meta-llama/Llama-3.2-3B model_type: LlamaForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: true strict: false #wget -O dataset_2000.jsonl http://94.130.230.31/dataset_2000.jsonl chat_template: llama3 datasets: - path: ./dataset_2000.jsonl type: chat_template dataset_prepared_path: val_set_size: 0.05 output_dir: ./outputs/dippy-2 sequence_len: 4096 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_modules_to_save: - embed_tokens - lm_head wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 12 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: true tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true s2_attention: warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: <|end_of_text|> ```

# outputs/dippy-2 This model is a fine-tuned version of [meta-llama/Llama-3.2-3B](https://huggingface.co/meta-llama/Llama-3.2-3B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0961 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | 1.9507 | 0.0153 | 1 | 1.9943 | | 1.714 | 0.2605 | 17 | 1.7193 | | 1.5507 | 0.5211 | 34 | 1.7040 | | 1.6354 | 0.7816 | 51 | 1.6666 | | 0.9188 | 1.0383 | 68 | 1.6559 | | 0.8897 | 1.2989 | 85 | 1.6953 | | 0.9014 | 1.5594 | 102 | 1.7119 | | 0.8517 | 1.8199 | 119 | 1.7209 | | 0.4448 | 2.0843 | 136 | 1.7969 | | 0.4053 | 2.3448 | 153 | 1.8347 | | 0.3723 | 2.6054 | 170 | 1.8777 | | 0.339 | 2.8659 | 187 | 1.8751 | | 0.1614 | 3.1264 | 204 | 2.0658 | | 0.1804 | 3.3870 | 221 | 2.0643 | | 0.1881 | 3.6475 | 238 | 2.0924 | | 0.1762 | 3.9080 | 255 | 2.0624 | | 0.195 | 4.1686 | 272 | 2.3268 | | 0.0649 | 4.4291 | 289 | 2.2718 | | 0.0786 | 4.6897 | 306 | 2.2569 | | 0.0763 | 4.9502 | 323 | 2.2521 | | 0.0509 | 5.2107 | 340 | 2.4546 | | 0.0374 | 5.4713 | 357 | 2.4693 | | 0.0216 | 5.7318 | 374 | 2.4763 | | 0.0272 | 5.9923 | 391 | 2.5110 | | 0.0117 | 6.2490 | 408 | 2.7330 | | 0.0115 | 6.5096 | 425 | 2.6403 | | 0.0092 | 6.7701 | 442 | 2.7747 | | 0.0064 | 7.0268 | 459 | 2.7342 | | 0.0059 | 7.2874 | 476 | 2.8930 | | 0.0065 | 7.5479 | 493 | 2.9133 | | 0.0059 | 7.8084 | 510 | 2.9216 | | 0.0058 | 8.0690 | 527 | 2.9435 | | 0.0046 | 8.3295 | 544 | 3.0068 | | 0.0051 | 8.5900 | 561 | 3.0261 | | 0.0044 | 8.8506 | 578 | 3.0278 | | 0.0035 | 9.1073 | 595 | 3.0368 | | 0.0038 | 9.3678 | 612 | 3.0577 | | 0.004 | 9.6284 | 629 | 3.0710 | | 0.0041 | 9.8889 | 646 | 3.0796 | | 0.0038 | 10.1533 | 663 | 3.0823 | | 0.0039 | 10.4138 | 680 | 3.0844 | | 0.0041 | 10.6743 | 697 | 3.0886 | | 0.004 | 10.9349 | 714 | 3.0952 | | 0.0038 | 11.1992 | 731 | 3.0955 | | 0.0033 | 11.4598 | 748 | 3.0949 | | 0.0044 | 11.7203 | 765 | 3.0961 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.3 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3