File size: 3,866 Bytes
991f07c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
#!/usr/bin/env python3
# coding=utf-8
import torch
import torch.nn as nn
from model.module.encoder import Encoder
from model.module.transformer import Decoder
from model.head.node_centric_head import NodeCentricHead
from model.head.labeled_edge_head import LabeledEdgeHead
from model.head.sequential_head import SequentialHead
from utility.utils import create_padding_mask
class Model(nn.Module):
def __init__(self, dataset, args, initialize=True):
super(Model, self).__init__()
self.encoder = Encoder(args, dataset)
if args.n_layers > 0:
self.decoder = Decoder(args)
else:
self.decoder = lambda x, *args: x # identity function, which ignores all arguments except the first one
if args.graph_mode == "sequential":
self.head = SequentialHead(dataset, args, initialize)
elif args.graph_mode == "node-centric":
self.head = NodeCentricHead(dataset, args, initialize)
elif args.graph_mode == "labeled-edge":
self.head = LabeledEdgeHead(dataset, args, initialize)
self.query_length = args.query_length
self.dataset = dataset
self.args = args
def forward(self, batch, inference=False, **kwargs):
every_input, word_lens = batch["every_input"]
decoder_lens = self.query_length * word_lens
batch_size, input_len = every_input.size(0), every_input.size(1)
device = every_input.device
encoder_mask = create_padding_mask(batch_size, input_len, word_lens, device)
decoder_mask = create_padding_mask(batch_size, self.query_length * input_len, decoder_lens, device)
encoder_output, decoder_input = self.encoder(batch["input"], batch["char_form_input"], batch["input_scatter"], input_len)
decoder_output = self.decoder(decoder_input, encoder_output, decoder_mask, encoder_mask)
if inference:
return self.head.predict(encoder_output, decoder_output, encoder_mask, decoder_mask, batch)
else:
return self.head(encoder_output, decoder_output, encoder_mask, decoder_mask, batch)
def get_params_for_optimizer(self, args):
encoder_decay, encoder_no_decay = self.get_encoder_parameters(args.n_encoder_layers)
decoder_decay, decoder_no_decay = self.get_decoder_parameters()
parameters = [{"params": p, "weight_decay": args.encoder_weight_decay} for p in encoder_decay]
parameters += [{"params": p, "weight_decay": 0.0} for p in encoder_no_decay]
parameters += [
{"params": decoder_decay, "weight_decay": args.decoder_weight_decay},
{"params": decoder_no_decay, "weight_decay": 0.0},
]
return parameters
def get_decoder_parameters(self):
no_decay = ["bias", "LayerNorm.weight", "_norm.weight"]
decay_params = (p for name, p in self.named_parameters() if not any(nd in name for nd in no_decay) and not name.startswith("encoder.bert") and p.requires_grad)
no_decay_params = (p for name, p in self.named_parameters() if any(nd in name for nd in no_decay) and not name.startswith("encoder.bert") and p.requires_grad)
return decay_params, no_decay_params
def get_encoder_parameters(self, n_layers):
no_decay = ["bias", "LayerNorm.weight", "_norm.weight"]
decay_params = [
[p for name, p in self.named_parameters() if not any(nd in name for nd in no_decay) and name.startswith(f"encoder.bert.encoder.layer.{n_layers - 1 - i}.") and p.requires_grad] for i in range(n_layers)
]
no_decay_params = [
[p for name, p in self.named_parameters() if any(nd in name for nd in no_decay) and name.startswith(f"encoder.bert.encoder.layer.{n_layers - 1 - i}.") and p.requires_grad] for i in range(n_layers)
]
return decay_params, no_decay_params
|