File size: 13,274 Bytes
991f07c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
#!/usr/bin/env python3
# coding=utf-8

import math
import torch
import torch.nn as nn
import torch.nn.functional as F

from model.module.edge_classifier import EdgeClassifier
from model.module.anchor_classifier import AnchorClassifier
from utility.cross_entropy import cross_entropy, binary_cross_entropy
from utility.hungarian_matching import get_matching, reorder, match_anchor, match_label
from utility.utils import create_padding_mask


class AbstractHead(nn.Module):
    def __init__(self, dataset, args, config, initialize: bool):
        super(AbstractHead, self).__init__()

        self.edge_classifier = self.init_edge_classifier(dataset, args, config, initialize)
        self.label_classifier = self.init_label_classifier(dataset, args, config, initialize)
        self.anchor_classifier = self.init_anchor_classifier(dataset, args, config, initialize, mode="anchor")
        self.source_anchor_classifier = self.init_anchor_classifier(dataset, args, config, initialize, mode="source_anchor")
        self.target_anchor_classifier = self.init_anchor_classifier(dataset, args, config, initialize, mode="target_anchor")

        self.query_length = args.query_length
        self.focal = args.focal
        self.dataset = dataset

    def forward(self, encoder_output, decoder_output, encoder_mask, decoder_mask, batch):
        output = {}

        decoder_lens = self.query_length * batch["every_input"][1]
        output["label"] = self.forward_label(decoder_output)
        output["anchor"] = self.forward_anchor(decoder_output, encoder_output, encoder_mask, mode="anchor")  # shape: (B, T_l, T_w)
        output["source_anchor"] = self.forward_anchor(decoder_output, encoder_output, encoder_mask, mode="source_anchor")  # shape: (B, T_l, T_w)
        output["target_anchor"] = self.forward_anchor(decoder_output, encoder_output, encoder_mask, mode="target_anchor")  # shape: (B, T_l, T_w)

        cost_matrices = self.create_cost_matrices(output, batch, decoder_lens)
        matching = get_matching(cost_matrices)
        decoder_output = reorder(decoder_output, matching, batch["labels"][0].size(1))
        output["edge presence"], output["edge label"] = self.forward_edge(decoder_output)

        return self.loss(output, batch, matching, decoder_mask)

    def predict(self, encoder_output, decoder_output, encoder_mask, decoder_mask, batch, **kwargs):
        every_input, word_lens = batch["every_input"]
        decoder_lens = self.query_length * word_lens
        batch_size = every_input.size(0)

        label_pred = self.forward_label(decoder_output)
        anchor_pred = self.forward_anchor(decoder_output, encoder_output, encoder_mask, mode="anchor")  # shape: (B, T_l, T_w)
        source_anchor_pred = self.forward_anchor(decoder_output, encoder_output, encoder_mask, mode="source_anchor")  # shape: (B, T_l, T_w)
        target_anchor_pred = self.forward_anchor(decoder_output, encoder_output, encoder_mask, mode="target_anchor")  # shape: (B, T_l, T_w)

        labels = [[] for _ in range(batch_size)]
        anchors, source_anchors, target_anchors = [[] for _ in range(batch_size)], [[] for _ in range(batch_size)], [[] for _ in range(batch_size)]

        for b in range(batch_size):
            label_indices = self.inference_label(label_pred[b, :decoder_lens[b], :]).cpu()
            for t in range(label_indices.size(0)):
                label_index = label_indices[t].item()
                if label_index == 0:
                    continue

                decoder_output[b, len(labels[b]), :] = decoder_output[b, t, :]

                labels[b].append(label_index)
                if anchor_pred is None:
                    anchors[b].append(list(range(t // self.query_length, word_lens[b])))
                else:
                    anchors[b].append(self.inference_anchor(anchor_pred[b, t, :word_lens[b]]).cpu())

                if source_anchor_pred is None:
                    source_anchors[b].append(list(range(t // self.query_length, word_lens[b])))
                else:
                    source_anchors[b].append(self.inference_anchor(source_anchor_pred[b, t, :word_lens[b]]).cpu())

                if target_anchor_pred is None:
                    target_anchors[b].append(list(range(t // self.query_length, word_lens[b])))
                else:
                    target_anchors[b].append(self.inference_anchor(target_anchor_pred[b, t, :word_lens[b]]).cpu())

        decoder_output = decoder_output[:, : max(len(l) for l in labels), :]
        edge_presence, edge_labels = self.forward_edge(decoder_output)

        outputs = [
            self.parser.parse(
                {
                    "labels": labels[b],
                    "anchors": anchors[b],
                    "source anchors": source_anchors[b],
                    "target anchors": target_anchors[b],
                    "edge presence": self.inference_edge_presence(edge_presence, b),
                    "edge labels": self.inference_edge_label(edge_labels, b),
                    "id": batch["id"][b].cpu(),
                    "tokens": batch["every_input"][0][b, : word_lens[b]].cpu(),
                    "token intervals": batch["token_intervals"][b, :, :].cpu(),
                },
                **kwargs
            )
            for b in range(batch_size)
        ]

        return outputs

    def loss(self, output, batch, matching, decoder_mask):
        batch_size = batch["every_input"][0].size(0)
        device = batch["every_input"][0].device
        T_label = batch["labels"][0].size(1)
        T_input = batch["every_input"][0].size(1)
        T_edge = batch["edge_presence"].size(1)

        input_mask = create_padding_mask(batch_size, T_input, batch["every_input"][1], device)  # shape: (B, T_input)
        label_mask = create_padding_mask(batch_size, T_label, batch["labels"][1], device)  # shape: (B, T_label)
        edge_mask = torch.eye(T_label, T_label, device=device, dtype=torch.bool).unsqueeze(0)  # shape: (1, T_label, T_label)
        edge_mask = edge_mask | label_mask.unsqueeze(1) | label_mask.unsqueeze(2)  # shape: (B, T_label, T_label)
        if T_edge != T_label:
            edge_mask = F.pad(edge_mask, (T_edge - T_label, 0, T_edge - T_label, 0), value=0)
        edge_label_mask = (batch["edge_presence"] == 0) | edge_mask

        if output["edge label"] is not None:
            batch["edge_labels"] = (
                batch["edge_labels"][0][:, :, :, :output["edge label"].size(-1)],
                batch["edge_labels"][1],
            )

        losses = {}
        losses.update(self.loss_label(output, batch, decoder_mask, matching))
        losses.update(self.loss_anchor(output, batch, input_mask, matching, mode="anchor"))
        losses.update(self.loss_anchor(output, batch, input_mask, matching, mode="source_anchor"))
        losses.update(self.loss_anchor(output, batch, input_mask, matching, mode="target_anchor"))
        losses.update(self.loss_edge_presence(output, batch, edge_mask))
        losses.update(self.loss_edge_label(output, batch, edge_label_mask.unsqueeze(-1)))

        stats = {f"{key}": value.detach().cpu().item() for key, value in losses.items()}
        total_loss = sum(losses.values()) / len(losses)

        return total_loss, stats

    @torch.no_grad()
    def create_cost_matrices(self, output, batch, decoder_lens):
        batch_size = len(batch["labels"][1])
        decoder_lens = decoder_lens.cpu()

        matrices = []
        for b in range(batch_size):
            label_cost_matrix = self.label_cost_matrix(output, batch, decoder_lens, b)
            anchor_cost_matrix = self.anchor_cost_matrix(output, batch, decoder_lens, b)

            cost_matrix = label_cost_matrix * anchor_cost_matrix
            matrices.append(cost_matrix.cpu())

        return matrices

    def init_edge_classifier(self, dataset, args, config, initialize: bool):
        if not config["edge presence"] and not config["edge label"]:
            return None
        return EdgeClassifier(dataset, args, initialize, presence=config["edge presence"], label=config["edge label"])

    def init_label_classifier(self, dataset, args, config, initialize: bool):
        if not config["label"]:
            return None

        classifier = nn.Sequential(
            nn.Dropout(args.dropout_label),
            nn.Linear(args.hidden_size, len(dataset.label_field.vocab) + 1, bias=True)
        )
        if initialize:
            classifier[1].bias.data = dataset.label_freqs.log()

        return classifier

    def init_anchor_classifier(self, dataset, args, config, initialize: bool, mode="anchor"):
        if not config[mode]:
            return None

        return AnchorClassifier(dataset, args, initialize, mode=mode)

    def forward_edge(self, decoder_output):
        if self.edge_classifier is None:
            return None, None
        return self.edge_classifier(decoder_output)

    def forward_label(self, decoder_output):
        if self.label_classifier is None:
            return None
        return torch.log_softmax(self.label_classifier(decoder_output), dim=-1)

    def forward_anchor(self, decoder_output, encoder_output, encoder_mask, mode="anchor"):
        classifier = getattr(self, f"{mode}_classifier")
        if classifier is None:
            return None
        return classifier(decoder_output, encoder_output, encoder_mask)

    def inference_label(self, prediction):
        prediction = prediction.exp()
        return torch.where(
            prediction[:, 0] > prediction[:, 1:].sum(-1),
            torch.zeros(prediction.size(0), dtype=torch.long, device=prediction.device),
            prediction[:, 1:].argmax(dim=-1) + 1
        )

    def inference_anchor(self, prediction):
        return prediction.sigmoid()

    def inference_edge_presence(self, prediction, example_index: int):
        if prediction is None:
            return None

        N = prediction.size(1)
        mask = torch.eye(N, N, device=prediction.device, dtype=torch.bool)
        return prediction[example_index, :, :].sigmoid().masked_fill(mask, 0.0).cpu()

    def inference_edge_label(self, prediction, example_index: int):
        if prediction is None:
            return None
        return prediction[example_index, :, :, :].cpu()

    def loss_edge_presence(self, prediction, target, mask):
        if self.edge_classifier is None or prediction["edge presence"] is None:
            return {}
        return {"edge presence": binary_cross_entropy(prediction["edge presence"], target["edge_presence"].float(), mask)}

    def loss_edge_label(self, prediction, target, mask):
        if self.edge_classifier is None or prediction["edge label"] is None:
            return {}
        return {"edge label": binary_cross_entropy(prediction["edge label"], target["edge_labels"][0].float(), mask)}

    def loss_label(self, prediction, target, mask, matching):
        if self.label_classifier is None or prediction["label"] is None:
            return {}

        prediction = prediction["label"]
        target = match_label(
            target["labels"][0], matching, prediction.shape[:-1], prediction.device, self.query_length
        )
        return {"label": cross_entropy(prediction, target, mask, focal=self.focal)}

    def loss_anchor(self, prediction, target, mask, matching, mode="anchor"):
        if getattr(self, f"{mode}_classifier") is None or prediction[mode] is None:
            return {}

        prediction = prediction[mode]
        target, anchor_mask = match_anchor(target[mode], matching, prediction.shape, prediction.device)
        mask = anchor_mask.unsqueeze(-1) | mask.unsqueeze(-2)
        return {mode: binary_cross_entropy(prediction, target.float(), mask)}

    def label_cost_matrix(self, output, batch, decoder_lens, b: int):
        if output["label"] is None:
            return 1.0

        target_labels = batch["anchored_labels"][b]  # shape: (num_nodes, num_inputs, num_classes)
        label_prob = output["label"][b, : decoder_lens[b], :].exp().unsqueeze(0)  # shape: (1, num_queries, num_classes)
        tgt_label = target_labels.repeat_interleave(self.query_length, dim=1)  # shape: (num_nodes, num_queries, num_classes)
        cost_matrix = ((tgt_label * label_prob).sum(-1) * label_prob[:, :, 1:].sum(-1)).t().sqrt()  # shape: (num_queries, num_nodes)

        return cost_matrix

    def anchor_cost_matrix(self, output, batch, decoder_lens, b: int):
        if output["anchor"] is None:
            return 1.0

        num_nodes = batch["labels"][1][b]
        word_lens = batch["every_input"][1]
        target_anchors, _ = batch["anchor"]
        pred_anchors = output["anchor"].sigmoid()

        tgt_align = target_anchors[b, : num_nodes, : word_lens[b]]  # shape: (num_nodes, num_inputs)
        align_prob = pred_anchors[b, : decoder_lens[b], : word_lens[b]]  # shape: (num_queries, num_inputs)
        align_prob = align_prob.unsqueeze(1).expand(-1, num_nodes, -1)  # shape: (num_queries, num_nodes, num_inputs)
        align_prob = torch.where(tgt_align.unsqueeze(0).bool(), align_prob, 1.0 - align_prob)  # shape: (num_queries, num_nodes, num_inputs)
        cost_matrix = align_prob.log().mean(-1).exp()  # shape: (num_queries, num_nodes)
        return cost_matrix