diff --git a/CheckGuard Models/wholeimage/amount/finetune_lora_llava_mistral.sh b/CheckGuard Models/wholeimage/amount/finetune_lora_llava_mistral.sh new file mode 100644 index 0000000000000000000000000000000000000000..3d69789851cd6bb59694dc85be15c81fbee7041d --- /dev/null +++ b/CheckGuard Models/wholeimage/amount/finetune_lora_llava_mistral.sh @@ -0,0 +1,39 @@ +#!/bin/bash + +deepspeed llava/train/train_mem.py \ + --lora_enable True --lora_r 128 --lora_alpha 256 --mm_projector_lr 2e-5 \ + --deepspeed ./scripts/zero3.json \ + --model_name_or_path liuhaotian/llava-v1.6-mistral-7b \ + --version mistral_instruct \ + --data_path /home/larry5/project/LLaVA-1.6-ft/data/peft/amount/modified_path_to_train_val_human-gpt-whole-check.json \ + --image_folder /home/larry5/project/LLaVA-1.6-ft/data/data/ \ + --vision_tower openai/clip-vit-large-patch14-336 \ + --mm_projector_type mlp2x_gelu \ + --mm_vision_select_layer -2 \ + --mm_use_im_start_end False \ + --mm_use_im_patch_token False \ + --mm_patch_merge_type spatial_unpad \ + --image_aspect_ratio anyres \ + --group_by_modality_length False \ + --bf16 False \ + --fp16 True \ + --output_dir /home/larry5/project/LLaVA-1.6-ft/scripts_peft/mistral/lora/llava-lora-mistral-r128a256/wholeimage/amount/llava-lora-mistral-r128a256-10BS-model \ + --num_train_epochs 1 \ + --per_device_train_batch_size 10 \ + --per_device_eval_batch_size 1 \ + --gradient_accumulation_steps 1 \ + --evaluation_strategy "no" \ + --save_strategy "steps" \ + --save_steps 500 \ + --save_total_limit 5 \ + --learning_rate 2e-5 \ + --weight_decay 0. \ + --warmup_ratio 0.05 \ + --lr_scheduler_type "cosine" \ + --logging_steps 1 \ + --tf32 True \ + --model_max_length 4096 \ + --gradient_checkpointing True \ + --dataloader_num_workers 4 \ + --lazy_preprocess True \ + --report_to wandb \ \ No newline at end of file diff --git a/CheckGuard Models/wholeimage/amount/llava-lora-mistral-r128a256-10BS-model/README.md b/CheckGuard Models/wholeimage/amount/llava-lora-mistral-r128a256-10BS-model/README.md new file mode 100644 index 0000000000000000000000000000000000000000..bdb138eee6972419f6d60676388b52fd99ec478e --- /dev/null +++ b/CheckGuard Models/wholeimage/amount/llava-lora-mistral-r128a256-10BS-model/README.md @@ -0,0 +1,202 @@ +--- +library_name: peft +base_model: liuhaotian/llava-v1.6-mistral-7b +--- + +# Model Card for Model ID + + + + + +## Model Details + +### Model Description + + + + + +- **Developed by:** [More Information Needed] +- **Funded by [optional]:** [More Information Needed] +- **Shared by [optional]:** [More Information Needed] +- **Model type:** [More Information Needed] +- **Language(s) (NLP):** [More Information Needed] +- **License:** [More Information Needed] +- **Finetuned from model [optional]:** [More Information Needed] + +### Model Sources [optional] + + + +- **Repository:** [More Information Needed] +- **Paper [optional]:** [More Information Needed] +- **Demo [optional]:** [More Information Needed] + +## Uses + + + +### Direct Use + + + +[More Information Needed] + +### Downstream Use [optional] + + + +[More Information Needed] + +### Out-of-Scope Use + + + +[More Information Needed] + +## Bias, Risks, and Limitations + + + +[More Information Needed] + +### Recommendations + + + +Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. + +## How to Get Started with the Model + +Use the code below to get started with the model. + +[More Information Needed] + +## Training Details + +### Training Data + + + +[More Information Needed] + +### Training Procedure + + + +#### Preprocessing [optional] + +[More Information Needed] + + +#### Training Hyperparameters + +- **Training regime:** [More Information Needed] + +#### Speeds, Sizes, Times [optional] + + + +[More Information Needed] + +## Evaluation + + + +### Testing Data, Factors & Metrics + +#### Testing Data + + + +[More Information Needed] + +#### Factors + + + +[More Information Needed] + +#### Metrics + + + +[More Information Needed] + +### Results + +[More Information Needed] + +#### Summary + + + +## Model Examination [optional] + + + +[More Information Needed] + +## Environmental Impact + + + +Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). + +- **Hardware Type:** [More Information Needed] +- **Hours used:** [More Information Needed] +- **Cloud Provider:** [More Information Needed] +- **Compute Region:** [More Information Needed] +- **Carbon Emitted:** [More Information Needed] + +## Technical Specifications [optional] + +### Model Architecture and Objective + +[More Information Needed] + +### Compute Infrastructure + +[More Information Needed] + +#### Hardware + +[More Information Needed] + +#### Software + +[More Information Needed] + +## Citation [optional] + + + +**BibTeX:** + +[More Information Needed] + +**APA:** + +[More Information Needed] + +## Glossary [optional] + + + +[More Information Needed] + +## More Information [optional] + +[More Information Needed] + +## Model Card Authors [optional] + +[More Information Needed] + +## Model Card Contact + +[More Information Needed] +### Framework versions + +- PEFT 0.10.0 \ No newline at end of file diff --git a/CheckGuard Models/wholeimage/amount/llava-lora-mistral-r128a256-10BS-model/adapter_config.json b/CheckGuard Models/wholeimage/amount/llava-lora-mistral-r128a256-10BS-model/adapter_config.json new file mode 100644 index 0000000000000000000000000000000000000000..4bed3c21a88535e71ce0984d0e3e6b1f2fbfe658 --- /dev/null +++ b/CheckGuard Models/wholeimage/amount/llava-lora-mistral-r128a256-10BS-model/adapter_config.json @@ -0,0 +1,34 @@ +{ + "alpha_pattern": {}, + "auto_mapping": null, + "base_model_name_or_path": "liuhaotian/llava-v1.6-mistral-7b", + "bias": "none", + "fan_in_fan_out": false, + "inference_mode": true, + "init_lora_weights": true, + "layer_replication": null, + "layers_pattern": null, + "layers_to_transform": null, + "loftq_config": {}, + "lora_alpha": 256, + "lora_dropout": 0.05, + "megatron_config": null, + "megatron_core": "megatron.core", + "modules_to_save": null, + "peft_type": "LORA", + "r": 128, + "rank_pattern": {}, + "revision": null, + "target_modules": [ + "up_proj", + "k_proj", + "q_proj", + "down_proj", + "o_proj", + "v_proj", + "gate_proj" + ], + "task_type": "CAUSAL_LM", + "use_dora": false, + "use_rslora": false +} \ No newline at end of file diff --git a/CheckGuard Models/wholeimage/amount/llava-lora-mistral-r128a256-10BS-model/adapter_model.safetensors b/CheckGuard Models/wholeimage/amount/llava-lora-mistral-r128a256-10BS-model/adapter_model.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..76151f76d7d9149ae26aff57d012d19e73357194 --- /dev/null +++ b/CheckGuard Models/wholeimage/amount/llava-lora-mistral-r128a256-10BS-model/adapter_model.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:cf2247d527585fc799edb906388c1be818fe3bb61e79cbe1b59d3311b2b6e5e9 +size 708924928 diff --git a/CheckGuard Models/wholeimage/amount/llava-lora-mistral-r128a256-10BS-model/config.json b/CheckGuard Models/wholeimage/amount/llava-lora-mistral-r128a256-10BS-model/config.json new file mode 100644 index 0000000000000000000000000000000000000000..93e133af45036a778791b5679a8953a4f6a35a33 --- /dev/null +++ b/CheckGuard Models/wholeimage/amount/llava-lora-mistral-r128a256-10BS-model/config.json @@ -0,0 +1,70 @@ +{ + "_name_or_path": "liuhaotian/llava-v1.6-mistral-7b", + "architectures": [ + "LlavaMistralForCausalLM" + ], + "attention_dropout": 0.0, + "bos_token_id": 1, + "eos_token_id": 2, + "freeze_mm_mlp_adapter": false, + "freeze_mm_vision_resampler": false, + "hidden_act": "silu", + "hidden_size": 4096, + "image_aspect_ratio": "anyres", + "image_crop_resolution": 224, + "image_grid_pinpoints": [ + [ + 336, + 672 + ], + [ + 672, + 336 + ], + [ + 672, + 672 + ], + [ + 1008, + 336 + ], + [ + 336, + 1008 + ] + ], + "image_split_resolution": 224, + "initializer_range": 0.02, + "intermediate_size": 14336, + "max_position_embeddings": 32768, + "mm_hidden_size": 1024, + "mm_patch_merge_type": "spatial_unpad", + "mm_projector_lr": 2e-05, + "mm_projector_type": "mlp2x_gelu", + "mm_resampler_type": null, + "mm_use_im_patch_token": false, + "mm_use_im_start_end": false, + "mm_vision_select_feature": "patch", + "mm_vision_select_layer": -2, + "mm_vision_tower": "openai/clip-vit-large-patch14-336", + "mm_vision_tower_lr": 2e-06, + "model_type": "llava_mistral", + "num_attention_heads": 32, + "num_hidden_layers": 32, + "num_key_value_heads": 8, + "rms_norm_eps": 1e-05, + "rope_theta": 1000000.0, + "sliding_window": null, + "tie_word_embeddings": false, + "tokenizer_model_max_length": 4096, + "tokenizer_padding_side": "right", + "torch_dtype": "bfloat16", + "transformers_version": "4.37.2", + "tune_mm_mlp_adapter": false, + "tune_mm_vision_resampler": false, + "unfreeze_mm_vision_tower": true, + "use_cache": true, + "use_mm_proj": true, + "vocab_size": 32000 +} diff --git a/CheckGuard Models/wholeimage/amount/llava-lora-mistral-r128a256-10BS-model/non_lora_trainables.bin b/CheckGuard Models/wholeimage/amount/llava-lora-mistral-r128a256-10BS-model/non_lora_trainables.bin new file mode 100644 index 0000000000000000000000000000000000000000..cd99cf2428d96ad5af062e0a9af0e361ee2567d7 --- /dev/null +++ b/CheckGuard Models/wholeimage/amount/llava-lora-mistral-r128a256-10BS-model/non_lora_trainables.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:122abc8f0749c93d63088c8fbc3c18949d0e6fe8a9c9bc719442920c7224b9fc +size 41961648 diff --git a/CheckGuard Models/wholeimage/amount/llava-lora-mistral-r128a256-10BS-model/trainer_state.json b/CheckGuard Models/wholeimage/amount/llava-lora-mistral-r128a256-10BS-model/trainer_state.json new file mode 100644 index 0000000000000000000000000000000000000000..3be7d6e597c15e421ee50d5053e16abd97a37d09 --- /dev/null +++ b/CheckGuard Models/wholeimage/amount/llava-lora-mistral-r128a256-10BS-model/trainer_state.json @@ -0,0 +1,2010 @@ +{ + "best_metric": null, + "best_model_checkpoint": null, + "epoch": 1.0, + "eval_steps": 500, + "global_step": 330, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "epoch": 0.0, + "learning_rate": 1.1764705882352942e-06, + "loss": 0.2385, + "step": 1 + }, + { + "epoch": 0.01, + "learning_rate": 2.3529411764705885e-06, + "loss": 0.2477, + "step": 2 + }, + { + "epoch": 0.01, + "learning_rate": 2.3529411764705885e-06, + "loss": 0.297, + "step": 3 + }, + { + "epoch": 0.01, + "learning_rate": 3.529411764705883e-06, + "loss": 0.1694, + "step": 4 + }, + { + "epoch": 0.02, + "learning_rate": 4.705882352941177e-06, + "loss": 0.1294, + "step": 5 + }, + { + "epoch": 0.02, + "learning_rate": 5.882352941176471e-06, + "loss": 0.1461, + "step": 6 + }, + { + "epoch": 0.02, + "learning_rate": 7.058823529411766e-06, + "loss": 0.1272, + "step": 7 + }, + { + "epoch": 0.02, + "learning_rate": 7.058823529411766e-06, + "loss": 0.1176, + "step": 8 + }, + { + "epoch": 0.03, + "learning_rate": 8.23529411764706e-06, + "loss": 0.0666, + "step": 9 + }, + { + "epoch": 0.03, + "learning_rate": 9.411764705882354e-06, + "loss": 0.1199, + "step": 10 + }, + { + "epoch": 0.03, + "learning_rate": 1.0588235294117648e-05, + "loss": 0.1216, + "step": 11 + }, + { + "epoch": 0.04, + "learning_rate": 1.1764705882352942e-05, + "loss": 0.1258, + "step": 12 + }, + { + "epoch": 0.04, + "learning_rate": 1.2941176470588238e-05, + "loss": 0.0381, + "step": 13 + }, + { + "epoch": 0.04, + "learning_rate": 1.4117647058823532e-05, + "loss": 0.0318, + "step": 14 + }, + { + "epoch": 0.05, + "learning_rate": 1.5294117647058822e-05, + "loss": 0.1278, + "step": 15 + }, + { + "epoch": 0.05, + "learning_rate": 1.647058823529412e-05, + "loss": 0.1014, + "step": 16 + }, + { + "epoch": 0.05, + "learning_rate": 1.7647058823529414e-05, + "loss": 0.0555, + "step": 17 + }, + { + "epoch": 0.05, + "learning_rate": 1.8823529411764708e-05, + "loss": 0.0576, + "step": 18 + }, + { + "epoch": 0.06, + "learning_rate": 2e-05, + "loss": 0.0987, + "step": 19 + }, + { + "epoch": 0.06, + "learning_rate": 1.9999496293646753e-05, + "loss": 0.1177, + "step": 20 + }, + { + "epoch": 0.06, + "learning_rate": 1.999798522533102e-05, + "loss": 0.1623, + "step": 21 + }, + { + "epoch": 0.07, + "learning_rate": 1.9995466947279753e-05, + "loss": 0.0899, + "step": 22 + }, + { + "epoch": 0.07, + "learning_rate": 1.9991941713187477e-05, + "loss": 0.0615, + "step": 23 + }, + { + "epoch": 0.07, + "learning_rate": 1.9987409878190752e-05, + "loss": 0.068, + "step": 24 + }, + { + "epoch": 0.08, + "learning_rate": 1.99818718988324e-05, + "loss": 0.0909, + "step": 25 + }, + { + "epoch": 0.08, + "learning_rate": 1.9975328333015497e-05, + "loss": 0.0658, + "step": 26 + }, + { + "epoch": 0.08, + "learning_rate": 1.9967779839947172e-05, + "loss": 0.0251, + "step": 27 + }, + { + "epoch": 0.08, + "learning_rate": 1.9959227180072216e-05, + "loss": 0.0526, + "step": 28 + }, + { + "epoch": 0.09, + "learning_rate": 1.9949671214996448e-05, + "loss": 0.0495, + "step": 29 + }, + { + "epoch": 0.09, + "learning_rate": 1.993911290739993e-05, + "loss": 0.034, + "step": 30 + }, + { + "epoch": 0.09, + "learning_rate": 1.992755332093999e-05, + "loss": 0.0678, + "step": 31 + }, + { + "epoch": 0.1, + "learning_rate": 1.9914993620144055e-05, + "loss": 0.063, + "step": 32 + }, + { + "epoch": 0.1, + "learning_rate": 1.990143507029234e-05, + "loss": 0.0237, + "step": 33 + }, + { + "epoch": 0.1, + "learning_rate": 1.9886879037290385e-05, + "loss": 0.0773, + "step": 34 + }, + { + "epoch": 0.11, + "learning_rate": 1.9871326987531453e-05, + "loss": 0.0357, + "step": 35 + }, + { + "epoch": 0.11, + "learning_rate": 1.98547804877488e-05, + "loss": 0.1064, + "step": 36 + }, + { + "epoch": 0.11, + "learning_rate": 1.983724120485783e-05, + "loss": 0.083, + "step": 37 + }, + { + "epoch": 0.12, + "learning_rate": 1.9818710905788195e-05, + "loss": 0.1053, + "step": 38 + }, + { + "epoch": 0.12, + "learning_rate": 1.9799191457305767e-05, + "loss": 0.0343, + "step": 39 + }, + { + "epoch": 0.12, + "learning_rate": 1.977868482582459e-05, + "loss": 0.1018, + "step": 40 + }, + { + "epoch": 0.12, + "learning_rate": 1.9757193077208776e-05, + "loss": 0.1488, + "step": 41 + }, + { + "epoch": 0.13, + "learning_rate": 1.9734718376564386e-05, + "loss": 0.0511, + "step": 42 + }, + { + "epoch": 0.13, + "learning_rate": 1.9711262988021322e-05, + "loss": 0.0643, + "step": 43 + }, + { + "epoch": 0.13, + "learning_rate": 1.968682927450523e-05, + "loss": 0.0184, + "step": 44 + }, + { + "epoch": 0.14, + "learning_rate": 1.9661419697499455e-05, + "loss": 0.0483, + "step": 45 + }, + { + "epoch": 0.14, + "learning_rate": 1.9635036816797072e-05, + "loss": 0.1308, + "step": 46 + }, + { + "epoch": 0.14, + "learning_rate": 1.960768329024301e-05, + "loss": 0.0618, + "step": 47 + }, + { + "epoch": 0.15, + "learning_rate": 1.957936187346628e-05, + "loss": 0.0513, + "step": 48 + }, + { + "epoch": 0.15, + "learning_rate": 1.955007541960241e-05, + "loss": 0.0517, + "step": 49 + }, + { + "epoch": 0.15, + "learning_rate": 1.9519826879005964e-05, + "loss": 0.0638, + "step": 50 + }, + { + "epoch": 0.15, + "learning_rate": 1.948861929895336e-05, + "loss": 0.0841, + "step": 51 + }, + { + "epoch": 0.16, + "learning_rate": 1.945645582333587e-05, + "loss": 0.0994, + "step": 52 + }, + { + "epoch": 0.16, + "learning_rate": 1.9423339692342885e-05, + "loss": 0.0906, + "step": 53 + }, + { + "epoch": 0.16, + "learning_rate": 1.9389274242135528e-05, + "loss": 0.2008, + "step": 54 + }, + { + "epoch": 0.17, + "learning_rate": 1.9354262904510544e-05, + "loss": 0.0152, + "step": 55 + }, + { + "epoch": 0.17, + "learning_rate": 1.9318309206554567e-05, + "loss": 0.0232, + "step": 56 + }, + { + "epoch": 0.17, + "learning_rate": 1.9281416770288806e-05, + "loss": 0.057, + "step": 57 + }, + { + "epoch": 0.18, + "learning_rate": 1.924358931230418e-05, + "loss": 0.1069, + "step": 58 + }, + { + "epoch": 0.18, + "learning_rate": 1.920483064338687e-05, + "loss": 0.034, + "step": 59 + }, + { + "epoch": 0.18, + "learning_rate": 1.9165144668134426e-05, + "loss": 0.052, + "step": 60 + }, + { + "epoch": 0.18, + "learning_rate": 1.9124535384562423e-05, + "loss": 0.1445, + "step": 61 + }, + { + "epoch": 0.19, + "learning_rate": 1.9083006883701688e-05, + "loss": 0.0578, + "step": 62 + }, + { + "epoch": 0.19, + "learning_rate": 1.904056334918617e-05, + "loss": 0.0426, + "step": 63 + }, + { + "epoch": 0.19, + "learning_rate": 1.8997209056831462e-05, + "loss": 0.0214, + "step": 64 + }, + { + "epoch": 0.2, + "learning_rate": 1.8952948374204066e-05, + "loss": 0.084, + "step": 65 + }, + { + "epoch": 0.2, + "learning_rate": 1.8907785760181392e-05, + "loss": 0.1055, + "step": 66 + }, + { + "epoch": 0.2, + "learning_rate": 1.8861725764502557e-05, + "loss": 0.0333, + "step": 67 + }, + { + "epoch": 0.21, + "learning_rate": 1.881477302731006e-05, + "loss": 0.0334, + "step": 68 + }, + { + "epoch": 0.21, + "learning_rate": 1.87669322786823e-05, + "loss": 0.0513, + "step": 69 + }, + { + "epoch": 0.21, + "learning_rate": 1.8718208338157082e-05, + "loss": 0.0324, + "step": 70 + }, + { + "epoch": 0.22, + "learning_rate": 1.866860611424609e-05, + "loss": 0.033, + "step": 71 + }, + { + "epoch": 0.22, + "learning_rate": 1.8618130603940386e-05, + "loss": 0.0379, + "step": 72 + }, + { + "epoch": 0.22, + "learning_rate": 1.856678689220701e-05, + "loss": 0.0403, + "step": 73 + }, + { + "epoch": 0.22, + "learning_rate": 1.851458015147673e-05, + "loss": 0.0489, + "step": 74 + }, + { + "epoch": 0.23, + "learning_rate": 1.846151564112294e-05, + "loss": 0.0599, + "step": 75 + }, + { + "epoch": 0.23, + "learning_rate": 1.840759870693184e-05, + "loss": 0.0654, + "step": 76 + }, + { + "epoch": 0.23, + "learning_rate": 1.8352834780563888e-05, + "loss": 0.0526, + "step": 77 + }, + { + "epoch": 0.24, + "learning_rate": 1.8297229379006614e-05, + "loss": 0.0105, + "step": 78 + }, + { + "epoch": 0.24, + "learning_rate": 1.8240788104018824e-05, + "loss": 0.0394, + "step": 79 + }, + { + "epoch": 0.24, + "learning_rate": 1.8183516641566278e-05, + "loss": 0.0573, + "step": 80 + }, + { + "epoch": 0.25, + "learning_rate": 1.8125420761248878e-05, + "loss": 0.0478, + "step": 81 + }, + { + "epoch": 0.25, + "learning_rate": 1.806650631571943e-05, + "loss": 0.0633, + "step": 82 + }, + { + "epoch": 0.25, + "learning_rate": 1.8006779240094024e-05, + "loss": 0.0423, + "step": 83 + }, + { + "epoch": 0.25, + "learning_rate": 1.7946245551354156e-05, + "loss": 0.0618, + "step": 84 + }, + { + "epoch": 0.26, + "learning_rate": 1.7884911347740556e-05, + "loss": 0.0658, + "step": 85 + }, + { + "epoch": 0.26, + "learning_rate": 1.782278280813882e-05, + "loss": 0.0485, + "step": 86 + }, + { + "epoch": 0.26, + "learning_rate": 1.775986619145697e-05, + "loss": 0.0468, + "step": 87 + }, + { + "epoch": 0.27, + "learning_rate": 1.7696167835994927e-05, + "loss": 0.0558, + "step": 88 + }, + { + "epoch": 0.27, + "learning_rate": 1.7631694158805945e-05, + "loss": 0.0518, + "step": 89 + }, + { + "epoch": 0.27, + "learning_rate": 1.7566451655050197e-05, + "loss": 0.0684, + "step": 90 + }, + { + "epoch": 0.28, + "learning_rate": 1.7500446897340408e-05, + "loss": 0.0304, + "step": 91 + }, + { + "epoch": 0.28, + "learning_rate": 1.7433686535079736e-05, + "loss": 0.0397, + "step": 92 + }, + { + "epoch": 0.28, + "learning_rate": 1.736617729379191e-05, + "loss": 0.1084, + "step": 93 + }, + { + "epoch": 0.28, + "learning_rate": 1.7297925974443675e-05, + "loss": 0.0826, + "step": 94 + }, + { + "epoch": 0.29, + "learning_rate": 1.7228939452759666e-05, + "loss": 0.0309, + "step": 95 + }, + { + "epoch": 0.29, + "learning_rate": 1.7159224678529734e-05, + "loss": 0.0348, + "step": 96 + }, + { + "epoch": 0.29, + "learning_rate": 1.7088788674908817e-05, + "loss": 0.097, + "step": 97 + }, + { + "epoch": 0.3, + "learning_rate": 1.7017638537709426e-05, + "loss": 0.0897, + "step": 98 + }, + { + "epoch": 0.3, + "learning_rate": 1.6945781434686783e-05, + "loss": 0.0614, + "step": 99 + }, + { + "epoch": 0.3, + "learning_rate": 1.6873224604816753e-05, + "loss": 0.08, + "step": 100 + }, + { + "epoch": 0.31, + "learning_rate": 1.679997535756657e-05, + "loss": 0.0126, + "step": 101 + }, + { + "epoch": 0.31, + "learning_rate": 1.672604107215848e-05, + "loss": 0.0644, + "step": 102 + }, + { + "epoch": 0.31, + "learning_rate": 1.6651429196826337e-05, + "loss": 0.0702, + "step": 103 + }, + { + "epoch": 0.32, + "learning_rate": 1.6576147248065268e-05, + "loss": 0.0809, + "step": 104 + }, + { + "epoch": 0.32, + "learning_rate": 1.6500202809874446e-05, + "loss": 0.0354, + "step": 105 + }, + { + "epoch": 0.32, + "learning_rate": 1.6423603532993074e-05, + "loss": 0.1429, + "step": 106 + }, + { + "epoch": 0.32, + "learning_rate": 1.634635713412964e-05, + "loss": 0.1142, + "step": 107 + }, + { + "epoch": 0.33, + "learning_rate": 1.626847139518452e-05, + "loss": 0.034, + "step": 108 + }, + { + "epoch": 0.33, + "learning_rate": 1.618995416246601e-05, + "loss": 0.0818, + "step": 109 + }, + { + "epoch": 0.33, + "learning_rate": 1.6110813345899914e-05, + "loss": 0.0594, + "step": 110 + }, + { + "epoch": 0.34, + "learning_rate": 1.6031056918232642e-05, + "loss": 0.0958, + "step": 111 + }, + { + "epoch": 0.34, + "learning_rate": 1.595069291422807e-05, + "loss": 0.0418, + "step": 112 + }, + { + "epoch": 0.34, + "learning_rate": 1.586972942985807e-05, + "loss": 0.0315, + "step": 113 + }, + { + "epoch": 0.35, + "learning_rate": 1.5788174621486936e-05, + "loss": 0.0435, + "step": 114 + }, + { + "epoch": 0.35, + "learning_rate": 1.570603670504969e-05, + "loss": 0.0596, + "step": 115 + }, + { + "epoch": 0.35, + "learning_rate": 1.570603670504969e-05, + "loss": 0.048, + "step": 116 + }, + { + "epoch": 0.35, + "learning_rate": 1.5623323955224404e-05, + "loss": 0.0352, + "step": 117 + }, + { + "epoch": 0.36, + "learning_rate": 1.5540044704598588e-05, + "loss": 0.0264, + "step": 118 + }, + { + "epoch": 0.36, + "learning_rate": 1.5456207342829777e-05, + "loss": 0.0378, + "step": 119 + }, + { + "epoch": 0.36, + "learning_rate": 1.5371820315800316e-05, + "loss": 0.0519, + "step": 120 + }, + { + "epoch": 0.37, + "learning_rate": 1.5286892124766546e-05, + "loss": 0.0559, + "step": 121 + }, + { + "epoch": 0.37, + "learning_rate": 1.5201431325502332e-05, + "loss": 0.0708, + "step": 122 + }, + { + "epoch": 0.37, + "learning_rate": 1.5115446527437193e-05, + "loss": 0.0823, + "step": 123 + }, + { + "epoch": 0.38, + "learning_rate": 1.5028946392788934e-05, + "loss": 0.0345, + "step": 124 + }, + { + "epoch": 0.38, + "learning_rate": 1.4941939635691036e-05, + "loss": 0.111, + "step": 125 + }, + { + "epoch": 0.38, + "learning_rate": 1.4854435021314766e-05, + "loss": 0.0284, + "step": 126 + }, + { + "epoch": 0.38, + "learning_rate": 1.4766441364986162e-05, + "loss": 0.1226, + "step": 127 + }, + { + "epoch": 0.39, + "learning_rate": 1.467796753129797e-05, + "loss": 0.022, + "step": 128 + }, + { + "epoch": 0.39, + "learning_rate": 1.4589022433216616e-05, + "loss": 0.0565, + "step": 129 + }, + { + "epoch": 0.39, + "learning_rate": 1.4499615031184297e-05, + "loss": 0.0875, + "step": 130 + }, + { + "epoch": 0.4, + "learning_rate": 1.4409754332216303e-05, + "loss": 0.0457, + "step": 131 + }, + { + "epoch": 0.4, + "learning_rate": 1.431944938899363e-05, + "loss": 0.0776, + "step": 132 + }, + { + "epoch": 0.4, + "learning_rate": 1.4228709298950998e-05, + "loss": 0.0397, + "step": 133 + }, + { + "epoch": 0.41, + "learning_rate": 1.4137543203360382e-05, + "loss": 0.0278, + "step": 134 + }, + { + "epoch": 0.41, + "learning_rate": 1.4045960286410093e-05, + "loss": 0.0204, + "step": 135 + }, + { + "epoch": 0.41, + "learning_rate": 1.395396977427955e-05, + "loss": 0.0531, + "step": 136 + }, + { + "epoch": 0.42, + "learning_rate": 1.3861580934209832e-05, + "loss": 0.0334, + "step": 137 + }, + { + "epoch": 0.42, + "learning_rate": 1.376880307357009e-05, + "loss": 0.0389, + "step": 138 + }, + { + "epoch": 0.42, + "learning_rate": 1.3675645538919884e-05, + "loss": 0.0571, + "step": 139 + }, + { + "epoch": 0.42, + "learning_rate": 1.3582117715067628e-05, + "loss": 0.0352, + "step": 140 + }, + { + "epoch": 0.43, + "learning_rate": 1.3488229024125142e-05, + "loss": 0.0062, + "step": 141 + }, + { + "epoch": 0.43, + "learning_rate": 1.3393988924558445e-05, + "loss": 0.0489, + "step": 142 + }, + { + "epoch": 0.43, + "learning_rate": 1.3299406910234917e-05, + "loss": 0.068, + "step": 143 + }, + { + "epoch": 0.44, + "learning_rate": 1.3204492509466862e-05, + "loss": 0.0478, + "step": 144 + }, + { + "epoch": 0.44, + "learning_rate": 1.3109255284051615e-05, + "loss": 0.1145, + "step": 145 + }, + { + "epoch": 0.44, + "learning_rate": 1.3013704828308276e-05, + "loss": 0.0253, + "step": 146 + }, + { + "epoch": 0.45, + "learning_rate": 1.2917850768111171e-05, + "loss": 0.0138, + "step": 147 + }, + { + "epoch": 0.45, + "learning_rate": 1.282170275992012e-05, + "loss": 0.1083, + "step": 148 + }, + { + "epoch": 0.45, + "learning_rate": 1.2725270489807637e-05, + "loss": 0.0708, + "step": 149 + }, + { + "epoch": 0.45, + "learning_rate": 1.2628563672483147e-05, + "loss": 0.0144, + "step": 150 + }, + { + "epoch": 0.46, + "learning_rate": 1.2531592050314308e-05, + "loss": 0.0628, + "step": 151 + }, + { + "epoch": 0.46, + "learning_rate": 1.2434365392345553e-05, + "loss": 0.0475, + "step": 152 + }, + { + "epoch": 0.46, + "learning_rate": 1.2336893493313946e-05, + "loss": 0.0161, + "step": 153 + }, + { + "epoch": 0.47, + "learning_rate": 1.223918617266245e-05, + "loss": 0.084, + "step": 154 + }, + { + "epoch": 0.47, + "learning_rate": 1.2141253273550698e-05, + "loss": 0.0494, + "step": 155 + }, + { + "epoch": 0.47, + "learning_rate": 1.2043104661863386e-05, + "loss": 0.0293, + "step": 156 + }, + { + "epoch": 0.48, + "learning_rate": 1.1944750225216363e-05, + "loss": 0.0837, + "step": 157 + }, + { + "epoch": 0.48, + "learning_rate": 1.1846199871960557e-05, + "loss": 0.0479, + "step": 158 + }, + { + "epoch": 0.48, + "learning_rate": 1.1747463530183781e-05, + "loss": 0.0752, + "step": 159 + }, + { + "epoch": 0.48, + "learning_rate": 1.1648551146710557e-05, + "loss": 0.0242, + "step": 160 + }, + { + "epoch": 0.49, + "learning_rate": 1.1549472686100079e-05, + "loss": 0.0322, + "step": 161 + }, + { + "epoch": 0.49, + "learning_rate": 1.145023812964237e-05, + "loss": 0.0812, + "step": 162 + }, + { + "epoch": 0.49, + "learning_rate": 1.1350857474352734e-05, + "loss": 0.0133, + "step": 163 + }, + { + "epoch": 0.5, + "learning_rate": 1.1251340731964664e-05, + "loss": 0.093, + "step": 164 + }, + { + "epoch": 0.5, + "learning_rate": 1.1151697927921242e-05, + "loss": 0.0377, + "step": 165 + }, + { + "epoch": 0.5, + "learning_rate": 1.1051939100365154e-05, + "loss": 0.0561, + "step": 166 + }, + { + "epoch": 0.51, + "learning_rate": 1.0952074299127451e-05, + "loss": 0.0556, + "step": 167 + }, + { + "epoch": 0.51, + "learning_rate": 1.0852113584715103e-05, + "loss": 0.0567, + "step": 168 + }, + { + "epoch": 0.51, + "learning_rate": 1.0752067027297486e-05, + "loss": 0.0722, + "step": 169 + }, + { + "epoch": 0.52, + "learning_rate": 1.065194470569193e-05, + "loss": 0.0419, + "step": 170 + }, + { + "epoch": 0.52, + "learning_rate": 1.0551756706348331e-05, + "loss": 0.04, + "step": 171 + }, + { + "epoch": 0.52, + "learning_rate": 1.0451513122333042e-05, + "loss": 0.0227, + "step": 172 + }, + { + "epoch": 0.52, + "learning_rate": 1.035122405231209e-05, + "loss": 0.0136, + "step": 173 + }, + { + "epoch": 0.53, + "learning_rate": 1.0250899599533833e-05, + "loss": 0.0613, + "step": 174 + }, + { + "epoch": 0.53, + "learning_rate": 1.0150549870811108e-05, + "loss": 0.02, + "step": 175 + }, + { + "epoch": 0.53, + "learning_rate": 1.0050184975503104e-05, + "loss": 0.0232, + "step": 176 + }, + { + "epoch": 0.54, + "learning_rate": 9.949815024496901e-06, + "loss": 0.0229, + "step": 177 + }, + { + "epoch": 0.54, + "learning_rate": 9.849450129188895e-06, + "loss": 0.0483, + "step": 178 + }, + { + "epoch": 0.54, + "learning_rate": 9.74910040046617e-06, + "loss": 0.0153, + "step": 179 + }, + { + "epoch": 0.55, + "learning_rate": 9.648775947687914e-06, + "loss": 0.0121, + "step": 180 + }, + { + "epoch": 0.55, + "learning_rate": 9.548486877666963e-06, + "loss": 0.0603, + "step": 181 + }, + { + "epoch": 0.55, + "learning_rate": 9.448243293651676e-06, + "loss": 0.0291, + "step": 182 + }, + { + "epoch": 0.55, + "learning_rate": 9.348055294308074e-06, + "loss": 0.0458, + "step": 183 + }, + { + "epoch": 0.56, + "learning_rate": 9.247932972702514e-06, + "loss": 0.0438, + "step": 184 + }, + { + "epoch": 0.56, + "learning_rate": 9.147886415284903e-06, + "loss": 0.0337, + "step": 185 + }, + { + "epoch": 0.56, + "learning_rate": 9.047925700872552e-06, + "loss": 0.0527, + "step": 186 + }, + { + "epoch": 0.57, + "learning_rate": 8.948060899634846e-06, + "loss": 0.0457, + "step": 187 + }, + { + "epoch": 0.57, + "learning_rate": 8.848302072078762e-06, + "loss": 0.0354, + "step": 188 + }, + { + "epoch": 0.57, + "learning_rate": 8.748659268035339e-06, + "loss": 0.0153, + "step": 189 + }, + { + "epoch": 0.58, + "learning_rate": 8.649142525647271e-06, + "loss": 0.1229, + "step": 190 + }, + { + "epoch": 0.58, + "learning_rate": 8.549761870357633e-06, + "loss": 0.0149, + "step": 191 + }, + { + "epoch": 0.58, + "learning_rate": 8.450527313899923e-06, + "loss": 0.042, + "step": 192 + }, + { + "epoch": 0.58, + "learning_rate": 8.351448853289448e-06, + "loss": 0.0146, + "step": 193 + }, + { + "epoch": 0.59, + "learning_rate": 8.25253646981622e-06, + "loss": 0.0145, + "step": 194 + }, + { + "epoch": 0.59, + "learning_rate": 8.153800128039441e-06, + "loss": 0.0691, + "step": 195 + }, + { + "epoch": 0.59, + "learning_rate": 8.05524977478364e-06, + "loss": 0.0165, + "step": 196 + }, + { + "epoch": 0.6, + "learning_rate": 7.956895338136618e-06, + "loss": 0.0776, + "step": 197 + }, + { + "epoch": 0.6, + "learning_rate": 7.858746726449309e-06, + "loss": 0.046, + "step": 198 + }, + { + "epoch": 0.6, + "learning_rate": 7.760813827337555e-06, + "loss": 0.0511, + "step": 199 + }, + { + "epoch": 0.61, + "learning_rate": 7.663106506686057e-06, + "loss": 0.056, + "step": 200 + }, + { + "epoch": 0.61, + "learning_rate": 7.565634607654453e-06, + "loss": 0.0084, + "step": 201 + }, + { + "epoch": 0.61, + "learning_rate": 7.468407949685695e-06, + "loss": 0.0492, + "step": 202 + }, + { + "epoch": 0.62, + "learning_rate": 7.371436327516854e-06, + "loss": 0.0472, + "step": 203 + }, + { + "epoch": 0.62, + "learning_rate": 7.274729510192367e-06, + "loss": 0.0826, + "step": 204 + }, + { + "epoch": 0.62, + "learning_rate": 7.1782972400798825e-06, + "loss": 0.062, + "step": 205 + }, + { + "epoch": 0.62, + "learning_rate": 7.082149231888833e-06, + "loss": 0.0373, + "step": 206 + }, + { + "epoch": 0.63, + "learning_rate": 6.986295171691727e-06, + "loss": 0.0227, + "step": 207 + }, + { + "epoch": 0.63, + "learning_rate": 6.890744715948388e-06, + "loss": 0.029, + "step": 208 + }, + { + "epoch": 0.63, + "learning_rate": 6.795507490533142e-06, + "loss": 0.0606, + "step": 209 + }, + { + "epoch": 0.64, + "learning_rate": 6.700593089765086e-06, + "loss": 0.0784, + "step": 210 + }, + { + "epoch": 0.64, + "learning_rate": 6.606011075441556e-06, + "loss": 0.0254, + "step": 211 + }, + { + "epoch": 0.64, + "learning_rate": 6.511770975874862e-06, + "loss": 0.0669, + "step": 212 + }, + { + "epoch": 0.65, + "learning_rate": 6.417882284932373e-06, + "loss": 0.0754, + "step": 213 + }, + { + "epoch": 0.65, + "learning_rate": 6.324354461080121e-06, + "loss": 0.0171, + "step": 214 + }, + { + "epoch": 0.65, + "learning_rate": 6.231196926429913e-06, + "loss": 0.054, + "step": 215 + }, + { + "epoch": 0.65, + "learning_rate": 6.138419065790169e-06, + "loss": 0.0068, + "step": 216 + }, + { + "epoch": 0.66, + "learning_rate": 6.046030225720456e-06, + "loss": 0.0406, + "step": 217 + }, + { + "epoch": 0.66, + "learning_rate": 5.95403971358991e-06, + "loss": 0.0413, + "step": 218 + }, + { + "epoch": 0.66, + "learning_rate": 5.86245679663962e-06, + "loss": 0.0359, + "step": 219 + }, + { + "epoch": 0.67, + "learning_rate": 5.7712907010490036e-06, + "loss": 0.0398, + "step": 220 + }, + { + "epoch": 0.67, + "learning_rate": 5.680550611006372e-06, + "loss": 0.0679, + "step": 221 + }, + { + "epoch": 0.67, + "learning_rate": 5.590245667783701e-06, + "loss": 0.0356, + "step": 222 + }, + { + "epoch": 0.68, + "learning_rate": 5.5003849688157075e-06, + "loss": 0.0169, + "step": 223 + }, + { + "epoch": 0.68, + "learning_rate": 5.4109775667833866e-06, + "loss": 0.0432, + "step": 224 + }, + { + "epoch": 0.68, + "learning_rate": 5.322032468702037e-06, + "loss": 0.012, + "step": 225 + }, + { + "epoch": 0.68, + "learning_rate": 5.233558635013842e-06, + "loss": 0.0554, + "step": 226 + }, + { + "epoch": 0.69, + "learning_rate": 5.145564978685234e-06, + "loss": 0.065, + "step": 227 + }, + { + "epoch": 0.69, + "learning_rate": 5.058060364308965e-06, + "loss": 0.0139, + "step": 228 + }, + { + "epoch": 0.69, + "learning_rate": 4.971053607211069e-06, + "loss": 0.0117, + "step": 229 + }, + { + "epoch": 0.7, + "learning_rate": 4.884553472562809e-06, + "loss": 0.0763, + "step": 230 + }, + { + "epoch": 0.7, + "learning_rate": 4.7985686744976714e-06, + "loss": 0.0341, + "step": 231 + }, + { + "epoch": 0.7, + "learning_rate": 4.713107875233459e-06, + "loss": 0.0602, + "step": 232 + }, + { + "epoch": 0.71, + "learning_rate": 4.628179684199685e-06, + "loss": 0.0102, + "step": 233 + }, + { + "epoch": 0.71, + "learning_rate": 4.543792657170228e-06, + "loss": 0.0552, + "step": 234 + }, + { + "epoch": 0.71, + "learning_rate": 4.459955295401415e-06, + "loss": 0.0356, + "step": 235 + }, + { + "epoch": 0.72, + "learning_rate": 4.376676044775601e-06, + "loss": 0.0439, + "step": 236 + }, + { + "epoch": 0.72, + "learning_rate": 4.293963294950313e-06, + "loss": 0.0109, + "step": 237 + }, + { + "epoch": 0.72, + "learning_rate": 4.211825378513066e-06, + "loss": 0.0224, + "step": 238 + }, + { + "epoch": 0.72, + "learning_rate": 4.130270570141931e-06, + "loss": 0.0378, + "step": 239 + }, + { + "epoch": 0.73, + "learning_rate": 4.0493070857719305e-06, + "loss": 0.0714, + "step": 240 + }, + { + "epoch": 0.73, + "learning_rate": 3.968943081767358e-06, + "loss": 0.0165, + "step": 241 + }, + { + "epoch": 0.73, + "learning_rate": 3.889186654100089e-06, + "loss": 0.0637, + "step": 242 + }, + { + "epoch": 0.74, + "learning_rate": 3.81004583753399e-06, + "loss": 0.0066, + "step": 243 + }, + { + "epoch": 0.74, + "learning_rate": 3.7315286048154862e-06, + "loss": 0.0178, + "step": 244 + }, + { + "epoch": 0.74, + "learning_rate": 3.6536428658703594e-06, + "loss": 0.0485, + "step": 245 + }, + { + "epoch": 0.75, + "learning_rate": 3.576396467006925e-06, + "loss": 0.0283, + "step": 246 + }, + { + "epoch": 0.75, + "learning_rate": 3.4997971901255588e-06, + "loss": 0.0694, + "step": 247 + }, + { + "epoch": 0.75, + "learning_rate": 3.4238527519347353e-06, + "loss": 0.0552, + "step": 248 + }, + { + "epoch": 0.75, + "learning_rate": 3.3485708031736698e-06, + "loss": 0.0436, + "step": 249 + }, + { + "epoch": 0.76, + "learning_rate": 3.2739589278415252e-06, + "loss": 0.0881, + "step": 250 + }, + { + "epoch": 0.76, + "learning_rate": 3.2000246424334315e-06, + "loss": 0.039, + "step": 251 + }, + { + "epoch": 0.76, + "learning_rate": 3.1267753951832523e-06, + "loss": 0.0411, + "step": 252 + }, + { + "epoch": 0.77, + "learning_rate": 3.0542185653132216e-06, + "loss": 0.0676, + "step": 253 + }, + { + "epoch": 0.77, + "learning_rate": 2.982361462290575e-06, + "loss": 0.0206, + "step": 254 + }, + { + "epoch": 0.77, + "learning_rate": 2.9112113250911844e-06, + "loss": 0.0827, + "step": 255 + }, + { + "epoch": 0.78, + "learning_rate": 2.8407753214702694e-06, + "loss": 0.0102, + "step": 256 + }, + { + "epoch": 0.78, + "learning_rate": 2.7710605472403373e-06, + "loss": 0.0229, + "step": 257 + }, + { + "epoch": 0.78, + "learning_rate": 2.702074025556327e-06, + "loss": 0.0196, + "step": 258 + }, + { + "epoch": 0.78, + "learning_rate": 2.6338227062080924e-06, + "loss": 0.0625, + "step": 259 + }, + { + "epoch": 0.79, + "learning_rate": 2.566313464920265e-06, + "loss": 0.0595, + "step": 260 + }, + { + "epoch": 0.79, + "learning_rate": 2.4995531026595952e-06, + "loss": 0.0147, + "step": 261 + }, + { + "epoch": 0.79, + "learning_rate": 2.4335483449498053e-06, + "loss": 0.0544, + "step": 262 + }, + { + "epoch": 0.8, + "learning_rate": 2.3683058411940563e-06, + "loss": 0.0453, + "step": 263 + }, + { + "epoch": 0.8, + "learning_rate": 2.3038321640050763e-06, + "loss": 0.0609, + "step": 264 + }, + { + "epoch": 0.8, + "learning_rate": 2.2401338085430326e-06, + "loss": 0.0504, + "step": 265 + }, + { + "epoch": 0.81, + "learning_rate": 2.177217191861183e-06, + "loss": 0.0248, + "step": 266 + }, + { + "epoch": 0.81, + "learning_rate": 2.115088652259446e-06, + "loss": 0.0616, + "step": 267 + }, + { + "epoch": 0.81, + "learning_rate": 2.053754448645846e-06, + "loss": 0.0408, + "step": 268 + }, + { + "epoch": 0.82, + "learning_rate": 1.9932207599059782e-06, + "loss": 0.0444, + "step": 269 + }, + { + "epoch": 0.82, + "learning_rate": 1.933493684280574e-06, + "loss": 0.0632, + "step": 270 + }, + { + "epoch": 0.82, + "learning_rate": 1.8745792387511241e-06, + "loss": 0.019, + "step": 271 + }, + { + "epoch": 0.82, + "learning_rate": 1.8164833584337216e-06, + "loss": 0.0266, + "step": 272 + }, + { + "epoch": 0.83, + "learning_rate": 1.75921189598118e-06, + "loss": 0.0499, + "step": 273 + }, + { + "epoch": 0.83, + "learning_rate": 1.7027706209933903e-06, + "loss": 0.0379, + "step": 274 + }, + { + "epoch": 0.83, + "learning_rate": 1.6471652194361131e-06, + "loss": 0.0092, + "step": 275 + }, + { + "epoch": 0.84, + "learning_rate": 1.5924012930681643e-06, + "loss": 0.0326, + "step": 276 + }, + { + "epoch": 0.84, + "learning_rate": 1.5384843588770626e-06, + "loss": 0.0179, + "step": 277 + }, + { + "epoch": 0.84, + "learning_rate": 1.4854198485232696e-06, + "loss": 0.0641, + "step": 278 + }, + { + "epoch": 0.85, + "learning_rate": 1.433213107792991e-06, + "loss": 0.0285, + "step": 279 + }, + { + "epoch": 0.85, + "learning_rate": 1.3818693960596186e-06, + "loss": 0.0365, + "step": 280 + }, + { + "epoch": 0.85, + "learning_rate": 1.3313938857539133e-06, + "loss": 0.0873, + "step": 281 + }, + { + "epoch": 0.85, + "learning_rate": 1.2817916618429194e-06, + "loss": 0.0148, + "step": 282 + }, + { + "epoch": 0.86, + "learning_rate": 1.2330677213177034e-06, + "loss": 0.0127, + "step": 283 + }, + { + "epoch": 0.86, + "learning_rate": 1.1852269726899423e-06, + "loss": 0.0028, + "step": 284 + }, + { + "epoch": 0.86, + "learning_rate": 1.138274235497443e-06, + "loss": 0.0241, + "step": 285 + }, + { + "epoch": 0.87, + "learning_rate": 1.0922142398186097e-06, + "loss": 0.0466, + "step": 286 + }, + { + "epoch": 0.87, + "learning_rate": 1.0470516257959351e-06, + "loss": 0.0273, + "step": 287 + }, + { + "epoch": 0.87, + "learning_rate": 1.00279094316854e-06, + "loss": 0.0529, + "step": 288 + }, + { + "epoch": 0.88, + "learning_rate": 9.594366508138352e-07, + "loss": 0.0648, + "step": 289 + }, + { + "epoch": 0.88, + "learning_rate": 9.169931162983137e-07, + "loss": 0.0118, + "step": 290 + }, + { + "epoch": 0.88, + "learning_rate": 8.754646154375801e-07, + "loss": 0.0321, + "step": 291 + }, + { + "epoch": 0.88, + "learning_rate": 8.348553318655795e-07, + "loss": 0.0167, + "step": 292 + }, + { + "epoch": 0.89, + "learning_rate": 7.951693566131325e-07, + "loss": 0.0204, + "step": 293 + }, + { + "epoch": 0.89, + "learning_rate": 7.564106876958188e-07, + "loss": 0.0502, + "step": 294 + }, + { + "epoch": 0.89, + "learning_rate": 7.185832297111939e-07, + "loss": 0.0075, + "step": 295 + }, + { + "epoch": 0.9, + "learning_rate": 6.816907934454353e-07, + "loss": 0.053, + "step": 296 + }, + { + "epoch": 0.9, + "learning_rate": 6.457370954894582e-07, + "loss": 0.0255, + "step": 297 + }, + { + "epoch": 0.9, + "learning_rate": 6.107257578644721e-07, + "loss": 0.0422, + "step": 298 + }, + { + "epoch": 0.91, + "learning_rate": 5.766603076571164e-07, + "loss": 0.0745, + "step": 299 + }, + { + "epoch": 0.91, + "learning_rate": 5.43544176664137e-07, + "loss": 0.0217, + "step": 300 + }, + { + "epoch": 0.91, + "learning_rate": 5.113807010466432e-07, + "loss": 0.0417, + "step": 301 + }, + { + "epoch": 0.92, + "learning_rate": 4.801731209940375e-07, + "loss": 0.0324, + "step": 302 + }, + { + "epoch": 0.92, + "learning_rate": 4.499245803975927e-07, + "loss": 0.0264, + "step": 303 + }, + { + "epoch": 0.92, + "learning_rate": 4.206381265337189e-07, + "loss": 0.0285, + "step": 304 + }, + { + "epoch": 0.92, + "learning_rate": 3.9231670975699354e-07, + "loss": 0.0603, + "step": 305 + }, + { + "epoch": 0.93, + "learning_rate": 3.649631832029288e-07, + "loss": 0.0515, + "step": 306 + }, + { + "epoch": 0.93, + "learning_rate": 3.385803025005463e-07, + "loss": 0.0133, + "step": 307 + }, + { + "epoch": 0.93, + "learning_rate": 3.1317072549477246e-07, + "loss": 0.0106, + "step": 308 + }, + { + "epoch": 0.94, + "learning_rate": 2.887370119786792e-07, + "loss": 0.0492, + "step": 309 + }, + { + "epoch": 0.94, + "learning_rate": 2.6528162343561593e-07, + "loss": 0.0132, + "step": 310 + }, + { + "epoch": 0.94, + "learning_rate": 2.4280692279122554e-07, + "loss": 0.0207, + "step": 311 + }, + { + "epoch": 0.95, + "learning_rate": 2.2131517417540937e-07, + "loss": 0.0301, + "step": 312 + }, + { + "epoch": 0.95, + "learning_rate": 2.00808542694233e-07, + "loss": 0.0294, + "step": 313 + }, + { + "epoch": 0.95, + "learning_rate": 1.8128909421180506e-07, + "loss": 0.0349, + "step": 314 + }, + { + "epoch": 0.95, + "learning_rate": 1.6275879514217052e-07, + "loss": 0.0405, + "step": 315 + }, + { + "epoch": 0.96, + "learning_rate": 1.4521951225120345e-07, + "loss": 0.0464, + "step": 316 + }, + { + "epoch": 0.96, + "learning_rate": 1.2867301246854757e-07, + "loss": 0.0258, + "step": 317 + }, + { + "epoch": 0.96, + "learning_rate": 1.1312096270961525e-07, + "loss": 0.0217, + "step": 318 + }, + { + "epoch": 0.97, + "learning_rate": 9.856492970766296e-08, + "loss": 0.0521, + "step": 319 + }, + { + "epoch": 0.97, + "learning_rate": 8.50063798559475e-08, + "loss": 0.074, + "step": 320 + }, + { + "epoch": 0.97, + "learning_rate": 7.244667906001202e-08, + "loss": 0.0091, + "step": 321 + }, + { + "epoch": 0.98, + "learning_rate": 6.088709260007153e-08, + "loss": 0.0584, + "step": 322 + }, + { + "epoch": 0.98, + "learning_rate": 5.032878500355498e-08, + "loss": 0.0114, + "step": 323 + }, + { + "epoch": 0.98, + "learning_rate": 4.07728199277857e-08, + "loss": 0.0528, + "step": 324 + }, + { + "epoch": 0.98, + "learning_rate": 3.2220160052828245e-08, + "loss": 0.0534, + "step": 325 + }, + { + "epoch": 0.99, + "learning_rate": 2.467166698450485e-08, + "loss": 0.0912, + "step": 326 + }, + { + "epoch": 0.99, + "learning_rate": 1.812810116760044e-08, + "loss": 0.0426, + "step": 327 + }, + { + "epoch": 0.99, + "learning_rate": 1.2590121809247235e-08, + "loss": 0.0501, + "step": 328 + }, + { + "epoch": 1.0, + "learning_rate": 8.05828681252452e-09, + "loss": 0.0135, + "step": 329 + }, + { + "epoch": 1.0, + "learning_rate": 4.5330527202480656e-09, + "loss": 0.0375, + "step": 330 + }, + { + "epoch": 1.0, + "step": 330, + "total_flos": 1006103224320.0, + "train_loss": 0.05386477595011732, + "train_runtime": 2481.834, + "train_samples_per_second": 2.652, + "train_steps_per_second": 0.133 + } + ], + "logging_steps": 1.0, + "max_steps": 330, + "num_input_tokens_seen": 0, + "num_train_epochs": 1, + "save_steps": 500, + "total_flos": 1006103224320.0, + "train_batch_size": 10, + "trial_name": null, + "trial_params": null +} diff --git a/CheckGuard Models/wholeimage/bank/finetune_lora_llava_mistral.sh b/CheckGuard Models/wholeimage/bank/finetune_lora_llava_mistral.sh new file mode 100644 index 0000000000000000000000000000000000000000..ffa07fd7fef618ad97569cade264920f2ef2acdb --- /dev/null +++ b/CheckGuard Models/wholeimage/bank/finetune_lora_llava_mistral.sh @@ -0,0 +1,43 @@ +#!/bin/bash +# Use first parameter as GPU IDs, default to "0,1,2,3" if not provided +GPU_IDS=${1:-0,1,2,3} + + +CUDA_VISIBLE_DEVICES=0,1,2,3 deepspeed --include localhost:"$GPU_IDS" --master_port 29601\ + llava/train/train_mem.py \ + --lora_enable True --lora_r 128 --lora_alpha 256 --mm_projector_lr 2e-5 \ + --deepspeed ./scripts/zero3.json \ + --model_name_or_path liuhaotian/llava-v1.6-mistral-7b \ + --version mistral_instruct \ + --data_path /home/larry5/project/LLaVA-1.6-ft/data/peft/bank/bank_dataset.json \ + --image_folder /home/larry5/project/LLaVA-1.6-ft/data/data/ \ + --vision_tower openai/clip-vit-large-patch14-336 \ + --mm_projector_type mlp2x_gelu \ + --mm_vision_select_layer -2 \ + --mm_use_im_start_end False \ + --mm_use_im_patch_token False \ + --mm_patch_merge_type spatial_unpad \ + --image_aspect_ratio anyres \ + --group_by_modality_length False \ + --bf16 False \ + --fp16 True \ + --output_dir /home/larry5/project/LLaVA-1.6-ft/scripts_peft/mistral/lora/llava-lora-mistral-r128a256/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model \ + --num_train_epochs 1 \ + --per_device_train_batch_size 10 \ + --per_device_eval_batch_size 1 \ + --gradient_accumulation_steps 1 \ + --evaluation_strategy "no" \ + --save_strategy "steps" \ + --save_steps 500 \ + --save_total_limit 5 \ + --learning_rate 2e-5 \ + --weight_decay 0. \ + --warmup_ratio 0.05 \ + --lr_scheduler_type "cosine" \ + --logging_steps 1 \ + --tf32 True \ + --model_max_length 4096 \ + --gradient_checkpointing True \ + --dataloader_num_workers 4 \ + --lazy_preprocess True \ + --report_to wandb \ \ No newline at end of file diff --git a/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/README.md b/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/README.md new file mode 100644 index 0000000000000000000000000000000000000000..bdb138eee6972419f6d60676388b52fd99ec478e --- /dev/null +++ b/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/README.md @@ -0,0 +1,202 @@ +--- +library_name: peft +base_model: liuhaotian/llava-v1.6-mistral-7b +--- + +# Model Card for Model ID + + + + + +## Model Details + +### Model Description + + + + + +- **Developed by:** [More Information Needed] +- **Funded by [optional]:** [More Information Needed] +- **Shared by [optional]:** [More Information Needed] +- **Model type:** [More Information Needed] +- **Language(s) (NLP):** [More Information Needed] +- **License:** [More Information Needed] +- **Finetuned from model [optional]:** [More Information Needed] + +### Model Sources [optional] + + + +- **Repository:** [More Information Needed] +- **Paper [optional]:** [More Information Needed] +- **Demo [optional]:** [More Information Needed] + +## Uses + + + +### Direct Use + + + +[More Information Needed] + +### Downstream Use [optional] + + + +[More Information Needed] + +### Out-of-Scope Use + + + +[More Information Needed] + +## Bias, Risks, and Limitations + + + +[More Information Needed] + +### Recommendations + + + +Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. + +## How to Get Started with the Model + +Use the code below to get started with the model. + +[More Information Needed] + +## Training Details + +### Training Data + + + +[More Information Needed] + +### Training Procedure + + + +#### Preprocessing [optional] + +[More Information Needed] + + +#### Training Hyperparameters + +- **Training regime:** [More Information Needed] + +#### Speeds, Sizes, Times [optional] + + + +[More Information Needed] + +## Evaluation + + + +### Testing Data, Factors & Metrics + +#### Testing Data + + + +[More Information Needed] + +#### Factors + + + +[More Information Needed] + +#### Metrics + + + +[More Information Needed] + +### Results + +[More Information Needed] + +#### Summary + + + +## Model Examination [optional] + + + +[More Information Needed] + +## Environmental Impact + + + +Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). + +- **Hardware Type:** [More Information Needed] +- **Hours used:** [More Information Needed] +- **Cloud Provider:** [More Information Needed] +- **Compute Region:** [More Information Needed] +- **Carbon Emitted:** [More Information Needed] + +## Technical Specifications [optional] + +### Model Architecture and Objective + +[More Information Needed] + +### Compute Infrastructure + +[More Information Needed] + +#### Hardware + +[More Information Needed] + +#### Software + +[More Information Needed] + +## Citation [optional] + + + +**BibTeX:** + +[More Information Needed] + +**APA:** + +[More Information Needed] + +## Glossary [optional] + + + +[More Information Needed] + +## More Information [optional] + +[More Information Needed] + +## Model Card Authors [optional] + +[More Information Needed] + +## Model Card Contact + +[More Information Needed] +### Framework versions + +- PEFT 0.10.0 \ No newline at end of file diff --git a/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/adapter_config.json b/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/adapter_config.json new file mode 100644 index 0000000000000000000000000000000000000000..163278563d73cc786fd882d1e16e8f934a09391a --- /dev/null +++ b/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/adapter_config.json @@ -0,0 +1,34 @@ +{ + "alpha_pattern": {}, + "auto_mapping": null, + "base_model_name_or_path": "liuhaotian/llava-v1.6-mistral-7b", + "bias": "none", + "fan_in_fan_out": false, + "inference_mode": true, + "init_lora_weights": true, + "layer_replication": null, + "layers_pattern": null, + "layers_to_transform": null, + "loftq_config": {}, + "lora_alpha": 256, + "lora_dropout": 0.05, + "megatron_config": null, + "megatron_core": "megatron.core", + "modules_to_save": null, + "peft_type": "LORA", + "r": 128, + "rank_pattern": {}, + "revision": null, + "target_modules": [ + "q_proj", + "v_proj", + "gate_proj", + "up_proj", + "o_proj", + "k_proj", + "down_proj" + ], + "task_type": "CAUSAL_LM", + "use_dora": false, + "use_rslora": false +} \ No newline at end of file diff --git a/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/adapter_model.safetensors b/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/adapter_model.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..a56d5fb1555a33cf575ad0f6981f99fb5236f94a --- /dev/null +++ b/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/adapter_model.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b234ad29295da4f261427006e770781d152d27e2bd090a65ac32cfb8472dd11b +size 708924928 diff --git a/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/README.md b/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/README.md new file mode 100644 index 0000000000000000000000000000000000000000..bdb138eee6972419f6d60676388b52fd99ec478e --- /dev/null +++ b/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/README.md @@ -0,0 +1,202 @@ +--- +library_name: peft +base_model: liuhaotian/llava-v1.6-mistral-7b +--- + +# Model Card for Model ID + + + + + +## Model Details + +### Model Description + + + + + +- **Developed by:** [More Information Needed] +- **Funded by [optional]:** [More Information Needed] +- **Shared by [optional]:** [More Information Needed] +- **Model type:** [More Information Needed] +- **Language(s) (NLP):** [More Information Needed] +- **License:** [More Information Needed] +- **Finetuned from model [optional]:** [More Information Needed] + +### Model Sources [optional] + + + +- **Repository:** [More Information Needed] +- **Paper [optional]:** [More Information Needed] +- **Demo [optional]:** [More Information Needed] + +## Uses + + + +### Direct Use + + + +[More Information Needed] + +### Downstream Use [optional] + + + +[More Information Needed] + +### Out-of-Scope Use + + + +[More Information Needed] + +## Bias, Risks, and Limitations + + + +[More Information Needed] + +### Recommendations + + + +Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. + +## How to Get Started with the Model + +Use the code below to get started with the model. + +[More Information Needed] + +## Training Details + +### Training Data + + + +[More Information Needed] + +### Training Procedure + + + +#### Preprocessing [optional] + +[More Information Needed] + + +#### Training Hyperparameters + +- **Training regime:** [More Information Needed] + +#### Speeds, Sizes, Times [optional] + + + +[More Information Needed] + +## Evaluation + + + +### Testing Data, Factors & Metrics + +#### Testing Data + + + +[More Information Needed] + +#### Factors + + + +[More Information Needed] + +#### Metrics + + + +[More Information Needed] + +### Results + +[More Information Needed] + +#### Summary + + + +## Model Examination [optional] + + + +[More Information Needed] + +## Environmental Impact + + + +Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). + +- **Hardware Type:** [More Information Needed] +- **Hours used:** [More Information Needed] +- **Cloud Provider:** [More Information Needed] +- **Compute Region:** [More Information Needed] +- **Carbon Emitted:** [More Information Needed] + +## Technical Specifications [optional] + +### Model Architecture and Objective + +[More Information Needed] + +### Compute Infrastructure + +[More Information Needed] + +#### Hardware + +[More Information Needed] + +#### Software + +[More Information Needed] + +## Citation [optional] + + + +**BibTeX:** + +[More Information Needed] + +**APA:** + +[More Information Needed] + +## Glossary [optional] + + + +[More Information Needed] + +## More Information [optional] + +[More Information Needed] + +## Model Card Authors [optional] + +[More Information Needed] + +## Model Card Contact + +[More Information Needed] +### Framework versions + +- PEFT 0.10.0 \ No newline at end of file diff --git a/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/adapter_config.json b/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/adapter_config.json new file mode 100644 index 0000000000000000000000000000000000000000..163278563d73cc786fd882d1e16e8f934a09391a --- /dev/null +++ b/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/adapter_config.json @@ -0,0 +1,34 @@ +{ + "alpha_pattern": {}, + "auto_mapping": null, + "base_model_name_or_path": "liuhaotian/llava-v1.6-mistral-7b", + "bias": "none", + "fan_in_fan_out": false, + "inference_mode": true, + "init_lora_weights": true, + "layer_replication": null, + "layers_pattern": null, + "layers_to_transform": null, + "loftq_config": {}, + "lora_alpha": 256, + "lora_dropout": 0.05, + "megatron_config": null, + "megatron_core": "megatron.core", + "modules_to_save": null, + "peft_type": "LORA", + "r": 128, + "rank_pattern": {}, + "revision": null, + "target_modules": [ + "q_proj", + "v_proj", + "gate_proj", + "up_proj", + "o_proj", + "k_proj", + "down_proj" + ], + "task_type": "CAUSAL_LM", + "use_dora": false, + "use_rslora": false +} \ No newline at end of file diff --git a/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/adapter_model.safetensors b/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/adapter_model.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..a34ad4e28b0ea0354fbb4cf07335028cbdf7f970 --- /dev/null +++ b/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/adapter_model.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c26e454370836d2d8ee1827620ba4d532f3b135ebd1e7fcbb0263a086f241253 +size 1417762896 diff --git a/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/global_step500/zero_pp_rank_0_mp_rank_00_model_states.pt b/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/global_step500/zero_pp_rank_0_mp_rank_00_model_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..2148fda79de7d1a6e7f0b5258183d9c00a5fddfc --- /dev/null +++ b/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/global_step500/zero_pp_rank_0_mp_rank_00_model_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c3183212032ce3f53bf011c0ea2d72e73d90e4ae83d758f3cb2661945c405d2e +size 632242 diff --git a/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/global_step500/zero_pp_rank_0_mp_rank_00_optim_states.pt b/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/global_step500/zero_pp_rank_0_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..317333c4d067d7497fbb235fb69d5ffa7996f1c2 --- /dev/null +++ b/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/global_step500/zero_pp_rank_0_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:59f2e280a5a1fb1c30380e867fb4625232d56bf1130fb2ac1bda1c76272752dd +size 4504787266 diff --git a/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/latest b/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/latest new file mode 100644 index 0000000000000000000000000000000000000000..f0b47ce15fff9a01b2a416a473b2148085048a50 --- /dev/null +++ b/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/latest @@ -0,0 +1 @@ +global_step500 \ No newline at end of file diff --git a/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/rng_state.pth b/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/rng_state.pth new file mode 100644 index 0000000000000000000000000000000000000000..b50886c52853405327456894d56d2e49c5f3431b --- /dev/null +++ b/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/rng_state.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:42d7cdbb5673ea29475539a9e027f8b9828b8bdf3f8f5a3383b13244fc3604a3 +size 14244 diff --git a/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/scheduler.pt b/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/scheduler.pt new file mode 100644 index 0000000000000000000000000000000000000000..7f5d0e70c3dac2a7b8b5c10da62710a65f9f5497 --- /dev/null +++ b/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/scheduler.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:74f73b67322f406ba2e53b1ed170e4b3c50a5de49d1b4aa38bda0b32a3724ada +size 1064 diff --git a/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/special_tokens_map.json b/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/special_tokens_map.json new file mode 100644 index 0000000000000000000000000000000000000000..14761dcf1466dc232bd41de9c21d4c617b15755e --- /dev/null +++ b/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/special_tokens_map.json @@ -0,0 +1,24 @@ +{ + "bos_token": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "eos_token": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "pad_token": "", + "unk_token": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + } +} diff --git a/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/tokenizer.model b/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/tokenizer.model new file mode 100644 index 0000000000000000000000000000000000000000..8b443ef19c2a19acc3ac64fb9c3db4a72921dff6 --- /dev/null +++ b/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/tokenizer.model @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055 +size 493443 diff --git a/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/tokenizer_config.json b/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/tokenizer_config.json new file mode 100644 index 0000000000000000000000000000000000000000..d0ea5c3458cd84f0062b47fa0476bb328b3e208a --- /dev/null +++ b/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/tokenizer_config.json @@ -0,0 +1,44 @@ +{ + "add_bos_token": true, + "add_eos_token": false, + "added_tokens_decoder": { + "0": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "1": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "2": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + } + }, + "additional_special_tokens": [], + "bos_token": "", + "chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}", + "clean_up_tokenization_spaces": false, + "eos_token": "", + "legacy": true, + "model_max_length": 4096, + "pad_token": "", + "padding_side": "right", + "sp_model_kwargs": {}, + "spaces_between_special_tokens": false, + "tokenizer_class": "LlamaTokenizer", + "unk_token": "", + "use_default_system_prompt": false +} diff --git a/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/trainer_state.json b/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/trainer_state.json new file mode 100644 index 0000000000000000000000000000000000000000..c5d268d55767a419e925adace6ec7313aad46dab --- /dev/null +++ b/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/trainer_state.json @@ -0,0 +1,3021 @@ +{ + "best_metric": null, + "best_model_checkpoint": null, + "epoch": 0.9009009009009009, + "eval_steps": 500, + "global_step": 500, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "epoch": 0.0, + "learning_rate": 7.142857142857143e-07, + "loss": 0.4237, + "step": 1 + }, + { + "epoch": 0.0, + "learning_rate": 1.4285714285714286e-06, + "loss": 0.3368, + "step": 2 + }, + { + "epoch": 0.01, + "learning_rate": 2.1428571428571427e-06, + "loss": 0.214, + "step": 3 + }, + { + "epoch": 0.01, + "learning_rate": 2.8571428571428573e-06, + "loss": 0.396, + "step": 4 + }, + { + "epoch": 0.01, + "learning_rate": 3.5714285714285718e-06, + "loss": 0.305, + "step": 5 + }, + { + "epoch": 0.01, + "learning_rate": 4.2857142857142855e-06, + "loss": 0.4049, + "step": 6 + }, + { + "epoch": 0.01, + "learning_rate": 5e-06, + "loss": 0.108, + "step": 7 + }, + { + "epoch": 0.01, + "learning_rate": 5.7142857142857145e-06, + "loss": 0.2286, + "step": 8 + }, + { + "epoch": 0.02, + "learning_rate": 6.4285714285714295e-06, + "loss": 0.1443, + "step": 9 + }, + { + "epoch": 0.02, + "learning_rate": 7.1428571428571436e-06, + "loss": 0.2252, + "step": 10 + }, + { + "epoch": 0.02, + "learning_rate": 7.857142857142858e-06, + "loss": 0.0747, + "step": 11 + }, + { + "epoch": 0.02, + "learning_rate": 8.571428571428571e-06, + "loss": 0.1084, + "step": 12 + }, + { + "epoch": 0.02, + "learning_rate": 9.285714285714288e-06, + "loss": 0.2115, + "step": 13 + }, + { + "epoch": 0.03, + "learning_rate": 1e-05, + "loss": 0.4742, + "step": 14 + }, + { + "epoch": 0.03, + "learning_rate": 1.0714285714285714e-05, + "loss": 0.083, + "step": 15 + }, + { + "epoch": 0.03, + "learning_rate": 1.1428571428571429e-05, + "loss": 0.3392, + "step": 16 + }, + { + "epoch": 0.03, + "learning_rate": 1.2142857142857142e-05, + "loss": 0.065, + "step": 17 + }, + { + "epoch": 0.03, + "learning_rate": 1.2857142857142859e-05, + "loss": 0.1711, + "step": 18 + }, + { + "epoch": 0.03, + "learning_rate": 1.3571428571428574e-05, + "loss": 0.0539, + "step": 19 + }, + { + "epoch": 0.04, + "learning_rate": 1.4285714285714287e-05, + "loss": 0.0701, + "step": 20 + }, + { + "epoch": 0.04, + "learning_rate": 1.5000000000000002e-05, + "loss": 0.0836, + "step": 21 + }, + { + "epoch": 0.04, + "learning_rate": 1.5714285714285715e-05, + "loss": 0.1891, + "step": 22 + }, + { + "epoch": 0.04, + "learning_rate": 1.642857142857143e-05, + "loss": 0.0422, + "step": 23 + }, + { + "epoch": 0.04, + "learning_rate": 1.7142857142857142e-05, + "loss": 0.2094, + "step": 24 + }, + { + "epoch": 0.05, + "learning_rate": 1.785714285714286e-05, + "loss": 0.139, + "step": 25 + }, + { + "epoch": 0.05, + "learning_rate": 1.8571428571428575e-05, + "loss": 0.2214, + "step": 26 + }, + { + "epoch": 0.05, + "learning_rate": 1.928571428571429e-05, + "loss": 0.1084, + "step": 27 + }, + { + "epoch": 0.05, + "learning_rate": 2e-05, + "loss": 0.0898, + "step": 28 + }, + { + "epoch": 0.05, + "learning_rate": 1.9999822316445652e-05, + "loss": 0.0359, + "step": 29 + }, + { + "epoch": 0.05, + "learning_rate": 1.9999289272096886e-05, + "loss": 0.2648, + "step": 30 + }, + { + "epoch": 0.06, + "learning_rate": 1.9998400885896355e-05, + "loss": 0.4007, + "step": 31 + }, + { + "epoch": 0.06, + "learning_rate": 1.9997157189414373e-05, + "loss": 0.235, + "step": 32 + }, + { + "epoch": 0.06, + "learning_rate": 1.999555822684783e-05, + "loss": 0.0273, + "step": 33 + }, + { + "epoch": 0.06, + "learning_rate": 1.999360405501859e-05, + "loss": 0.0267, + "step": 34 + }, + { + "epoch": 0.06, + "learning_rate": 1.99912947433715e-05, + "loss": 0.2619, + "step": 35 + }, + { + "epoch": 0.06, + "learning_rate": 1.9988630373971896e-05, + "loss": 0.4101, + "step": 36 + }, + { + "epoch": 0.07, + "learning_rate": 1.9985611041502704e-05, + "loss": 0.1302, + "step": 37 + }, + { + "epoch": 0.07, + "learning_rate": 1.9982236853261067e-05, + "loss": 0.118, + "step": 38 + }, + { + "epoch": 0.07, + "learning_rate": 1.9978507929154534e-05, + "loss": 0.0933, + "step": 39 + }, + { + "epoch": 0.07, + "learning_rate": 1.997442440169681e-05, + "loss": 0.0104, + "step": 40 + }, + { + "epoch": 0.07, + "learning_rate": 1.9969986416003026e-05, + "loss": 0.1061, + "step": 41 + }, + { + "epoch": 0.08, + "learning_rate": 1.9965194129784597e-05, + "loss": 0.1575, + "step": 42 + }, + { + "epoch": 0.08, + "learning_rate": 1.996004771334361e-05, + "loss": 0.1969, + "step": 43 + }, + { + "epoch": 0.08, + "learning_rate": 1.996004771334361e-05, + "loss": 0.0492, + "step": 44 + }, + { + "epoch": 0.08, + "learning_rate": 1.9954547349566783e-05, + "loss": 0.3012, + "step": 45 + }, + { + "epoch": 0.08, + "learning_rate": 1.994869323391895e-05, + "loss": 0.2185, + "step": 46 + }, + { + "epoch": 0.08, + "learning_rate": 1.994248557443613e-05, + "loss": 0.1729, + "step": 47 + }, + { + "epoch": 0.09, + "learning_rate": 1.993592459171812e-05, + "loss": 0.0354, + "step": 48 + }, + { + "epoch": 0.09, + "learning_rate": 1.9929010518920667e-05, + "loss": 0.3939, + "step": 49 + }, + { + "epoch": 0.09, + "learning_rate": 1.992174360174717e-05, + "loss": 0.0505, + "step": 50 + }, + { + "epoch": 0.09, + "learning_rate": 1.9914124098439976e-05, + "loss": 0.0777, + "step": 51 + }, + { + "epoch": 0.09, + "learning_rate": 1.9914124098439976e-05, + "loss": 0.6651, + "step": 52 + }, + { + "epoch": 0.1, + "learning_rate": 1.9906152279771162e-05, + "loss": 0.15, + "step": 53 + }, + { + "epoch": 0.1, + "learning_rate": 1.9897828429032946e-05, + "loss": 0.1416, + "step": 54 + }, + { + "epoch": 0.1, + "learning_rate": 1.9889152842027607e-05, + "loss": 0.1195, + "step": 55 + }, + { + "epoch": 0.1, + "learning_rate": 1.9880125827056967e-05, + "loss": 0.0787, + "step": 56 + }, + { + "epoch": 0.1, + "learning_rate": 1.987074770491145e-05, + "loss": 0.0681, + "step": 57 + }, + { + "epoch": 0.1, + "learning_rate": 1.986101880885867e-05, + "loss": 0.1337, + "step": 58 + }, + { + "epoch": 0.11, + "learning_rate": 1.9850939484631598e-05, + "loss": 0.0961, + "step": 59 + }, + { + "epoch": 0.11, + "learning_rate": 1.984051009041626e-05, + "loss": 0.116, + "step": 60 + }, + { + "epoch": 0.11, + "learning_rate": 1.982973099683902e-05, + "loss": 0.3853, + "step": 61 + }, + { + "epoch": 0.11, + "learning_rate": 1.9818602586953414e-05, + "loss": 0.0875, + "step": 62 + }, + { + "epoch": 0.11, + "learning_rate": 1.9807125256226532e-05, + "loss": 0.3216, + "step": 63 + }, + { + "epoch": 0.12, + "learning_rate": 1.9795299412524948e-05, + "loss": 0.0752, + "step": 64 + }, + { + "epoch": 0.12, + "learning_rate": 1.9783125476100254e-05, + "loss": 0.1461, + "step": 65 + }, + { + "epoch": 0.12, + "learning_rate": 1.9770603879574108e-05, + "loss": 0.075, + "step": 66 + }, + { + "epoch": 0.12, + "learning_rate": 1.975773506792287e-05, + "loss": 0.0685, + "step": 67 + }, + { + "epoch": 0.12, + "learning_rate": 1.974451949846177e-05, + "loss": 0.0555, + "step": 68 + }, + { + "epoch": 0.12, + "learning_rate": 1.973095764082869e-05, + "loss": 0.0171, + "step": 69 + }, + { + "epoch": 0.13, + "learning_rate": 1.9717049976967437e-05, + "loss": 0.0247, + "step": 70 + }, + { + "epoch": 0.13, + "learning_rate": 1.9702797001110642e-05, + "loss": 0.0839, + "step": 71 + }, + { + "epoch": 0.13, + "learning_rate": 1.9688199219762183e-05, + "loss": 0.4163, + "step": 72 + }, + { + "epoch": 0.13, + "learning_rate": 1.96732571516792e-05, + "loss": 0.1461, + "step": 73 + }, + { + "epoch": 0.13, + "learning_rate": 1.9657971327853644e-05, + "loss": 0.1457, + "step": 74 + }, + { + "epoch": 0.14, + "learning_rate": 1.964234229149342e-05, + "loss": 0.0482, + "step": 75 + }, + { + "epoch": 0.14, + "learning_rate": 1.962637059800307e-05, + "loss": 0.0802, + "step": 76 + }, + { + "epoch": 0.14, + "learning_rate": 1.9610056814964053e-05, + "loss": 0.0697, + "step": 77 + }, + { + "epoch": 0.14, + "learning_rate": 1.959340152211455e-05, + "loss": 0.0614, + "step": 78 + }, + { + "epoch": 0.14, + "learning_rate": 1.95764053113289e-05, + "loss": 0.1004, + "step": 79 + }, + { + "epoch": 0.14, + "learning_rate": 1.9559068786596526e-05, + "loss": 0.0286, + "step": 80 + }, + { + "epoch": 0.15, + "learning_rate": 1.954139256400049e-05, + "loss": 0.1162, + "step": 81 + }, + { + "epoch": 0.15, + "learning_rate": 1.952337727169561e-05, + "loss": 0.0731, + "step": 82 + }, + { + "epoch": 0.15, + "learning_rate": 1.950502354988612e-05, + "loss": 0.0286, + "step": 83 + }, + { + "epoch": 0.15, + "learning_rate": 1.948633205080292e-05, + "loss": 0.2425, + "step": 84 + }, + { + "epoch": 0.15, + "learning_rate": 1.9467303438680414e-05, + "loss": 0.0505, + "step": 85 + }, + { + "epoch": 0.15, + "learning_rate": 1.944793838973289e-05, + "loss": 0.0922, + "step": 86 + }, + { + "epoch": 0.16, + "learning_rate": 1.9428237592130487e-05, + "loss": 0.2949, + "step": 87 + }, + { + "epoch": 0.16, + "learning_rate": 1.940820174597476e-05, + "loss": 0.2807, + "step": 88 + }, + { + "epoch": 0.16, + "learning_rate": 1.9387831563273775e-05, + "loss": 0.2377, + "step": 89 + }, + { + "epoch": 0.16, + "learning_rate": 1.9367127767916828e-05, + "loss": 0.2558, + "step": 90 + }, + { + "epoch": 0.16, + "learning_rate": 1.9346091095648712e-05, + "loss": 0.0871, + "step": 91 + }, + { + "epoch": 0.17, + "learning_rate": 1.932472229404356e-05, + "loss": 0.2204, + "step": 92 + }, + { + "epoch": 0.17, + "learning_rate": 1.9303022122478303e-05, + "loss": 0.1174, + "step": 93 + }, + { + "epoch": 0.17, + "learning_rate": 1.9280991352105656e-05, + "loss": 0.2181, + "step": 94 + }, + { + "epoch": 0.17, + "learning_rate": 1.925863076582674e-05, + "loss": 0.1251, + "step": 95 + }, + { + "epoch": 0.17, + "learning_rate": 1.9235941158263253e-05, + "loss": 0.2251, + "step": 96 + }, + { + "epoch": 0.17, + "learning_rate": 1.9212923335729206e-05, + "loss": 0.1236, + "step": 97 + }, + { + "epoch": 0.18, + "learning_rate": 1.918957811620231e-05, + "loss": 0.0901, + "step": 98 + }, + { + "epoch": 0.18, + "learning_rate": 1.9165906329294875e-05, + "loss": 0.1002, + "step": 99 + }, + { + "epoch": 0.18, + "learning_rate": 1.9141908816224356e-05, + "loss": 0.4397, + "step": 100 + }, + { + "epoch": 0.18, + "learning_rate": 1.9117586429783433e-05, + "loss": 0.1141, + "step": 101 + }, + { + "epoch": 0.18, + "learning_rate": 1.909294003430972e-05, + "loss": 0.1842, + "step": 102 + }, + { + "epoch": 0.19, + "learning_rate": 1.906797050565505e-05, + "loss": 0.0985, + "step": 103 + }, + { + "epoch": 0.19, + "learning_rate": 1.9042678731154337e-05, + "loss": 0.1533, + "step": 104 + }, + { + "epoch": 0.19, + "learning_rate": 1.901706560959407e-05, + "loss": 0.145, + "step": 105 + }, + { + "epoch": 0.19, + "learning_rate": 1.8991132051180332e-05, + "loss": 0.1693, + "step": 106 + }, + { + "epoch": 0.19, + "learning_rate": 1.8964878977506496e-05, + "loss": 0.2012, + "step": 107 + }, + { + "epoch": 0.19, + "learning_rate": 1.8938307321520453e-05, + "loss": 0.1286, + "step": 108 + }, + { + "epoch": 0.2, + "learning_rate": 1.8911418027491453e-05, + "loss": 0.1396, + "step": 109 + }, + { + "epoch": 0.2, + "learning_rate": 1.8884212050976568e-05, + "loss": 0.0291, + "step": 110 + }, + { + "epoch": 0.2, + "learning_rate": 1.885669035878672e-05, + "loss": 0.0317, + "step": 111 + }, + { + "epoch": 0.2, + "learning_rate": 1.882885392895232e-05, + "loss": 0.1143, + "step": 112 + }, + { + "epoch": 0.2, + "learning_rate": 1.8800703750688536e-05, + "loss": 0.126, + "step": 113 + }, + { + "epoch": 0.21, + "learning_rate": 1.877224082436011e-05, + "loss": 0.2017, + "step": 114 + }, + { + "epoch": 0.21, + "learning_rate": 1.8743466161445823e-05, + "loss": 0.0735, + "step": 115 + }, + { + "epoch": 0.21, + "learning_rate": 1.8714380784502553e-05, + "loss": 0.0527, + "step": 116 + }, + { + "epoch": 0.21, + "learning_rate": 1.8684985727128936e-05, + "loss": 0.1112, + "step": 117 + }, + { + "epoch": 0.21, + "learning_rate": 1.8655282033928618e-05, + "loss": 0.3129, + "step": 118 + }, + { + "epoch": 0.21, + "learning_rate": 1.8625270760473164e-05, + "loss": 0.2827, + "step": 119 + }, + { + "epoch": 0.22, + "learning_rate": 1.8594952973264512e-05, + "loss": 0.5608, + "step": 120 + }, + { + "epoch": 0.22, + "learning_rate": 1.856432974969711e-05, + "loss": 0.1465, + "step": 121 + }, + { + "epoch": 0.22, + "learning_rate": 1.8533402178019596e-05, + "loss": 0.1322, + "step": 122 + }, + { + "epoch": 0.22, + "learning_rate": 1.8502171357296144e-05, + "loss": 0.0912, + "step": 123 + }, + { + "epoch": 0.22, + "learning_rate": 1.8470638397367397e-05, + "loss": 0.0419, + "step": 124 + }, + { + "epoch": 0.23, + "learning_rate": 1.8438804418811038e-05, + "loss": 0.0369, + "step": 125 + }, + { + "epoch": 0.23, + "learning_rate": 1.8406670552901958e-05, + "loss": 0.0529, + "step": 126 + }, + { + "epoch": 0.23, + "learning_rate": 1.837423794157206e-05, + "loss": 0.1472, + "step": 127 + }, + { + "epoch": 0.23, + "learning_rate": 1.834150773736967e-05, + "loss": 0.0425, + "step": 128 + }, + { + "epoch": 0.23, + "learning_rate": 1.8308481103418597e-05, + "loss": 0.1634, + "step": 129 + }, + { + "epoch": 0.23, + "learning_rate": 1.8275159213376783e-05, + "loss": 0.0485, + "step": 130 + }, + { + "epoch": 0.24, + "learning_rate": 1.82415432513946e-05, + "loss": 0.0313, + "step": 131 + }, + { + "epoch": 0.24, + "learning_rate": 1.8207634412072765e-05, + "loss": 0.1792, + "step": 132 + }, + { + "epoch": 0.24, + "learning_rate": 1.81734339004199e-05, + "loss": 0.1184, + "step": 133 + }, + { + "epoch": 0.24, + "learning_rate": 1.8138942931809702e-05, + "loss": 0.2756, + "step": 134 + }, + { + "epoch": 0.24, + "learning_rate": 1.8104162731937746e-05, + "loss": 0.0635, + "step": 135 + }, + { + "epoch": 0.25, + "learning_rate": 1.8069094536777938e-05, + "loss": 0.0158, + "step": 136 + }, + { + "epoch": 0.25, + "learning_rate": 1.8033739592538598e-05, + "loss": 0.2732, + "step": 137 + }, + { + "epoch": 0.25, + "learning_rate": 1.7998099155618147e-05, + "loss": 0.1428, + "step": 138 + }, + { + "epoch": 0.25, + "learning_rate": 1.7962174492560492e-05, + "loss": 0.0777, + "step": 139 + }, + { + "epoch": 0.25, + "learning_rate": 1.7925966880009998e-05, + "loss": 0.1644, + "step": 140 + }, + { + "epoch": 0.25, + "learning_rate": 1.7889477604666124e-05, + "loss": 0.0999, + "step": 141 + }, + { + "epoch": 0.26, + "learning_rate": 1.785270796323769e-05, + "loss": 0.0446, + "step": 142 + }, + { + "epoch": 0.26, + "learning_rate": 1.7815659262396825e-05, + "loss": 0.0647, + "step": 143 + }, + { + "epoch": 0.26, + "learning_rate": 1.7778332818732492e-05, + "loss": 0.0521, + "step": 144 + }, + { + "epoch": 0.26, + "learning_rate": 1.7740729958703725e-05, + "loss": 0.2041, + "step": 145 + }, + { + "epoch": 0.26, + "learning_rate": 1.7702852018592493e-05, + "loss": 0.0149, + "step": 146 + }, + { + "epoch": 0.26, + "learning_rate": 1.7664700344456198e-05, + "loss": 0.0502, + "step": 147 + }, + { + "epoch": 0.27, + "learning_rate": 1.762627629207986e-05, + "loss": 0.2027, + "step": 148 + }, + { + "epoch": 0.27, + "learning_rate": 1.758758122692791e-05, + "loss": 0.0187, + "step": 149 + }, + { + "epoch": 0.27, + "learning_rate": 1.7548616524095697e-05, + "loss": 0.1248, + "step": 150 + }, + { + "epoch": 0.27, + "learning_rate": 1.7509383568260597e-05, + "loss": 0.0859, + "step": 151 + }, + { + "epoch": 0.27, + "learning_rate": 1.7469883753632817e-05, + "loss": 0.0822, + "step": 152 + }, + { + "epoch": 0.28, + "learning_rate": 1.743011848390585e-05, + "loss": 0.2445, + "step": 153 + }, + { + "epoch": 0.28, + "learning_rate": 1.7390089172206594e-05, + "loss": 0.2662, + "step": 154 + }, + { + "epoch": 0.28, + "learning_rate": 1.7349797241045115e-05, + "loss": 0.0984, + "step": 155 + }, + { + "epoch": 0.28, + "learning_rate": 1.730924412226413e-05, + "loss": 0.0317, + "step": 156 + }, + { + "epoch": 0.28, + "learning_rate": 1.726843125698809e-05, + "loss": 0.1129, + "step": 157 + }, + { + "epoch": 0.28, + "learning_rate": 1.7227360095571992e-05, + "loss": 0.1882, + "step": 158 + }, + { + "epoch": 0.29, + "learning_rate": 1.7186032097549822e-05, + "loss": 0.1099, + "step": 159 + }, + { + "epoch": 0.29, + "learning_rate": 1.7144448731582698e-05, + "loss": 0.3506, + "step": 160 + }, + { + "epoch": 0.29, + "learning_rate": 1.7102611475406676e-05, + "loss": 0.0936, + "step": 161 + }, + { + "epoch": 0.29, + "learning_rate": 1.7060521815780225e-05, + "loss": 0.104, + "step": 162 + }, + { + "epoch": 0.29, + "learning_rate": 1.7018181248431416e-05, + "loss": 0.168, + "step": 163 + }, + { + "epoch": 0.3, + "learning_rate": 1.6975591278004747e-05, + "loss": 0.2726, + "step": 164 + }, + { + "epoch": 0.3, + "learning_rate": 1.6932753418007683e-05, + "loss": 0.0564, + "step": 165 + }, + { + "epoch": 0.3, + "learning_rate": 1.688966919075687e-05, + "loss": 0.2981, + "step": 166 + }, + { + "epoch": 0.3, + "learning_rate": 1.684634012732403e-05, + "loss": 0.0602, + "step": 167 + }, + { + "epoch": 0.3, + "learning_rate": 1.680276776748157e-05, + "loss": 0.0364, + "step": 168 + }, + { + "epoch": 0.3, + "learning_rate": 1.6758953659647838e-05, + "loss": 0.096, + "step": 169 + }, + { + "epoch": 0.31, + "learning_rate": 1.6714899360832118e-05, + "loss": 0.2139, + "step": 170 + }, + { + "epoch": 0.31, + "learning_rate": 1.667060643657929e-05, + "loss": 0.1666, + "step": 171 + }, + { + "epoch": 0.31, + "learning_rate": 1.66260764609142e-05, + "loss": 0.0486, + "step": 172 + }, + { + "epoch": 0.31, + "learning_rate": 1.658131101628571e-05, + "loss": 0.055, + "step": 173 + }, + { + "epoch": 0.31, + "learning_rate": 1.653631169351049e-05, + "loss": 0.0953, + "step": 174 + }, + { + "epoch": 0.32, + "learning_rate": 1.6491080091716457e-05, + "loss": 0.1824, + "step": 175 + }, + { + "epoch": 0.32, + "learning_rate": 1.6445617818285974e-05, + "loss": 0.0226, + "step": 176 + }, + { + "epoch": 0.32, + "learning_rate": 1.6399926488798702e-05, + "loss": 0.0388, + "step": 177 + }, + { + "epoch": 0.32, + "learning_rate": 1.6354007726974205e-05, + "loss": 0.1149, + "step": 178 + }, + { + "epoch": 0.32, + "learning_rate": 1.630786316461425e-05, + "loss": 0.1428, + "step": 179 + }, + { + "epoch": 0.32, + "learning_rate": 1.6261494441544805e-05, + "loss": 0.0445, + "step": 180 + }, + { + "epoch": 0.33, + "learning_rate": 1.6214903205557774e-05, + "loss": 0.0612, + "step": 181 + }, + { + "epoch": 0.33, + "learning_rate": 1.6168091112352443e-05, + "loss": 0.0826, + "step": 182 + }, + { + "epoch": 0.33, + "learning_rate": 1.612105982547663e-05, + "loss": 0.0376, + "step": 183 + }, + { + "epoch": 0.33, + "learning_rate": 1.607381101626758e-05, + "loss": 0.1441, + "step": 184 + }, + { + "epoch": 0.33, + "learning_rate": 1.6026346363792565e-05, + "loss": 0.1089, + "step": 185 + }, + { + "epoch": 0.34, + "learning_rate": 1.5978667554789216e-05, + "loss": 0.0845, + "step": 186 + }, + { + "epoch": 0.34, + "learning_rate": 1.5930776283605585e-05, + "loss": 0.0835, + "step": 187 + }, + { + "epoch": 0.34, + "learning_rate": 1.5882674252139928e-05, + "loss": 0.0762, + "step": 188 + }, + { + "epoch": 0.34, + "learning_rate": 1.5834363169780227e-05, + "loss": 0.067, + "step": 189 + }, + { + "epoch": 0.34, + "learning_rate": 1.578584475334345e-05, + "loss": 0.0327, + "step": 190 + }, + { + "epoch": 0.34, + "learning_rate": 1.5737120727014535e-05, + "loss": 0.0254, + "step": 191 + }, + { + "epoch": 0.35, + "learning_rate": 1.5688192822285116e-05, + "loss": 0.028, + "step": 192 + }, + { + "epoch": 0.35, + "learning_rate": 1.5639062777892e-05, + "loss": 0.1708, + "step": 193 + }, + { + "epoch": 0.35, + "learning_rate": 1.5589732339755362e-05, + "loss": 0.0542, + "step": 194 + }, + { + "epoch": 0.35, + "learning_rate": 1.5540203260916728e-05, + "loss": 0.2358, + "step": 195 + }, + { + "epoch": 0.35, + "learning_rate": 1.5490477301476648e-05, + "loss": 0.1471, + "step": 196 + }, + { + "epoch": 0.35, + "learning_rate": 1.5440556228532168e-05, + "loss": 0.0414, + "step": 197 + }, + { + "epoch": 0.36, + "learning_rate": 1.5390441816114022e-05, + "loss": 0.0754, + "step": 198 + }, + { + "epoch": 0.36, + "learning_rate": 1.534013584512359e-05, + "loss": 0.105, + "step": 199 + }, + { + "epoch": 0.36, + "learning_rate": 1.5289640103269626e-05, + "loss": 0.2052, + "step": 200 + }, + { + "epoch": 0.36, + "learning_rate": 1.5238956385004703e-05, + "loss": 0.2482, + "step": 201 + }, + { + "epoch": 0.36, + "learning_rate": 1.5188086491461467e-05, + "loss": 0.0967, + "step": 202 + }, + { + "epoch": 0.37, + "learning_rate": 1.5137032230388613e-05, + "loss": 0.1314, + "step": 203 + }, + { + "epoch": 0.37, + "learning_rate": 1.5085795416086655e-05, + "loss": 0.2313, + "step": 204 + }, + { + "epoch": 0.37, + "learning_rate": 1.5034377869343453e-05, + "loss": 0.1304, + "step": 205 + }, + { + "epoch": 0.37, + "learning_rate": 1.4982781417369496e-05, + "loss": 0.2304, + "step": 206 + }, + { + "epoch": 0.37, + "learning_rate": 1.4931007893732981e-05, + "loss": 0.0508, + "step": 207 + }, + { + "epoch": 0.37, + "learning_rate": 1.4879059138294647e-05, + "loss": 0.1389, + "step": 208 + }, + { + "epoch": 0.38, + "learning_rate": 1.4826936997142399e-05, + "loss": 0.2129, + "step": 209 + }, + { + "epoch": 0.38, + "learning_rate": 1.4774643322525691e-05, + "loss": 0.0201, + "step": 210 + }, + { + "epoch": 0.38, + "learning_rate": 1.4722179972789725e-05, + "loss": 0.1064, + "step": 211 + }, + { + "epoch": 0.38, + "learning_rate": 1.466954881230939e-05, + "loss": 0.0459, + "step": 212 + }, + { + "epoch": 0.38, + "learning_rate": 1.4616751711423016e-05, + "loss": 0.2229, + "step": 213 + }, + { + "epoch": 0.39, + "learning_rate": 1.4563790546365914e-05, + "loss": 0.1464, + "step": 214 + }, + { + "epoch": 0.39, + "learning_rate": 1.4510667199203697e-05, + "loss": 0.0558, + "step": 215 + }, + { + "epoch": 0.39, + "learning_rate": 1.4457383557765385e-05, + "loss": 0.0214, + "step": 216 + }, + { + "epoch": 0.39, + "learning_rate": 1.4403941515576344e-05, + "loss": 0.1551, + "step": 217 + }, + { + "epoch": 0.39, + "learning_rate": 1.4350342971790979e-05, + "loss": 0.2093, + "step": 218 + }, + { + "epoch": 0.39, + "learning_rate": 1.4296589831125234e-05, + "loss": 0.0453, + "step": 219 + }, + { + "epoch": 0.4, + "learning_rate": 1.4242684003788934e-05, + "loss": 0.0317, + "step": 220 + }, + { + "epoch": 0.4, + "learning_rate": 1.418862740541788e-05, + "loss": 0.1334, + "step": 221 + }, + { + "epoch": 0.4, + "learning_rate": 1.4134421957005775e-05, + "loss": 0.0185, + "step": 222 + }, + { + "epoch": 0.4, + "learning_rate": 1.4080069584835971e-05, + "loss": 0.087, + "step": 223 + }, + { + "epoch": 0.4, + "learning_rate": 1.4025572220412998e-05, + "loss": 0.1747, + "step": 224 + }, + { + "epoch": 0.41, + "learning_rate": 1.3970931800393943e-05, + "loss": 0.1168, + "step": 225 + }, + { + "epoch": 0.41, + "learning_rate": 1.391615026651961e-05, + "loss": 0.5095, + "step": 226 + }, + { + "epoch": 0.41, + "learning_rate": 1.3861229565545532e-05, + "loss": 0.1157, + "step": 227 + }, + { + "epoch": 0.41, + "learning_rate": 1.3806171649172782e-05, + "loss": 0.1201, + "step": 228 + }, + { + "epoch": 0.41, + "learning_rate": 1.3750978473978611e-05, + "loss": 0.2232, + "step": 229 + }, + { + "epoch": 0.41, + "learning_rate": 1.3695652001346928e-05, + "loss": 0.1718, + "step": 230 + }, + { + "epoch": 0.42, + "learning_rate": 1.36401941973986e-05, + "loss": 0.0509, + "step": 231 + }, + { + "epoch": 0.42, + "learning_rate": 1.3584607032921566e-05, + "loss": 0.0333, + "step": 232 + }, + { + "epoch": 0.42, + "learning_rate": 1.3528892483300821e-05, + "loss": 0.1811, + "step": 233 + }, + { + "epoch": 0.42, + "learning_rate": 1.3473052528448203e-05, + "loss": 0.1771, + "step": 234 + }, + { + "epoch": 0.42, + "learning_rate": 1.3417089152732049e-05, + "loss": 0.1098, + "step": 235 + }, + { + "epoch": 0.43, + "learning_rate": 1.3361004344906652e-05, + "loss": 0.0566, + "step": 236 + }, + { + "epoch": 0.43, + "learning_rate": 1.330480009804162e-05, + "loss": 0.2864, + "step": 237 + }, + { + "epoch": 0.43, + "learning_rate": 1.3248478409451017e-05, + "loss": 0.0166, + "step": 238 + }, + { + "epoch": 0.43, + "learning_rate": 1.3192041280622409e-05, + "loss": 0.2239, + "step": 239 + }, + { + "epoch": 0.43, + "learning_rate": 1.3135490717145726e-05, + "loss": 0.2247, + "step": 240 + }, + { + "epoch": 0.43, + "learning_rate": 1.3078828728641994e-05, + "loss": 0.1758, + "step": 241 + }, + { + "epoch": 0.44, + "learning_rate": 1.3022057328691915e-05, + "loss": 0.0618, + "step": 242 + }, + { + "epoch": 0.44, + "learning_rate": 1.2965178534764311e-05, + "loss": 0.1204, + "step": 243 + }, + { + "epoch": 0.44, + "learning_rate": 1.2908194368144437e-05, + "loss": 0.0233, + "step": 244 + }, + { + "epoch": 0.44, + "learning_rate": 1.285110685386215e-05, + "loss": 0.0387, + "step": 245 + }, + { + "epoch": 0.44, + "learning_rate": 1.2793918020619937e-05, + "loss": 0.0791, + "step": 246 + }, + { + "epoch": 0.45, + "learning_rate": 1.2736629900720832e-05, + "loss": 0.0106, + "step": 247 + }, + { + "epoch": 0.45, + "learning_rate": 1.2679244529996182e-05, + "loss": 0.042, + "step": 248 + }, + { + "epoch": 0.45, + "learning_rate": 1.262176394773332e-05, + "loss": 0.0725, + "step": 249 + }, + { + "epoch": 0.45, + "learning_rate": 1.256419019660308e-05, + "loss": 0.0834, + "step": 250 + }, + { + "epoch": 0.45, + "learning_rate": 1.2506525322587207e-05, + "loss": 0.0432, + "step": 251 + }, + { + "epoch": 0.45, + "learning_rate": 1.2448771374905655e-05, + "loss": 0.177, + "step": 252 + }, + { + "epoch": 0.46, + "learning_rate": 1.2390930405943766e-05, + "loss": 0.0887, + "step": 253 + }, + { + "epoch": 0.46, + "learning_rate": 1.233300447117933e-05, + "loss": 0.0152, + "step": 254 + }, + { + "epoch": 0.46, + "learning_rate": 1.2274995629109545e-05, + "loss": 0.0317, + "step": 255 + }, + { + "epoch": 0.46, + "learning_rate": 1.2216905941177854e-05, + "loss": 0.0268, + "step": 256 + }, + { + "epoch": 0.46, + "learning_rate": 1.215873747170071e-05, + "loss": 0.1685, + "step": 257 + }, + { + "epoch": 0.46, + "learning_rate": 1.2100492287794186e-05, + "loss": 0.1403, + "step": 258 + }, + { + "epoch": 0.47, + "learning_rate": 1.2042172459300546e-05, + "loss": 0.0443, + "step": 259 + }, + { + "epoch": 0.47, + "learning_rate": 1.198378005871467e-05, + "loss": 0.3589, + "step": 260 + }, + { + "epoch": 0.47, + "learning_rate": 1.192531716111042e-05, + "loss": 0.0427, + "step": 261 + }, + { + "epoch": 0.47, + "learning_rate": 1.1866785844066884e-05, + "loss": 0.1103, + "step": 262 + }, + { + "epoch": 0.47, + "learning_rate": 1.1808188187594549e-05, + "loss": 0.2563, + "step": 263 + }, + { + "epoch": 0.48, + "learning_rate": 1.1749526274061394e-05, + "loss": 0.1494, + "step": 264 + }, + { + "epoch": 0.48, + "learning_rate": 1.1690802188118878e-05, + "loss": 0.1105, + "step": 265 + }, + { + "epoch": 0.48, + "learning_rate": 1.1632018016627859e-05, + "loss": 0.082, + "step": 266 + }, + { + "epoch": 0.48, + "learning_rate": 1.1573175848584455e-05, + "loss": 0.3555, + "step": 267 + }, + { + "epoch": 0.48, + "learning_rate": 1.1514277775045768e-05, + "loss": 0.0603, + "step": 268 + }, + { + "epoch": 0.48, + "learning_rate": 1.1455325889055616e-05, + "loss": 0.2883, + "step": 269 + }, + { + "epoch": 0.49, + "learning_rate": 1.1396322285570119e-05, + "loss": 0.054, + "step": 270 + }, + { + "epoch": 0.49, + "learning_rate": 1.1337269061383278e-05, + "loss": 0.0668, + "step": 271 + }, + { + "epoch": 0.49, + "learning_rate": 1.1278168315052445e-05, + "loss": 0.1454, + "step": 272 + }, + { + "epoch": 0.49, + "learning_rate": 1.1219022146823762e-05, + "loss": 0.0619, + "step": 273 + }, + { + "epoch": 0.49, + "learning_rate": 1.1159832658557498e-05, + "loss": 0.0449, + "step": 274 + }, + { + "epoch": 0.5, + "learning_rate": 1.1100601953653393e-05, + "loss": 0.0684, + "step": 275 + }, + { + "epoch": 0.5, + "learning_rate": 1.1041332136975874e-05, + "loss": 0.0273, + "step": 276 + }, + { + "epoch": 0.5, + "learning_rate": 1.0982025314779287e-05, + "loss": 0.2375, + "step": 277 + }, + { + "epoch": 0.5, + "learning_rate": 1.092268359463302e-05, + "loss": 0.0353, + "step": 278 + }, + { + "epoch": 0.5, + "learning_rate": 1.086330908534663e-05, + "loss": 0.1224, + "step": 279 + }, + { + "epoch": 0.5, + "learning_rate": 1.0803903896894877e-05, + "loss": 0.1297, + "step": 280 + }, + { + "epoch": 0.51, + "learning_rate": 1.0744470140342775e-05, + "loss": 0.4464, + "step": 281 + }, + { + "epoch": 0.51, + "learning_rate": 1.0685009927770542e-05, + "loss": 0.103, + "step": 282 + }, + { + "epoch": 0.51, + "learning_rate": 1.0625525372198564e-05, + "loss": 0.0881, + "step": 283 + }, + { + "epoch": 0.51, + "learning_rate": 1.056601858751229e-05, + "loss": 0.075, + "step": 284 + }, + { + "epoch": 0.51, + "learning_rate": 1.0506491688387128e-05, + "loss": 0.0677, + "step": 285 + }, + { + "epoch": 0.52, + "learning_rate": 1.0446946790213275e-05, + "loss": 0.2301, + "step": 286 + }, + { + "epoch": 0.52, + "learning_rate": 1.0387386009020569e-05, + "loss": 0.0737, + "step": 287 + }, + { + "epoch": 0.52, + "learning_rate": 1.032781146140326e-05, + "loss": 0.1262, + "step": 288 + }, + { + "epoch": 0.52, + "learning_rate": 1.0268225264444829e-05, + "loss": 0.0252, + "step": 289 + }, + { + "epoch": 0.52, + "learning_rate": 1.0208629535642726e-05, + "loss": 0.0192, + "step": 290 + }, + { + "epoch": 0.52, + "learning_rate": 1.0149026392833137e-05, + "loss": 0.257, + "step": 291 + }, + { + "epoch": 0.53, + "learning_rate": 1.0089417954115715e-05, + "loss": 0.1876, + "step": 292 + }, + { + "epoch": 0.53, + "learning_rate": 1.002980633777831e-05, + "loss": 0.0341, + "step": 293 + }, + { + "epoch": 0.53, + "learning_rate": 9.970193662221694e-06, + "loss": 0.232, + "step": 294 + }, + { + "epoch": 0.53, + "learning_rate": 9.910582045884292e-06, + "loss": 0.1429, + "step": 295 + }, + { + "epoch": 0.53, + "learning_rate": 9.850973607166865e-06, + "loss": 0.2432, + "step": 296 + }, + { + "epoch": 0.54, + "learning_rate": 9.791370464357279e-06, + "loss": 0.0288, + "step": 297 + }, + { + "epoch": 0.54, + "learning_rate": 9.731774735555174e-06, + "loss": 0.2272, + "step": 298 + }, + { + "epoch": 0.54, + "learning_rate": 9.672188538596746e-06, + "loss": 0.1102, + "step": 299 + }, + { + "epoch": 0.54, + "learning_rate": 9.612613990979436e-06, + "loss": 0.0529, + "step": 300 + }, + { + "epoch": 0.54, + "learning_rate": 9.553053209786725e-06, + "loss": 0.1721, + "step": 301 + }, + { + "epoch": 0.54, + "learning_rate": 9.493508311612874e-06, + "loss": 0.0046, + "step": 302 + }, + { + "epoch": 0.55, + "learning_rate": 9.433981412487711e-06, + "loss": 0.043, + "step": 303 + }, + { + "epoch": 0.55, + "learning_rate": 9.374474627801439e-06, + "loss": 0.0589, + "step": 304 + }, + { + "epoch": 0.55, + "learning_rate": 9.314990072229461e-06, + "loss": 0.0114, + "step": 305 + }, + { + "epoch": 0.55, + "learning_rate": 9.25552985965723e-06, + "loss": 0.1645, + "step": 306 + }, + { + "epoch": 0.55, + "learning_rate": 9.196096103105127e-06, + "loss": 0.2002, + "step": 307 + }, + { + "epoch": 0.55, + "learning_rate": 9.136690914653377e-06, + "loss": 0.057, + "step": 308 + }, + { + "epoch": 0.56, + "learning_rate": 9.07731640536698e-06, + "loss": 0.1744, + "step": 309 + }, + { + "epoch": 0.56, + "learning_rate": 9.017974685220716e-06, + "loss": 0.0343, + "step": 310 + }, + { + "epoch": 0.56, + "learning_rate": 8.958667863024127e-06, + "loss": 0.0405, + "step": 311 + }, + { + "epoch": 0.56, + "learning_rate": 8.899398046346608e-06, + "loss": 0.2055, + "step": 312 + }, + { + "epoch": 0.56, + "learning_rate": 8.840167341442505e-06, + "loss": 0.0673, + "step": 313 + }, + { + "epoch": 0.57, + "learning_rate": 8.78097785317624e-06, + "loss": 0.0291, + "step": 314 + }, + { + "epoch": 0.57, + "learning_rate": 8.721831684947557e-06, + "loss": 0.2443, + "step": 315 + }, + { + "epoch": 0.57, + "learning_rate": 8.662730938616724e-06, + "loss": 0.058, + "step": 316 + }, + { + "epoch": 0.57, + "learning_rate": 8.603677714429888e-06, + "loss": 0.2347, + "step": 317 + }, + { + "epoch": 0.57, + "learning_rate": 8.54467411094439e-06, + "loss": 0.0307, + "step": 318 + }, + { + "epoch": 0.57, + "learning_rate": 8.485722224954237e-06, + "loss": 0.0094, + "step": 319 + }, + { + "epoch": 0.58, + "learning_rate": 8.426824151415548e-06, + "loss": 0.0724, + "step": 320 + }, + { + "epoch": 0.58, + "learning_rate": 8.367981983372143e-06, + "loss": 0.0816, + "step": 321 + }, + { + "epoch": 0.58, + "learning_rate": 8.309197811881128e-06, + "loss": 0.0375, + "step": 322 + }, + { + "epoch": 0.58, + "learning_rate": 8.250473725938608e-06, + "loss": 0.0106, + "step": 323 + }, + { + "epoch": 0.58, + "learning_rate": 8.191811812405453e-06, + "loss": 0.0701, + "step": 324 + }, + { + "epoch": 0.59, + "learning_rate": 8.133214155933118e-06, + "loss": 0.0134, + "step": 325 + }, + { + "epoch": 0.59, + "learning_rate": 8.074682838889581e-06, + "loss": 0.1992, + "step": 326 + }, + { + "epoch": 0.59, + "learning_rate": 8.01621994128533e-06, + "loss": 0.1688, + "step": 327 + }, + { + "epoch": 0.59, + "learning_rate": 7.95782754069946e-06, + "loss": 0.2751, + "step": 328 + }, + { + "epoch": 0.59, + "learning_rate": 7.899507712205818e-06, + "loss": 0.0192, + "step": 329 + }, + { + "epoch": 0.59, + "learning_rate": 7.841262528299296e-06, + "loss": 0.0797, + "step": 330 + }, + { + "epoch": 0.6, + "learning_rate": 7.783094058822147e-06, + "loss": 0.0867, + "step": 331 + }, + { + "epoch": 0.6, + "learning_rate": 7.72500437089046e-06, + "loss": 0.0445, + "step": 332 + }, + { + "epoch": 0.6, + "learning_rate": 7.666995528820673e-06, + "loss": 0.1654, + "step": 333 + }, + { + "epoch": 0.6, + "learning_rate": 7.609069594056234e-06, + "loss": 0.0168, + "step": 334 + }, + { + "epoch": 0.6, + "learning_rate": 7.551228625094349e-06, + "loss": 0.0779, + "step": 335 + }, + { + "epoch": 0.61, + "learning_rate": 7.493474677412795e-06, + "loss": 0.0444, + "step": 336 + }, + { + "epoch": 0.61, + "learning_rate": 7.435809803396923e-06, + "loss": 0.1839, + "step": 337 + }, + { + "epoch": 0.61, + "learning_rate": 7.37823605226668e-06, + "loss": 0.3834, + "step": 338 + }, + { + "epoch": 0.61, + "learning_rate": 7.320755470003822e-06, + "loss": 0.0261, + "step": 339 + }, + { + "epoch": 0.61, + "learning_rate": 7.263370099279173e-06, + "loss": 0.0084, + "step": 340 + }, + { + "epoch": 0.61, + "learning_rate": 7.2060819793800665e-06, + "loss": 0.0469, + "step": 341 + }, + { + "epoch": 0.62, + "learning_rate": 7.148893146137852e-06, + "loss": 0.3605, + "step": 342 + }, + { + "epoch": 0.62, + "learning_rate": 7.091805631855566e-06, + "loss": 0.0621, + "step": 343 + }, + { + "epoch": 0.62, + "learning_rate": 7.034821465235693e-06, + "loss": 0.099, + "step": 344 + }, + { + "epoch": 0.62, + "learning_rate": 6.977942671308087e-06, + "loss": 0.0641, + "step": 345 + }, + { + "epoch": 0.62, + "learning_rate": 6.921171271358007e-06, + "loss": 0.0859, + "step": 346 + }, + { + "epoch": 0.63, + "learning_rate": 6.864509282854272e-06, + "loss": 0.0564, + "step": 347 + }, + { + "epoch": 0.63, + "learning_rate": 6.8079587193775935e-06, + "loss": 0.0405, + "step": 348 + }, + { + "epoch": 0.63, + "learning_rate": 6.751521590548986e-06, + "loss": 0.101, + "step": 349 + }, + { + "epoch": 0.63, + "learning_rate": 6.695199901958386e-06, + "loss": 0.1178, + "step": 350 + }, + { + "epoch": 0.63, + "learning_rate": 6.638995655093351e-06, + "loss": 0.2406, + "step": 351 + }, + { + "epoch": 0.63, + "learning_rate": 6.582910847267957e-06, + "loss": 0.1846, + "step": 352 + }, + { + "epoch": 0.64, + "learning_rate": 6.526947471551799e-06, + "loss": 0.1374, + "step": 353 + }, + { + "epoch": 0.64, + "learning_rate": 6.471107516699183e-06, + "loss": 0.0863, + "step": 354 + }, + { + "epoch": 0.64, + "learning_rate": 6.415392967078438e-06, + "loss": 0.0755, + "step": 355 + }, + { + "epoch": 0.64, + "learning_rate": 6.3598058026013995e-06, + "loss": 0.0732, + "step": 356 + }, + { + "epoch": 0.64, + "learning_rate": 6.304347998653074e-06, + "loss": 0.0555, + "step": 357 + }, + { + "epoch": 0.65, + "learning_rate": 6.24902152602139e-06, + "loss": 0.0475, + "step": 358 + }, + { + "epoch": 0.65, + "learning_rate": 6.193828350827222e-06, + "loss": 0.036, + "step": 359 + }, + { + "epoch": 0.65, + "learning_rate": 6.1387704344544684e-06, + "loss": 0.2679, + "step": 360 + }, + { + "epoch": 0.65, + "learning_rate": 6.083849733480394e-06, + "loss": 0.0661, + "step": 361 + }, + { + "epoch": 0.65, + "learning_rate": 6.0290681996060605e-06, + "loss": 0.0362, + "step": 362 + }, + { + "epoch": 0.65, + "learning_rate": 5.974427779587004e-06, + "loss": 0.0815, + "step": 363 + }, + { + "epoch": 0.66, + "learning_rate": 5.919930415164033e-06, + "loss": 0.0205, + "step": 364 + }, + { + "epoch": 0.66, + "learning_rate": 5.865578042994227e-06, + "loss": 0.0065, + "step": 365 + }, + { + "epoch": 0.66, + "learning_rate": 5.8113725945821245e-06, + "loss": 0.2377, + "step": 366 + }, + { + "epoch": 0.66, + "learning_rate": 5.757315996211066e-06, + "loss": 0.0673, + "step": 367 + }, + { + "epoch": 0.66, + "learning_rate": 5.703410168874768e-06, + "loss": 0.1033, + "step": 368 + }, + { + "epoch": 0.66, + "learning_rate": 5.649657028209024e-06, + "loss": 0.1259, + "step": 369 + }, + { + "epoch": 0.67, + "learning_rate": 5.5960584844236565e-06, + "loss": 0.0052, + "step": 370 + }, + { + "epoch": 0.67, + "learning_rate": 5.542616442234618e-06, + "loss": 0.1048, + "step": 371 + }, + { + "epoch": 0.67, + "learning_rate": 5.48933280079631e-06, + "loss": 0.3342, + "step": 372 + }, + { + "epoch": 0.67, + "learning_rate": 5.436209453634087e-06, + "loss": 0.0725, + "step": 373 + }, + { + "epoch": 0.67, + "learning_rate": 5.3832482885769855e-06, + "loss": 0.1597, + "step": 374 + }, + { + "epoch": 0.68, + "learning_rate": 5.330451187690614e-06, + "loss": 0.2186, + "step": 375 + }, + { + "epoch": 0.68, + "learning_rate": 5.277820027210279e-06, + "loss": 0.0521, + "step": 376 + }, + { + "epoch": 0.68, + "learning_rate": 5.225356677474309e-06, + "loss": 0.0426, + "step": 377 + }, + { + "epoch": 0.68, + "learning_rate": 5.1730630028576055e-06, + "loss": 0.1171, + "step": 378 + }, + { + "epoch": 0.68, + "learning_rate": 5.120940861705357e-06, + "loss": 0.0551, + "step": 379 + }, + { + "epoch": 0.68, + "learning_rate": 5.068992106267021e-06, + "loss": 0.1238, + "step": 380 + }, + { + "epoch": 0.69, + "learning_rate": 5.017218582630507e-06, + "loss": 0.4425, + "step": 381 + }, + { + "epoch": 0.69, + "learning_rate": 4.965622130656551e-06, + "loss": 0.1591, + "step": 382 + }, + { + "epoch": 0.69, + "learning_rate": 4.914204583913349e-06, + "loss": 0.0568, + "step": 383 + }, + { + "epoch": 0.69, + "learning_rate": 4.862967769611389e-06, + "loss": 0.0159, + "step": 384 + }, + { + "epoch": 0.69, + "learning_rate": 4.8119135085385375e-06, + "loss": 0.055, + "step": 385 + }, + { + "epoch": 0.7, + "learning_rate": 4.7610436149953e-06, + "loss": 0.0356, + "step": 386 + }, + { + "epoch": 0.7, + "learning_rate": 4.710359896730379e-06, + "loss": 0.0969, + "step": 387 + }, + { + "epoch": 0.7, + "learning_rate": 4.659864154876411e-06, + "loss": 0.1161, + "step": 388 + }, + { + "epoch": 0.7, + "learning_rate": 4.609558183885979e-06, + "loss": 0.0437, + "step": 389 + }, + { + "epoch": 0.7, + "learning_rate": 4.559443771467833e-06, + "loss": 0.1526, + "step": 390 + }, + { + "epoch": 0.7, + "learning_rate": 4.509522698523352e-06, + "loss": 0.0183, + "step": 391 + }, + { + "epoch": 0.71, + "learning_rate": 4.4597967390832745e-06, + "loss": 0.073, + "step": 392 + }, + { + "epoch": 0.71, + "learning_rate": 4.4102676602446375e-06, + "loss": 0.0411, + "step": 393 + }, + { + "epoch": 0.71, + "learning_rate": 4.360937222108002e-06, + "loss": 0.0524, + "step": 394 + }, + { + "epoch": 0.71, + "learning_rate": 4.3118071777148865e-06, + "loss": 0.1156, + "step": 395 + }, + { + "epoch": 0.71, + "learning_rate": 4.262879272985468e-06, + "loss": 0.0311, + "step": 396 + }, + { + "epoch": 0.72, + "learning_rate": 4.21415524665655e-06, + "loss": 0.1253, + "step": 397 + }, + { + "epoch": 0.72, + "learning_rate": 4.165636830219776e-06, + "loss": 0.0589, + "step": 398 + }, + { + "epoch": 0.72, + "learning_rate": 4.117325747860077e-06, + "loss": 0.0248, + "step": 399 + }, + { + "epoch": 0.72, + "learning_rate": 4.069223716394419e-06, + "loss": 0.0164, + "step": 400 + }, + { + "epoch": 0.72, + "learning_rate": 4.021332445210785e-06, + "loss": 0.1801, + "step": 401 + }, + { + "epoch": 0.72, + "learning_rate": 3.973653636207437e-06, + "loss": 0.107, + "step": 402 + }, + { + "epoch": 0.73, + "learning_rate": 3.9261889837324245e-06, + "loss": 0.0477, + "step": 403 + }, + { + "epoch": 0.73, + "learning_rate": 3.878940174523371e-06, + "loss": 0.0214, + "step": 404 + }, + { + "epoch": 0.73, + "learning_rate": 3.8319088876475595e-06, + "loss": 0.1071, + "step": 405 + }, + { + "epoch": 0.73, + "learning_rate": 3.785096794442229e-06, + "loss": 0.071, + "step": 406 + }, + { + "epoch": 0.73, + "learning_rate": 3.7385055584552e-06, + "loss": 0.0623, + "step": 407 + }, + { + "epoch": 0.74, + "learning_rate": 3.6921368353857524e-06, + "loss": 0.0534, + "step": 408 + }, + { + "epoch": 0.74, + "learning_rate": 3.645992273025797e-06, + "loss": 0.1143, + "step": 409 + }, + { + "epoch": 0.74, + "learning_rate": 3.6000735112012984e-06, + "loss": 0.1056, + "step": 410 + }, + { + "epoch": 0.74, + "learning_rate": 3.5543821817140313e-06, + "loss": 0.0537, + "step": 411 + }, + { + "epoch": 0.74, + "learning_rate": 3.5089199082835436e-06, + "loss": 0.0065, + "step": 412 + }, + { + "epoch": 0.74, + "learning_rate": 3.463688306489511e-06, + "loss": 0.0995, + "step": 413 + }, + { + "epoch": 0.75, + "learning_rate": 3.418688983714291e-06, + "loss": 0.0818, + "step": 414 + }, + { + "epoch": 0.75, + "learning_rate": 3.373923539085805e-06, + "loss": 0.0481, + "step": 415 + }, + { + "epoch": 0.75, + "learning_rate": 3.329393563420713e-06, + "loss": 0.1379, + "step": 416 + }, + { + "epoch": 0.75, + "learning_rate": 3.285100639167883e-06, + "loss": 0.1759, + "step": 417 + }, + { + "epoch": 0.75, + "learning_rate": 3.2410463403521653e-06, + "loss": 0.0599, + "step": 418 + }, + { + "epoch": 0.75, + "learning_rate": 3.1972322325184347e-06, + "loss": 0.0898, + "step": 419 + }, + { + "epoch": 0.76, + "learning_rate": 3.1536598726759747e-06, + "loss": 0.0079, + "step": 420 + }, + { + "epoch": 0.76, + "learning_rate": 3.110330809243134e-06, + "loss": 0.0185, + "step": 421 + }, + { + "epoch": 0.76, + "learning_rate": 3.0672465819923215e-06, + "loss": 0.0792, + "step": 422 + }, + { + "epoch": 0.76, + "learning_rate": 3.0244087219952565e-06, + "loss": 0.1059, + "step": 423 + }, + { + "epoch": 0.76, + "learning_rate": 2.981818751568586e-06, + "loss": 0.044, + "step": 424 + }, + { + "epoch": 0.77, + "learning_rate": 2.939478184219777e-06, + "loss": 0.0766, + "step": 425 + }, + { + "epoch": 0.77, + "learning_rate": 2.8973885245933287e-06, + "loss": 0.1558, + "step": 426 + }, + { + "epoch": 0.77, + "learning_rate": 2.855551268417305e-06, + "loss": 0.0052, + "step": 427 + }, + { + "epoch": 0.77, + "learning_rate": 2.813967902450179e-06, + "loss": 0.0747, + "step": 428 + }, + { + "epoch": 0.77, + "learning_rate": 2.7726399044280107e-06, + "loss": 0.0868, + "step": 429 + }, + { + "epoch": 0.77, + "learning_rate": 2.7315687430119097e-06, + "loss": 0.047, + "step": 430 + }, + { + "epoch": 0.78, + "learning_rate": 2.6907558777358756e-06, + "loss": 0.0721, + "step": 431 + }, + { + "epoch": 0.78, + "learning_rate": 2.650202758954886e-06, + "loss": 0.128, + "step": 432 + }, + { + "epoch": 0.78, + "learning_rate": 2.6099108277934105e-06, + "loss": 0.08, + "step": 433 + }, + { + "epoch": 0.78, + "learning_rate": 2.5698815160941494e-06, + "loss": 0.0901, + "step": 434 + }, + { + "epoch": 0.78, + "learning_rate": 2.5301162463671845e-06, + "loss": 0.0965, + "step": 435 + }, + { + "epoch": 0.79, + "learning_rate": 2.4906164317394067e-06, + "loss": 0.062, + "step": 436 + }, + { + "epoch": 0.79, + "learning_rate": 2.451383475904304e-06, + "loss": 0.0634, + "step": 437 + }, + { + "epoch": 0.79, + "learning_rate": 2.4124187730720916e-06, + "loss": 0.1525, + "step": 438 + }, + { + "epoch": 0.79, + "learning_rate": 2.3737237079201437e-06, + "loss": 0.1071, + "step": 439 + }, + { + "epoch": 0.79, + "learning_rate": 2.3352996555438036e-06, + "loss": 0.0409, + "step": 440 + }, + { + "epoch": 0.79, + "learning_rate": 2.297147981407509e-06, + "loss": 0.1753, + "step": 441 + }, + { + "epoch": 0.8, + "learning_rate": 2.2592700412962775e-06, + "loss": 0.175, + "step": 442 + }, + { + "epoch": 0.8, + "learning_rate": 2.2216671812675118e-06, + "loss": 0.0348, + "step": 443 + }, + { + "epoch": 0.8, + "learning_rate": 2.184340737603178e-06, + "loss": 0.105, + "step": 444 + }, + { + "epoch": 0.8, + "learning_rate": 2.1472920367623094e-06, + "loss": 0.0477, + "step": 445 + }, + { + "epoch": 0.8, + "learning_rate": 2.1105223953338805e-06, + "loss": 0.0176, + "step": 446 + }, + { + "epoch": 0.81, + "learning_rate": 2.0740331199900053e-06, + "loss": 0.6195, + "step": 447 + }, + { + "epoch": 0.81, + "learning_rate": 2.0378255074395094e-06, + "loss": 0.0913, + "step": 448 + }, + { + "epoch": 0.81, + "learning_rate": 2.001900844381857e-06, + "loss": 0.0386, + "step": 449 + }, + { + "epoch": 0.81, + "learning_rate": 1.9662604074614044e-06, + "loss": 0.1309, + "step": 450 + }, + { + "epoch": 0.81, + "learning_rate": 1.9309054632220645e-06, + "loss": 0.0218, + "step": 451 + }, + { + "epoch": 0.81, + "learning_rate": 1.895837268062256e-06, + "loss": 0.0185, + "step": 452 + }, + { + "epoch": 0.82, + "learning_rate": 1.8610570681903018e-06, + "loss": 0.3416, + "step": 453 + }, + { + "epoch": 0.82, + "learning_rate": 1.8265660995801004e-06, + "loss": 0.2817, + "step": 454 + }, + { + "epoch": 0.82, + "learning_rate": 1.7923655879272395e-06, + "loss": 0.0182, + "step": 455 + }, + { + "epoch": 0.82, + "learning_rate": 1.7584567486054039e-06, + "loss": 0.0665, + "step": 456 + }, + { + "epoch": 0.82, + "learning_rate": 1.7248407866232175e-06, + "loss": 0.0403, + "step": 457 + }, + { + "epoch": 0.83, + "learning_rate": 1.6915188965814034e-06, + "loss": 0.017, + "step": 458 + }, + { + "epoch": 0.83, + "learning_rate": 1.6915188965814034e-06, + "loss": 0.3175, + "step": 459 + }, + { + "epoch": 0.83, + "learning_rate": 1.6584922626303325e-06, + "loss": 0.0474, + "step": 460 + }, + { + "epoch": 0.83, + "learning_rate": 1.6257620584279454e-06, + "loss": 0.0881, + "step": 461 + }, + { + "epoch": 0.83, + "learning_rate": 1.5933294470980443e-06, + "loss": 0.0475, + "step": 462 + }, + { + "epoch": 0.83, + "learning_rate": 1.5611955811889645e-06, + "loss": 0.0473, + "step": 463 + }, + { + "epoch": 0.84, + "learning_rate": 1.5293616026326053e-06, + "loss": 0.0143, + "step": 464 + }, + { + "epoch": 0.84, + "learning_rate": 1.4978286427038602e-06, + "loss": 0.1228, + "step": 465 + }, + { + "epoch": 0.84, + "learning_rate": 1.4665978219804056e-06, + "loss": 0.2635, + "step": 466 + }, + { + "epoch": 0.84, + "learning_rate": 1.435670250302892e-06, + "loss": 0.0668, + "step": 467 + }, + { + "epoch": 0.84, + "learning_rate": 1.405047026735491e-06, + "loss": 0.082, + "step": 468 + }, + { + "epoch": 0.85, + "learning_rate": 1.3747292395268407e-06, + "loss": 0.085, + "step": 469 + }, + { + "epoch": 0.85, + "learning_rate": 1.344717966071385e-06, + "loss": 0.1178, + "step": 470 + }, + { + "epoch": 0.85, + "learning_rate": 1.3150142728710669e-06, + "loss": 0.0633, + "step": 471 + }, + { + "epoch": 0.85, + "learning_rate": 1.2856192154974488e-06, + "loss": 0.0229, + "step": 472 + }, + { + "epoch": 0.85, + "learning_rate": 1.2565338385541792e-06, + "loss": 0.0356, + "step": 473 + }, + { + "epoch": 0.85, + "learning_rate": 1.2277591756398933e-06, + "loss": 0.1599, + "step": 474 + }, + { + "epoch": 0.86, + "learning_rate": 1.1992962493114645e-06, + "loss": 0.0168, + "step": 475 + }, + { + "epoch": 0.86, + "learning_rate": 1.171146071047683e-06, + "loss": 0.0626, + "step": 476 + }, + { + "epoch": 0.86, + "learning_rate": 1.1433096412132838e-06, + "loss": 0.1343, + "step": 477 + }, + { + "epoch": 0.86, + "learning_rate": 1.1157879490234346e-06, + "loss": 0.0529, + "step": 478 + }, + { + "epoch": 0.86, + "learning_rate": 1.088581972508549e-06, + "loss": 0.0556, + "step": 479 + }, + { + "epoch": 0.86, + "learning_rate": 1.0616926784795511e-06, + "loss": 0.0903, + "step": 480 + }, + { + "epoch": 0.87, + "learning_rate": 1.035121022493506e-06, + "loss": 0.0993, + "step": 481 + }, + { + "epoch": 0.87, + "learning_rate": 1.0088679488196695e-06, + "loss": 0.0673, + "step": 482 + }, + { + "epoch": 0.87, + "learning_rate": 9.829343904059342e-07, + "loss": 0.018, + "step": 483 + }, + { + "epoch": 0.87, + "learning_rate": 9.573212688456635e-07, + "loss": 0.1005, + "step": 484 + }, + { + "epoch": 0.87, + "learning_rate": 9.320294943449537e-07, + "loss": 0.0859, + "step": 485 + }, + { + "epoch": 0.88, + "learning_rate": 9.070599656902801e-07, + "loss": 0.0361, + "step": 486 + }, + { + "epoch": 0.88, + "learning_rate": 8.824135702165693e-07, + "loss": 0.0256, + "step": 487 + }, + { + "epoch": 0.88, + "learning_rate": 8.580911837756467e-07, + "loss": 0.0652, + "step": 488 + }, + { + "epoch": 0.88, + "learning_rate": 8.340936707051273e-07, + "loss": 0.103, + "step": 489 + }, + { + "epoch": 0.88, + "learning_rate": 8.10421883797694e-07, + "loss": 0.0589, + "step": 490 + }, + { + "epoch": 0.88, + "learning_rate": 7.87076664270795e-07, + "loss": 0.1919, + "step": 491 + }, + { + "epoch": 0.89, + "learning_rate": 7.6405884173675e-07, + "loss": 0.1313, + "step": 492 + }, + { + "epoch": 0.89, + "learning_rate": 7.413692341732582e-07, + "loss": 0.0657, + "step": 493 + }, + { + "epoch": 0.89, + "learning_rate": 7.190086478943459e-07, + "loss": 0.1785, + "step": 494 + }, + { + "epoch": 0.89, + "learning_rate": 6.969778775217007e-07, + "loss": 0.1866, + "step": 495 + }, + { + "epoch": 0.89, + "learning_rate": 6.752777059564431e-07, + "loss": 0.0295, + "step": 496 + }, + { + "epoch": 0.9, + "learning_rate": 6.539089043512914e-07, + "loss": 0.0316, + "step": 497 + }, + { + "epoch": 0.9, + "learning_rate": 6.328722320831737e-07, + "loss": 0.0702, + "step": 498 + }, + { + "epoch": 0.9, + "learning_rate": 6.121684367262271e-07, + "loss": 0.0271, + "step": 499 + }, + { + "epoch": 0.9, + "learning_rate": 5.917982540252442e-07, + "loss": 0.0398, + "step": 500 + } + ], + "logging_steps": 1.0, + "max_steps": 555, + "num_input_tokens_seen": 0, + "num_train_epochs": 1, + "save_steps": 500, + "total_flos": 1080325140480.0, + "train_batch_size": 10, + "trial_name": null, + "trial_params": null +} diff --git a/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/training_args.bin b/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/training_args.bin new file mode 100644 index 0000000000000000000000000000000000000000..086695c74164e41c129494184be863504cd808c1 --- /dev/null +++ b/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/training_args.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:19850de0da1b4eac2d894ea196e517fb53755d5462a1803598ffe2ca47c1ad86 +size 6968 diff --git a/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/zero_to_fp32.py b/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/zero_to_fp32.py new file mode 100644 index 0000000000000000000000000000000000000000..c98caae31534368be22b67fc4ae906836c992a8d --- /dev/null +++ b/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/zero_to_fp32.py @@ -0,0 +1,587 @@ +#!/usr/bin/env python + +# Copyright (c) Microsoft Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team + +# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets +# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in +# the future. Once extracted, the weights don't require DeepSpeed and can be used in any +# application. +# +# example: python zero_to_fp32.py . pytorch_model.bin + +import argparse +import torch +import glob +import math +import os +import re +from collections import OrderedDict +from dataclasses import dataclass + +# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with +# DeepSpeed data structures it has to be available in the current python environment. +from deepspeed.utils import logger +from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS, + FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES, + FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS) + + +@dataclass +class zero_model_state: + buffers: dict() + param_shapes: dict() + shared_params: list + ds_version: int + frozen_param_shapes: dict() + frozen_param_fragments: dict() + + +debug = 0 + +# load to cpu +device = torch.device('cpu') + + +def atoi(text): + return int(text) if text.isdigit() else text + + +def natural_keys(text): + ''' + alist.sort(key=natural_keys) sorts in human order + http://nedbatchelder.com/blog/200712/human_sorting.html + (See Toothy's implementation in the comments) + ''' + return [atoi(c) for c in re.split(r'(\d+)', text)] + + +def get_model_state_file(checkpoint_dir, zero_stage): + if not os.path.isdir(checkpoint_dir): + raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist") + + # there should be only one file + if zero_stage <= 2: + file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt") + elif zero_stage == 3: + file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt") + + if not os.path.exists(file): + raise FileNotFoundError(f"can't find model states file at '{file}'") + + return file + + +def get_checkpoint_files(checkpoint_dir, glob_pattern): + # XXX: need to test that this simple glob rule works for multi-node setup too + ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys) + + if len(ckpt_files) == 0: + raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'") + + return ckpt_files + + +def get_optim_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt") + + +def get_model_state_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_model_states.pt") + + +def parse_model_states(files): + zero_model_states = [] + for file in files: + state_dict = torch.load(file, map_location=device) + + if BUFFER_NAMES not in state_dict: + raise ValueError(f"{file} is not a model state checkpoint") + buffer_names = state_dict[BUFFER_NAMES] + if debug: + print("Found buffers:", buffer_names) + + # recover just the buffers while restoring them to fp32 if they were saved in fp16 + buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names} + param_shapes = state_dict[PARAM_SHAPES] + + # collect parameters that are included in param_shapes + param_names = [] + for s in param_shapes: + for name in s.keys(): + param_names.append(name) + + # update with frozen parameters + frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None) + if frozen_param_shapes is not None: + if debug: + print(f"Found frozen_param_shapes: {frozen_param_shapes}") + param_names += list(frozen_param_shapes.keys()) + + # handle shared params + shared_params = [[k, v] for k, v in state_dict["shared_params"].items()] + + ds_version = state_dict.get(DS_VERSION, None) + + frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None) + + z_model_state = zero_model_state(buffers=buffers, + param_shapes=param_shapes, + shared_params=shared_params, + ds_version=ds_version, + frozen_param_shapes=frozen_param_shapes, + frozen_param_fragments=frozen_param_fragments) + zero_model_states.append(z_model_state) + + return zero_model_states + + +def parse_optim_states(files, ds_checkpoint_dir): + + total_files = len(files) + state_dicts = [] + for f in files: + state_dict = torch.load(f, map_location=device) + # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights + # and also handle the case where it was already removed by another helper script + state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None) + state_dicts.append(state_dict) + + if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]: + raise ValueError(f"{files[0]} is not a zero checkpoint") + zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE] + world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT] + + # For ZeRO-2 each param group can have different partition_count as data parallelism for expert + # parameters can be different from data parallelism for non-expert parameters. So we can just + # use the max of the partition_count to get the dp world_size. + + if type(world_size) is list: + world_size = max(world_size) + + if world_size != total_files: + raise ValueError( + f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. " + "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes." + ) + + # the groups are named differently in each stage + if zero_stage <= 2: + fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS + elif zero_stage == 3: + fp32_groups_key = FP32_FLAT_GROUPS + else: + raise ValueError(f"unknown zero stage {zero_stage}") + + if zero_stage <= 2: + fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))] + elif zero_stage == 3: + # if there is more than one param group, there will be multiple flattened tensors - one + # flattened tensor per group - for simplicity merge them into a single tensor + # + # XXX: could make the script more memory efficient for when there are multiple groups - it + # will require matching the sub-lists of param_shapes for each param group flattened tensor + + fp32_flat_groups = [ + torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts)) + ] + + return zero_stage, world_size, fp32_flat_groups + + +def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir): + """ + Returns fp32 state_dict reconstructed from ds checkpoint + + Args: + - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are) + + """ + print(f"Processing zero checkpoint '{ds_checkpoint_dir}'") + + optim_files = get_optim_files(ds_checkpoint_dir) + zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir) + print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}") + + model_files = get_model_state_files(ds_checkpoint_dir) + + zero_model_states = parse_model_states(model_files) + print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}') + + if zero_stage <= 2: + return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states) + elif zero_stage == 3: + return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states) + + +def _zero2_merge_frozen_params(state_dict, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + frozen_param_fragments = zero_model_states[0].frozen_param_fragments + + if debug: + num_elem = sum(s.numel() for s in frozen_param_shapes.values()) + print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in frozen_param_fragments.values()]) + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + state_dict[name] = frozen_param_fragments[name] + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + + # Reconstruction protocol: + # + # XXX: document this + + if debug: + for i in range(world_size): + for j in range(len(fp32_flat_groups[0])): + print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}") + + # XXX: memory usage doubles here (zero2) + num_param_groups = len(fp32_flat_groups[0]) + merged_single_partition_of_fp32_groups = [] + for i in range(num_param_groups): + merged_partitions = [sd[i] for sd in fp32_flat_groups] + full_single_fp32_vector = torch.cat(merged_partitions, 0) + merged_single_partition_of_fp32_groups.append(full_single_fp32_vector) + avail_numel = sum( + [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups]) + + if debug: + wanted_params = sum([len(shapes) for shapes in param_shapes]) + wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes]) + # not asserting if there is a mismatch due to possible padding + print(f"Have {avail_numel} numels to process.") + print(f"Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + total_numel = 0 + total_params = 0 + for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups): + offset = 0 + avail_numel = full_single_fp32_vector.numel() + for name, shape in shapes.items(): + + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + total_params += 1 + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape) + offset += unpartitioned_numel + + # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and + # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex + # paddings performed in the code it's almost impossible to predict the exact numbers w/o the + # live optimizer object, so we are checking that the numbers are within the right range + align_to = 2 * world_size + + def zero2_align(x): + return align_to * math.ceil(x / align_to) + + if debug: + print(f"original offset={offset}, avail_numel={avail_numel}") + + offset = zero2_align(offset) + avail_numel = zero2_align(avail_numel) + + if debug: + print(f"aligned offset={offset}, avail_numel={avail_numel}") + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + _zero2_merge_frozen_params(state_dict, zero_model_states) + + _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def zero3_partitioned_param_info(unpartitioned_numel, world_size): + remainder = unpartitioned_numel % world_size + padding_numel = (world_size - remainder) if remainder else 0 + partitioned_numel = math.ceil(unpartitioned_numel / world_size) + return partitioned_numel, padding_numel + + +def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + if debug: + for i in range(world_size): + num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values()) + print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in zero_model_states[0].frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states) + state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape) + + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + avail_numel = fp32_flat_groups[0].numel() * world_size + # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each + # param, re-consolidating each param, while dealing with padding if any + + # merge list of dicts, preserving order + param_shapes = {k: v for d in param_shapes for k, v in d.items()} + + if debug: + for i in range(world_size): + print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}") + + wanted_params = len(param_shapes) + wanted_numel = sum(shape.numel() for shape in param_shapes.values()) + # not asserting if there is a mismatch due to possible padding + avail_numel = fp32_flat_groups[0].numel() * world_size + print(f"Trainable params: Have {avail_numel} numels to process.") + print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + offset = 0 + total_numel = 0 + total_params = 0 + for name, shape in param_shapes.items(): + + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + total_params += 1 + + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + # XXX: memory usage doubles here + state_dict[name] = torch.cat( + tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)), + 0).narrow(0, 0, unpartitioned_numel).view(shape) + offset += partitioned_numel + + offset *= world_size + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + _zero3_merge_frozen_params(state_dict, world_size, zero_model_states) + + _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with + ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example + via a model hub. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14`` + + Returns: + - pytorch ``state_dict`` + + Note: this approach may not work if your application doesn't have sufficient free CPU memory and + you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with + the checkpoint. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + # do the training and checkpoint saving + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu + model = model.cpu() # move to cpu + model.load_state_dict(state_dict) + # submit to model hub or save the model to share with others + + In this example the ``model`` will no longer be usable in the deepspeed context of the same + application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead. + + """ + if tag is None: + latest_path = os.path.join(checkpoint_dir, 'latest') + if os.path.isfile(latest_path): + with open(latest_path, 'r') as fd: + tag = fd.read().strip() + else: + raise ValueError(f"Unable to find 'latest' file at {latest_path}") + + ds_checkpoint_dir = os.path.join(checkpoint_dir, tag) + + if not os.path.isdir(ds_checkpoint_dir): + raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist") + + return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir) + + +def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be + loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin) + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + """ + + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) + print(f"Saving fp32 state dict to {output_file}") + torch.save(state_dict, output_file) + + +def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None): + """ + 1. Put the provided model to cpu + 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` + 3. Load it into the provided model + + Args: + - ``model``: the model object to update + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + + Returns: + - ``model`: modified model + + Make sure you have plenty of CPU memory available before you call this function. If you don't + have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it + conveniently placed for you in the checkpoint folder. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint + model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) + # submit to model hub or save the model to share with others + + Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context + of the same application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + """ + logger.info(f"Extracting fp32 weights") + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) + + logger.info(f"Overwriting model with fp32 weights") + model = model.cpu() + model.load_state_dict(state_dict, strict=False) + + return model + + +if __name__ == "__main__": + + parser = argparse.ArgumentParser() + parser.add_argument("checkpoint_dir", + type=str, + help="path to the desired checkpoint folder, e.g., path/checkpoint-12") + parser.add_argument( + "output_file", + type=str, + help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)") + parser.add_argument("-t", + "--tag", + type=str, + default=None, + help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1") + parser.add_argument("-d", "--debug", action='store_true', help="enable debug") + args = parser.parse_args() + + debug = args.debug + + convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag) diff --git a/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/config.json b/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/config.json new file mode 100644 index 0000000000000000000000000000000000000000..93e133af45036a778791b5679a8953a4f6a35a33 --- /dev/null +++ b/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/config.json @@ -0,0 +1,70 @@ +{ + "_name_or_path": "liuhaotian/llava-v1.6-mistral-7b", + "architectures": [ + "LlavaMistralForCausalLM" + ], + "attention_dropout": 0.0, + "bos_token_id": 1, + "eos_token_id": 2, + "freeze_mm_mlp_adapter": false, + "freeze_mm_vision_resampler": false, + "hidden_act": "silu", + "hidden_size": 4096, + "image_aspect_ratio": "anyres", + "image_crop_resolution": 224, + "image_grid_pinpoints": [ + [ + 336, + 672 + ], + [ + 672, + 336 + ], + [ + 672, + 672 + ], + [ + 1008, + 336 + ], + [ + 336, + 1008 + ] + ], + "image_split_resolution": 224, + "initializer_range": 0.02, + "intermediate_size": 14336, + "max_position_embeddings": 32768, + "mm_hidden_size": 1024, + "mm_patch_merge_type": "spatial_unpad", + "mm_projector_lr": 2e-05, + "mm_projector_type": "mlp2x_gelu", + "mm_resampler_type": null, + "mm_use_im_patch_token": false, + "mm_use_im_start_end": false, + "mm_vision_select_feature": "patch", + "mm_vision_select_layer": -2, + "mm_vision_tower": "openai/clip-vit-large-patch14-336", + "mm_vision_tower_lr": 2e-06, + "model_type": "llava_mistral", + "num_attention_heads": 32, + "num_hidden_layers": 32, + "num_key_value_heads": 8, + "rms_norm_eps": 1e-05, + "rope_theta": 1000000.0, + "sliding_window": null, + "tie_word_embeddings": false, + "tokenizer_model_max_length": 4096, + "tokenizer_padding_side": "right", + "torch_dtype": "bfloat16", + "transformers_version": "4.37.2", + "tune_mm_mlp_adapter": false, + "tune_mm_vision_resampler": false, + "unfreeze_mm_vision_tower": true, + "use_cache": true, + "use_mm_proj": true, + "vocab_size": 32000 +} diff --git a/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/non_lora_trainables.bin b/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/non_lora_trainables.bin new file mode 100644 index 0000000000000000000000000000000000000000..e035ed370a46949146eb7164d79ef88097eacbfb --- /dev/null +++ b/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/non_lora_trainables.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1fde24a5cdabb49bef91a9dd1ee36c3b2ed72791efc564f6476124852a334852 +size 41961648 diff --git a/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/trainer_state.json b/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/trainer_state.json new file mode 100644 index 0000000000000000000000000000000000000000..09272574ba783ea775f320dc35885ea3bdebbd9e --- /dev/null +++ b/CheckGuard Models/wholeimage/bank/llava-lora-mistral-r128a256-10BS-model/trainer_state.json @@ -0,0 +1,3360 @@ +{ + "best_metric": null, + "best_model_checkpoint": null, + "epoch": 1.0, + "eval_steps": 500, + "global_step": 555, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "epoch": 0.0, + "learning_rate": 7.142857142857143e-07, + "loss": 0.4237, + "step": 1 + }, + { + "epoch": 0.0, + "learning_rate": 1.4285714285714286e-06, + "loss": 0.3368, + "step": 2 + }, + { + "epoch": 0.01, + "learning_rate": 2.1428571428571427e-06, + "loss": 0.214, + "step": 3 + }, + { + "epoch": 0.01, + "learning_rate": 2.8571428571428573e-06, + "loss": 0.396, + "step": 4 + }, + { + "epoch": 0.01, + "learning_rate": 3.5714285714285718e-06, + "loss": 0.305, + "step": 5 + }, + { + "epoch": 0.01, + "learning_rate": 4.2857142857142855e-06, + "loss": 0.4049, + "step": 6 + }, + { + "epoch": 0.01, + "learning_rate": 5e-06, + "loss": 0.108, + "step": 7 + }, + { + "epoch": 0.01, + "learning_rate": 5.7142857142857145e-06, + "loss": 0.2286, + "step": 8 + }, + { + "epoch": 0.02, + "learning_rate": 6.4285714285714295e-06, + "loss": 0.1443, + "step": 9 + }, + { + "epoch": 0.02, + "learning_rate": 7.1428571428571436e-06, + "loss": 0.2252, + "step": 10 + }, + { + "epoch": 0.02, + "learning_rate": 7.857142857142858e-06, + "loss": 0.0747, + "step": 11 + }, + { + "epoch": 0.02, + "learning_rate": 8.571428571428571e-06, + "loss": 0.1084, + "step": 12 + }, + { + "epoch": 0.02, + "learning_rate": 9.285714285714288e-06, + "loss": 0.2115, + "step": 13 + }, + { + "epoch": 0.03, + "learning_rate": 1e-05, + "loss": 0.4742, + "step": 14 + }, + { + "epoch": 0.03, + "learning_rate": 1.0714285714285714e-05, + "loss": 0.083, + "step": 15 + }, + { + "epoch": 0.03, + "learning_rate": 1.1428571428571429e-05, + "loss": 0.3392, + "step": 16 + }, + { + "epoch": 0.03, + "learning_rate": 1.2142857142857142e-05, + "loss": 0.065, + "step": 17 + }, + { + "epoch": 0.03, + "learning_rate": 1.2857142857142859e-05, + "loss": 0.1711, + "step": 18 + }, + { + "epoch": 0.03, + "learning_rate": 1.3571428571428574e-05, + "loss": 0.0539, + "step": 19 + }, + { + "epoch": 0.04, + "learning_rate": 1.4285714285714287e-05, + "loss": 0.0701, + "step": 20 + }, + { + "epoch": 0.04, + "learning_rate": 1.5000000000000002e-05, + "loss": 0.0836, + "step": 21 + }, + { + "epoch": 0.04, + "learning_rate": 1.5714285714285715e-05, + "loss": 0.1891, + "step": 22 + }, + { + "epoch": 0.04, + "learning_rate": 1.642857142857143e-05, + "loss": 0.0422, + "step": 23 + }, + { + "epoch": 0.04, + "learning_rate": 1.7142857142857142e-05, + "loss": 0.2094, + "step": 24 + }, + { + "epoch": 0.05, + "learning_rate": 1.785714285714286e-05, + "loss": 0.139, + "step": 25 + }, + { + "epoch": 0.05, + "learning_rate": 1.8571428571428575e-05, + "loss": 0.2214, + "step": 26 + }, + { + "epoch": 0.05, + "learning_rate": 1.928571428571429e-05, + "loss": 0.1084, + "step": 27 + }, + { + "epoch": 0.05, + "learning_rate": 2e-05, + "loss": 0.0898, + "step": 28 + }, + { + "epoch": 0.05, + "learning_rate": 1.9999822316445652e-05, + "loss": 0.0359, + "step": 29 + }, + { + "epoch": 0.05, + "learning_rate": 1.9999289272096886e-05, + "loss": 0.2648, + "step": 30 + }, + { + "epoch": 0.06, + "learning_rate": 1.9998400885896355e-05, + "loss": 0.4007, + "step": 31 + }, + { + "epoch": 0.06, + "learning_rate": 1.9997157189414373e-05, + "loss": 0.235, + "step": 32 + }, + { + "epoch": 0.06, + "learning_rate": 1.999555822684783e-05, + "loss": 0.0273, + "step": 33 + }, + { + "epoch": 0.06, + "learning_rate": 1.999360405501859e-05, + "loss": 0.0267, + "step": 34 + }, + { + "epoch": 0.06, + "learning_rate": 1.99912947433715e-05, + "loss": 0.2619, + "step": 35 + }, + { + "epoch": 0.06, + "learning_rate": 1.9988630373971896e-05, + "loss": 0.4101, + "step": 36 + }, + { + "epoch": 0.07, + "learning_rate": 1.9985611041502704e-05, + "loss": 0.1302, + "step": 37 + }, + { + "epoch": 0.07, + "learning_rate": 1.9982236853261067e-05, + "loss": 0.118, + "step": 38 + }, + { + "epoch": 0.07, + "learning_rate": 1.9978507929154534e-05, + "loss": 0.0933, + "step": 39 + }, + { + "epoch": 0.07, + "learning_rate": 1.997442440169681e-05, + "loss": 0.0104, + "step": 40 + }, + { + "epoch": 0.07, + "learning_rate": 1.9969986416003026e-05, + "loss": 0.1061, + "step": 41 + }, + { + "epoch": 0.08, + "learning_rate": 1.9965194129784597e-05, + "loss": 0.1575, + "step": 42 + }, + { + "epoch": 0.08, + "learning_rate": 1.996004771334361e-05, + "loss": 0.1969, + "step": 43 + }, + { + "epoch": 0.08, + "learning_rate": 1.996004771334361e-05, + "loss": 0.0492, + "step": 44 + }, + { + "epoch": 0.08, + "learning_rate": 1.9954547349566783e-05, + "loss": 0.3012, + "step": 45 + }, + { + "epoch": 0.08, + "learning_rate": 1.994869323391895e-05, + "loss": 0.2185, + "step": 46 + }, + { + "epoch": 0.08, + "learning_rate": 1.994248557443613e-05, + "loss": 0.1729, + "step": 47 + }, + { + "epoch": 0.09, + "learning_rate": 1.993592459171812e-05, + "loss": 0.0354, + "step": 48 + }, + { + "epoch": 0.09, + "learning_rate": 1.9929010518920667e-05, + "loss": 0.3939, + "step": 49 + }, + { + "epoch": 0.09, + "learning_rate": 1.992174360174717e-05, + "loss": 0.0505, + "step": 50 + }, + { + "epoch": 0.09, + "learning_rate": 1.9914124098439976e-05, + "loss": 0.0777, + "step": 51 + }, + { + "epoch": 0.09, + "learning_rate": 1.9914124098439976e-05, + "loss": 0.6651, + "step": 52 + }, + { + "epoch": 0.1, + "learning_rate": 1.9906152279771162e-05, + "loss": 0.15, + "step": 53 + }, + { + "epoch": 0.1, + "learning_rate": 1.9897828429032946e-05, + "loss": 0.1416, + "step": 54 + }, + { + "epoch": 0.1, + "learning_rate": 1.9889152842027607e-05, + "loss": 0.1195, + "step": 55 + }, + { + "epoch": 0.1, + "learning_rate": 1.9880125827056967e-05, + "loss": 0.0787, + "step": 56 + }, + { + "epoch": 0.1, + "learning_rate": 1.987074770491145e-05, + "loss": 0.0681, + "step": 57 + }, + { + "epoch": 0.1, + "learning_rate": 1.986101880885867e-05, + "loss": 0.1337, + "step": 58 + }, + { + "epoch": 0.11, + "learning_rate": 1.9850939484631598e-05, + "loss": 0.0961, + "step": 59 + }, + { + "epoch": 0.11, + "learning_rate": 1.984051009041626e-05, + "loss": 0.116, + "step": 60 + }, + { + "epoch": 0.11, + "learning_rate": 1.982973099683902e-05, + "loss": 0.3853, + "step": 61 + }, + { + "epoch": 0.11, + "learning_rate": 1.9818602586953414e-05, + "loss": 0.0875, + "step": 62 + }, + { + "epoch": 0.11, + "learning_rate": 1.9807125256226532e-05, + "loss": 0.3216, + "step": 63 + }, + { + "epoch": 0.12, + "learning_rate": 1.9795299412524948e-05, + "loss": 0.0752, + "step": 64 + }, + { + "epoch": 0.12, + "learning_rate": 1.9783125476100254e-05, + "loss": 0.1461, + "step": 65 + }, + { + "epoch": 0.12, + "learning_rate": 1.9770603879574108e-05, + "loss": 0.075, + "step": 66 + }, + { + "epoch": 0.12, + "learning_rate": 1.975773506792287e-05, + "loss": 0.0685, + "step": 67 + }, + { + "epoch": 0.12, + "learning_rate": 1.974451949846177e-05, + "loss": 0.0555, + "step": 68 + }, + { + "epoch": 0.12, + "learning_rate": 1.973095764082869e-05, + "loss": 0.0171, + "step": 69 + }, + { + "epoch": 0.13, + "learning_rate": 1.9717049976967437e-05, + "loss": 0.0247, + "step": 70 + }, + { + "epoch": 0.13, + "learning_rate": 1.9702797001110642e-05, + "loss": 0.0839, + "step": 71 + }, + { + "epoch": 0.13, + "learning_rate": 1.9688199219762183e-05, + "loss": 0.4163, + "step": 72 + }, + { + "epoch": 0.13, + "learning_rate": 1.96732571516792e-05, + "loss": 0.1461, + "step": 73 + }, + { + "epoch": 0.13, + "learning_rate": 1.9657971327853644e-05, + "loss": 0.1457, + "step": 74 + }, + { + "epoch": 0.14, + "learning_rate": 1.964234229149342e-05, + "loss": 0.0482, + "step": 75 + }, + { + "epoch": 0.14, + "learning_rate": 1.962637059800307e-05, + "loss": 0.0802, + "step": 76 + }, + { + "epoch": 0.14, + "learning_rate": 1.9610056814964053e-05, + "loss": 0.0697, + "step": 77 + }, + { + "epoch": 0.14, + "learning_rate": 1.959340152211455e-05, + "loss": 0.0614, + "step": 78 + }, + { + "epoch": 0.14, + "learning_rate": 1.95764053113289e-05, + "loss": 0.1004, + "step": 79 + }, + { + "epoch": 0.14, + "learning_rate": 1.9559068786596526e-05, + "loss": 0.0286, + "step": 80 + }, + { + "epoch": 0.15, + "learning_rate": 1.954139256400049e-05, + "loss": 0.1162, + "step": 81 + }, + { + "epoch": 0.15, + "learning_rate": 1.952337727169561e-05, + "loss": 0.0731, + "step": 82 + }, + { + "epoch": 0.15, + "learning_rate": 1.950502354988612e-05, + "loss": 0.0286, + "step": 83 + }, + { + "epoch": 0.15, + "learning_rate": 1.948633205080292e-05, + "loss": 0.2425, + "step": 84 + }, + { + "epoch": 0.15, + "learning_rate": 1.9467303438680414e-05, + "loss": 0.0505, + "step": 85 + }, + { + "epoch": 0.15, + "learning_rate": 1.944793838973289e-05, + "loss": 0.0922, + "step": 86 + }, + { + "epoch": 0.16, + "learning_rate": 1.9428237592130487e-05, + "loss": 0.2949, + "step": 87 + }, + { + "epoch": 0.16, + "learning_rate": 1.940820174597476e-05, + "loss": 0.2807, + "step": 88 + }, + { + "epoch": 0.16, + "learning_rate": 1.9387831563273775e-05, + "loss": 0.2377, + "step": 89 + }, + { + "epoch": 0.16, + "learning_rate": 1.9367127767916828e-05, + "loss": 0.2558, + "step": 90 + }, + { + "epoch": 0.16, + "learning_rate": 1.9346091095648712e-05, + "loss": 0.0871, + "step": 91 + }, + { + "epoch": 0.17, + "learning_rate": 1.932472229404356e-05, + "loss": 0.2204, + "step": 92 + }, + { + "epoch": 0.17, + "learning_rate": 1.9303022122478303e-05, + "loss": 0.1174, + "step": 93 + }, + { + "epoch": 0.17, + "learning_rate": 1.9280991352105656e-05, + "loss": 0.2181, + "step": 94 + }, + { + "epoch": 0.17, + "learning_rate": 1.925863076582674e-05, + "loss": 0.1251, + "step": 95 + }, + { + "epoch": 0.17, + "learning_rate": 1.9235941158263253e-05, + "loss": 0.2251, + "step": 96 + }, + { + "epoch": 0.17, + "learning_rate": 1.9212923335729206e-05, + "loss": 0.1236, + "step": 97 + }, + { + "epoch": 0.18, + "learning_rate": 1.918957811620231e-05, + "loss": 0.0901, + "step": 98 + }, + { + "epoch": 0.18, + "learning_rate": 1.9165906329294875e-05, + "loss": 0.1002, + "step": 99 + }, + { + "epoch": 0.18, + "learning_rate": 1.9141908816224356e-05, + "loss": 0.4397, + "step": 100 + }, + { + "epoch": 0.18, + "learning_rate": 1.9117586429783433e-05, + "loss": 0.1141, + "step": 101 + }, + { + "epoch": 0.18, + "learning_rate": 1.909294003430972e-05, + "loss": 0.1842, + "step": 102 + }, + { + "epoch": 0.19, + "learning_rate": 1.906797050565505e-05, + "loss": 0.0985, + "step": 103 + }, + { + "epoch": 0.19, + "learning_rate": 1.9042678731154337e-05, + "loss": 0.1533, + "step": 104 + }, + { + "epoch": 0.19, + "learning_rate": 1.901706560959407e-05, + "loss": 0.145, + "step": 105 + }, + { + "epoch": 0.19, + "learning_rate": 1.8991132051180332e-05, + "loss": 0.1693, + "step": 106 + }, + { + "epoch": 0.19, + "learning_rate": 1.8964878977506496e-05, + "loss": 0.2012, + "step": 107 + }, + { + "epoch": 0.19, + "learning_rate": 1.8938307321520453e-05, + "loss": 0.1286, + "step": 108 + }, + { + "epoch": 0.2, + "learning_rate": 1.8911418027491453e-05, + "loss": 0.1396, + "step": 109 + }, + { + "epoch": 0.2, + "learning_rate": 1.8884212050976568e-05, + "loss": 0.0291, + "step": 110 + }, + { + "epoch": 0.2, + "learning_rate": 1.885669035878672e-05, + "loss": 0.0317, + "step": 111 + }, + { + "epoch": 0.2, + "learning_rate": 1.882885392895232e-05, + "loss": 0.1143, + "step": 112 + }, + { + "epoch": 0.2, + "learning_rate": 1.8800703750688536e-05, + "loss": 0.126, + "step": 113 + }, + { + "epoch": 0.21, + "learning_rate": 1.877224082436011e-05, + "loss": 0.2017, + "step": 114 + }, + { + "epoch": 0.21, + "learning_rate": 1.8743466161445823e-05, + "loss": 0.0735, + "step": 115 + }, + { + "epoch": 0.21, + "learning_rate": 1.8714380784502553e-05, + "loss": 0.0527, + "step": 116 + }, + { + "epoch": 0.21, + "learning_rate": 1.8684985727128936e-05, + "loss": 0.1112, + "step": 117 + }, + { + "epoch": 0.21, + "learning_rate": 1.8655282033928618e-05, + "loss": 0.3129, + "step": 118 + }, + { + "epoch": 0.21, + "learning_rate": 1.8625270760473164e-05, + "loss": 0.2827, + "step": 119 + }, + { + "epoch": 0.22, + "learning_rate": 1.8594952973264512e-05, + "loss": 0.5608, + "step": 120 + }, + { + "epoch": 0.22, + "learning_rate": 1.856432974969711e-05, + "loss": 0.1465, + "step": 121 + }, + { + "epoch": 0.22, + "learning_rate": 1.8533402178019596e-05, + "loss": 0.1322, + "step": 122 + }, + { + "epoch": 0.22, + "learning_rate": 1.8502171357296144e-05, + "loss": 0.0912, + "step": 123 + }, + { + "epoch": 0.22, + "learning_rate": 1.8470638397367397e-05, + "loss": 0.0419, + "step": 124 + }, + { + "epoch": 0.23, + "learning_rate": 1.8438804418811038e-05, + "loss": 0.0369, + "step": 125 + }, + { + "epoch": 0.23, + "learning_rate": 1.8406670552901958e-05, + "loss": 0.0529, + "step": 126 + }, + { + "epoch": 0.23, + "learning_rate": 1.837423794157206e-05, + "loss": 0.1472, + "step": 127 + }, + { + "epoch": 0.23, + "learning_rate": 1.834150773736967e-05, + "loss": 0.0425, + "step": 128 + }, + { + "epoch": 0.23, + "learning_rate": 1.8308481103418597e-05, + "loss": 0.1634, + "step": 129 + }, + { + "epoch": 0.23, + "learning_rate": 1.8275159213376783e-05, + "loss": 0.0485, + "step": 130 + }, + { + "epoch": 0.24, + "learning_rate": 1.82415432513946e-05, + "loss": 0.0313, + "step": 131 + }, + { + "epoch": 0.24, + "learning_rate": 1.8207634412072765e-05, + "loss": 0.1792, + "step": 132 + }, + { + "epoch": 0.24, + "learning_rate": 1.81734339004199e-05, + "loss": 0.1184, + "step": 133 + }, + { + "epoch": 0.24, + "learning_rate": 1.8138942931809702e-05, + "loss": 0.2756, + "step": 134 + }, + { + "epoch": 0.24, + "learning_rate": 1.8104162731937746e-05, + "loss": 0.0635, + "step": 135 + }, + { + "epoch": 0.25, + "learning_rate": 1.8069094536777938e-05, + "loss": 0.0158, + "step": 136 + }, + { + "epoch": 0.25, + "learning_rate": 1.8033739592538598e-05, + "loss": 0.2732, + "step": 137 + }, + { + "epoch": 0.25, + "learning_rate": 1.7998099155618147e-05, + "loss": 0.1428, + "step": 138 + }, + { + "epoch": 0.25, + "learning_rate": 1.7962174492560492e-05, + "loss": 0.0777, + "step": 139 + }, + { + "epoch": 0.25, + "learning_rate": 1.7925966880009998e-05, + "loss": 0.1644, + "step": 140 + }, + { + "epoch": 0.25, + "learning_rate": 1.7889477604666124e-05, + "loss": 0.0999, + "step": 141 + }, + { + "epoch": 0.26, + "learning_rate": 1.785270796323769e-05, + "loss": 0.0446, + "step": 142 + }, + { + "epoch": 0.26, + "learning_rate": 1.7815659262396825e-05, + "loss": 0.0647, + "step": 143 + }, + { + "epoch": 0.26, + "learning_rate": 1.7778332818732492e-05, + "loss": 0.0521, + "step": 144 + }, + { + "epoch": 0.26, + "learning_rate": 1.7740729958703725e-05, + "loss": 0.2041, + "step": 145 + }, + { + "epoch": 0.26, + "learning_rate": 1.7702852018592493e-05, + "loss": 0.0149, + "step": 146 + }, + { + "epoch": 0.26, + "learning_rate": 1.7664700344456198e-05, + "loss": 0.0502, + "step": 147 + }, + { + "epoch": 0.27, + "learning_rate": 1.762627629207986e-05, + "loss": 0.2027, + "step": 148 + }, + { + "epoch": 0.27, + "learning_rate": 1.758758122692791e-05, + "loss": 0.0187, + "step": 149 + }, + { + "epoch": 0.27, + "learning_rate": 1.7548616524095697e-05, + "loss": 0.1248, + "step": 150 + }, + { + "epoch": 0.27, + "learning_rate": 1.7509383568260597e-05, + "loss": 0.0859, + "step": 151 + }, + { + "epoch": 0.27, + "learning_rate": 1.7469883753632817e-05, + "loss": 0.0822, + "step": 152 + }, + { + "epoch": 0.28, + "learning_rate": 1.743011848390585e-05, + "loss": 0.2445, + "step": 153 + }, + { + "epoch": 0.28, + "learning_rate": 1.7390089172206594e-05, + "loss": 0.2662, + "step": 154 + }, + { + "epoch": 0.28, + "learning_rate": 1.7349797241045115e-05, + "loss": 0.0984, + "step": 155 + }, + { + "epoch": 0.28, + "learning_rate": 1.730924412226413e-05, + "loss": 0.0317, + "step": 156 + }, + { + "epoch": 0.28, + "learning_rate": 1.726843125698809e-05, + "loss": 0.1129, + "step": 157 + }, + { + "epoch": 0.28, + "learning_rate": 1.7227360095571992e-05, + "loss": 0.1882, + "step": 158 + }, + { + "epoch": 0.29, + "learning_rate": 1.7186032097549822e-05, + "loss": 0.1099, + "step": 159 + }, + { + "epoch": 0.29, + "learning_rate": 1.7144448731582698e-05, + "loss": 0.3506, + "step": 160 + }, + { + "epoch": 0.29, + "learning_rate": 1.7102611475406676e-05, + "loss": 0.0936, + "step": 161 + }, + { + "epoch": 0.29, + "learning_rate": 1.7060521815780225e-05, + "loss": 0.104, + "step": 162 + }, + { + "epoch": 0.29, + "learning_rate": 1.7018181248431416e-05, + "loss": 0.168, + "step": 163 + }, + { + "epoch": 0.3, + "learning_rate": 1.6975591278004747e-05, + "loss": 0.2726, + "step": 164 + }, + { + "epoch": 0.3, + "learning_rate": 1.6932753418007683e-05, + "loss": 0.0564, + "step": 165 + }, + { + "epoch": 0.3, + "learning_rate": 1.688966919075687e-05, + "loss": 0.2981, + "step": 166 + }, + { + "epoch": 0.3, + "learning_rate": 1.684634012732403e-05, + "loss": 0.0602, + "step": 167 + }, + { + "epoch": 0.3, + "learning_rate": 1.680276776748157e-05, + "loss": 0.0364, + "step": 168 + }, + { + "epoch": 0.3, + "learning_rate": 1.6758953659647838e-05, + "loss": 0.096, + "step": 169 + }, + { + "epoch": 0.31, + "learning_rate": 1.6714899360832118e-05, + "loss": 0.2139, + "step": 170 + }, + { + "epoch": 0.31, + "learning_rate": 1.667060643657929e-05, + "loss": 0.1666, + "step": 171 + }, + { + "epoch": 0.31, + "learning_rate": 1.66260764609142e-05, + "loss": 0.0486, + "step": 172 + }, + { + "epoch": 0.31, + "learning_rate": 1.658131101628571e-05, + "loss": 0.055, + "step": 173 + }, + { + "epoch": 0.31, + "learning_rate": 1.653631169351049e-05, + "loss": 0.0953, + "step": 174 + }, + { + "epoch": 0.32, + "learning_rate": 1.6491080091716457e-05, + "loss": 0.1824, + "step": 175 + }, + { + "epoch": 0.32, + "learning_rate": 1.6445617818285974e-05, + "loss": 0.0226, + "step": 176 + }, + { + "epoch": 0.32, + "learning_rate": 1.6399926488798702e-05, + "loss": 0.0388, + "step": 177 + }, + { + "epoch": 0.32, + "learning_rate": 1.6354007726974205e-05, + "loss": 0.1149, + "step": 178 + }, + { + "epoch": 0.32, + "learning_rate": 1.630786316461425e-05, + "loss": 0.1428, + "step": 179 + }, + { + "epoch": 0.32, + "learning_rate": 1.6261494441544805e-05, + "loss": 0.0445, + "step": 180 + }, + { + "epoch": 0.33, + "learning_rate": 1.6214903205557774e-05, + "loss": 0.0612, + "step": 181 + }, + { + "epoch": 0.33, + "learning_rate": 1.6168091112352443e-05, + "loss": 0.0826, + "step": 182 + }, + { + "epoch": 0.33, + "learning_rate": 1.612105982547663e-05, + "loss": 0.0376, + "step": 183 + }, + { + "epoch": 0.33, + "learning_rate": 1.607381101626758e-05, + "loss": 0.1441, + "step": 184 + }, + { + "epoch": 0.33, + "learning_rate": 1.6026346363792565e-05, + "loss": 0.1089, + "step": 185 + }, + { + "epoch": 0.34, + "learning_rate": 1.5978667554789216e-05, + "loss": 0.0845, + "step": 186 + }, + { + "epoch": 0.34, + "learning_rate": 1.5930776283605585e-05, + "loss": 0.0835, + "step": 187 + }, + { + "epoch": 0.34, + "learning_rate": 1.5882674252139928e-05, + "loss": 0.0762, + "step": 188 + }, + { + "epoch": 0.34, + "learning_rate": 1.5834363169780227e-05, + "loss": 0.067, + "step": 189 + }, + { + "epoch": 0.34, + "learning_rate": 1.578584475334345e-05, + "loss": 0.0327, + "step": 190 + }, + { + "epoch": 0.34, + "learning_rate": 1.5737120727014535e-05, + "loss": 0.0254, + "step": 191 + }, + { + "epoch": 0.35, + "learning_rate": 1.5688192822285116e-05, + "loss": 0.028, + "step": 192 + }, + { + "epoch": 0.35, + "learning_rate": 1.5639062777892e-05, + "loss": 0.1708, + "step": 193 + }, + { + "epoch": 0.35, + "learning_rate": 1.5589732339755362e-05, + "loss": 0.0542, + "step": 194 + }, + { + "epoch": 0.35, + "learning_rate": 1.5540203260916728e-05, + "loss": 0.2358, + "step": 195 + }, + { + "epoch": 0.35, + "learning_rate": 1.5490477301476648e-05, + "loss": 0.1471, + "step": 196 + }, + { + "epoch": 0.35, + "learning_rate": 1.5440556228532168e-05, + "loss": 0.0414, + "step": 197 + }, + { + "epoch": 0.36, + "learning_rate": 1.5390441816114022e-05, + "loss": 0.0754, + "step": 198 + }, + { + "epoch": 0.36, + "learning_rate": 1.534013584512359e-05, + "loss": 0.105, + "step": 199 + }, + { + "epoch": 0.36, + "learning_rate": 1.5289640103269626e-05, + "loss": 0.2052, + "step": 200 + }, + { + "epoch": 0.36, + "learning_rate": 1.5238956385004703e-05, + "loss": 0.2482, + "step": 201 + }, + { + "epoch": 0.36, + "learning_rate": 1.5188086491461467e-05, + "loss": 0.0967, + "step": 202 + }, + { + "epoch": 0.37, + "learning_rate": 1.5137032230388613e-05, + "loss": 0.1314, + "step": 203 + }, + { + "epoch": 0.37, + "learning_rate": 1.5085795416086655e-05, + "loss": 0.2313, + "step": 204 + }, + { + "epoch": 0.37, + "learning_rate": 1.5034377869343453e-05, + "loss": 0.1304, + "step": 205 + }, + { + "epoch": 0.37, + "learning_rate": 1.4982781417369496e-05, + "loss": 0.2304, + "step": 206 + }, + { + "epoch": 0.37, + "learning_rate": 1.4931007893732981e-05, + "loss": 0.0508, + "step": 207 + }, + { + "epoch": 0.37, + "learning_rate": 1.4879059138294647e-05, + "loss": 0.1389, + "step": 208 + }, + { + "epoch": 0.38, + "learning_rate": 1.4826936997142399e-05, + "loss": 0.2129, + "step": 209 + }, + { + "epoch": 0.38, + "learning_rate": 1.4774643322525691e-05, + "loss": 0.0201, + "step": 210 + }, + { + "epoch": 0.38, + "learning_rate": 1.4722179972789725e-05, + "loss": 0.1064, + "step": 211 + }, + { + "epoch": 0.38, + "learning_rate": 1.466954881230939e-05, + "loss": 0.0459, + "step": 212 + }, + { + "epoch": 0.38, + "learning_rate": 1.4616751711423016e-05, + "loss": 0.2229, + "step": 213 + }, + { + "epoch": 0.39, + "learning_rate": 1.4563790546365914e-05, + "loss": 0.1464, + "step": 214 + }, + { + "epoch": 0.39, + "learning_rate": 1.4510667199203697e-05, + "loss": 0.0558, + "step": 215 + }, + { + "epoch": 0.39, + "learning_rate": 1.4457383557765385e-05, + "loss": 0.0214, + "step": 216 + }, + { + "epoch": 0.39, + "learning_rate": 1.4403941515576344e-05, + "loss": 0.1551, + "step": 217 + }, + { + "epoch": 0.39, + "learning_rate": 1.4350342971790979e-05, + "loss": 0.2093, + "step": 218 + }, + { + "epoch": 0.39, + "learning_rate": 1.4296589831125234e-05, + "loss": 0.0453, + "step": 219 + }, + { + "epoch": 0.4, + "learning_rate": 1.4242684003788934e-05, + "loss": 0.0317, + "step": 220 + }, + { + "epoch": 0.4, + "learning_rate": 1.418862740541788e-05, + "loss": 0.1334, + "step": 221 + }, + { + "epoch": 0.4, + "learning_rate": 1.4134421957005775e-05, + "loss": 0.0185, + "step": 222 + }, + { + "epoch": 0.4, + "learning_rate": 1.4080069584835971e-05, + "loss": 0.087, + "step": 223 + }, + { + "epoch": 0.4, + "learning_rate": 1.4025572220412998e-05, + "loss": 0.1747, + "step": 224 + }, + { + "epoch": 0.41, + "learning_rate": 1.3970931800393943e-05, + "loss": 0.1168, + "step": 225 + }, + { + "epoch": 0.41, + "learning_rate": 1.391615026651961e-05, + "loss": 0.5095, + "step": 226 + }, + { + "epoch": 0.41, + "learning_rate": 1.3861229565545532e-05, + "loss": 0.1157, + "step": 227 + }, + { + "epoch": 0.41, + "learning_rate": 1.3806171649172782e-05, + "loss": 0.1201, + "step": 228 + }, + { + "epoch": 0.41, + "learning_rate": 1.3750978473978611e-05, + "loss": 0.2232, + "step": 229 + }, + { + "epoch": 0.41, + "learning_rate": 1.3695652001346928e-05, + "loss": 0.1718, + "step": 230 + }, + { + "epoch": 0.42, + "learning_rate": 1.36401941973986e-05, + "loss": 0.0509, + "step": 231 + }, + { + "epoch": 0.42, + "learning_rate": 1.3584607032921566e-05, + "loss": 0.0333, + "step": 232 + }, + { + "epoch": 0.42, + "learning_rate": 1.3528892483300821e-05, + "loss": 0.1811, + "step": 233 + }, + { + "epoch": 0.42, + "learning_rate": 1.3473052528448203e-05, + "loss": 0.1771, + "step": 234 + }, + { + "epoch": 0.42, + "learning_rate": 1.3417089152732049e-05, + "loss": 0.1098, + "step": 235 + }, + { + "epoch": 0.43, + "learning_rate": 1.3361004344906652e-05, + "loss": 0.0566, + "step": 236 + }, + { + "epoch": 0.43, + "learning_rate": 1.330480009804162e-05, + "loss": 0.2864, + "step": 237 + }, + { + "epoch": 0.43, + "learning_rate": 1.3248478409451017e-05, + "loss": 0.0166, + "step": 238 + }, + { + "epoch": 0.43, + "learning_rate": 1.3192041280622409e-05, + "loss": 0.2239, + "step": 239 + }, + { + "epoch": 0.43, + "learning_rate": 1.3135490717145726e-05, + "loss": 0.2247, + "step": 240 + }, + { + "epoch": 0.43, + "learning_rate": 1.3078828728641994e-05, + "loss": 0.1758, + "step": 241 + }, + { + "epoch": 0.44, + "learning_rate": 1.3022057328691915e-05, + "loss": 0.0618, + "step": 242 + }, + { + "epoch": 0.44, + "learning_rate": 1.2965178534764311e-05, + "loss": 0.1204, + "step": 243 + }, + { + "epoch": 0.44, + "learning_rate": 1.2908194368144437e-05, + "loss": 0.0233, + "step": 244 + }, + { + "epoch": 0.44, + "learning_rate": 1.285110685386215e-05, + "loss": 0.0387, + "step": 245 + }, + { + "epoch": 0.44, + "learning_rate": 1.2793918020619937e-05, + "loss": 0.0791, + "step": 246 + }, + { + "epoch": 0.45, + "learning_rate": 1.2736629900720832e-05, + "loss": 0.0106, + "step": 247 + }, + { + "epoch": 0.45, + "learning_rate": 1.2679244529996182e-05, + "loss": 0.042, + "step": 248 + }, + { + "epoch": 0.45, + "learning_rate": 1.262176394773332e-05, + "loss": 0.0725, + "step": 249 + }, + { + "epoch": 0.45, + "learning_rate": 1.256419019660308e-05, + "loss": 0.0834, + "step": 250 + }, + { + "epoch": 0.45, + "learning_rate": 1.2506525322587207e-05, + "loss": 0.0432, + "step": 251 + }, + { + "epoch": 0.45, + "learning_rate": 1.2448771374905655e-05, + "loss": 0.177, + "step": 252 + }, + { + "epoch": 0.46, + "learning_rate": 1.2390930405943766e-05, + "loss": 0.0887, + "step": 253 + }, + { + "epoch": 0.46, + "learning_rate": 1.233300447117933e-05, + "loss": 0.0152, + "step": 254 + }, + { + "epoch": 0.46, + "learning_rate": 1.2274995629109545e-05, + "loss": 0.0317, + "step": 255 + }, + { + "epoch": 0.46, + "learning_rate": 1.2216905941177854e-05, + "loss": 0.0268, + "step": 256 + }, + { + "epoch": 0.46, + "learning_rate": 1.215873747170071e-05, + "loss": 0.1685, + "step": 257 + }, + { + "epoch": 0.46, + "learning_rate": 1.2100492287794186e-05, + "loss": 0.1403, + "step": 258 + }, + { + "epoch": 0.47, + "learning_rate": 1.2042172459300546e-05, + "loss": 0.0443, + "step": 259 + }, + { + "epoch": 0.47, + "learning_rate": 1.198378005871467e-05, + "loss": 0.3589, + "step": 260 + }, + { + "epoch": 0.47, + "learning_rate": 1.192531716111042e-05, + "loss": 0.0427, + "step": 261 + }, + { + "epoch": 0.47, + "learning_rate": 1.1866785844066884e-05, + "loss": 0.1103, + "step": 262 + }, + { + "epoch": 0.47, + "learning_rate": 1.1808188187594549e-05, + "loss": 0.2563, + "step": 263 + }, + { + "epoch": 0.48, + "learning_rate": 1.1749526274061394e-05, + "loss": 0.1494, + "step": 264 + }, + { + "epoch": 0.48, + "learning_rate": 1.1690802188118878e-05, + "loss": 0.1105, + "step": 265 + }, + { + "epoch": 0.48, + "learning_rate": 1.1632018016627859e-05, + "loss": 0.082, + "step": 266 + }, + { + "epoch": 0.48, + "learning_rate": 1.1573175848584455e-05, + "loss": 0.3555, + "step": 267 + }, + { + "epoch": 0.48, + "learning_rate": 1.1514277775045768e-05, + "loss": 0.0603, + "step": 268 + }, + { + "epoch": 0.48, + "learning_rate": 1.1455325889055616e-05, + "loss": 0.2883, + "step": 269 + }, + { + "epoch": 0.49, + "learning_rate": 1.1396322285570119e-05, + "loss": 0.054, + "step": 270 + }, + { + "epoch": 0.49, + "learning_rate": 1.1337269061383278e-05, + "loss": 0.0668, + "step": 271 + }, + { + "epoch": 0.49, + "learning_rate": 1.1278168315052445e-05, + "loss": 0.1454, + "step": 272 + }, + { + "epoch": 0.49, + "learning_rate": 1.1219022146823762e-05, + "loss": 0.0619, + "step": 273 + }, + { + "epoch": 0.49, + "learning_rate": 1.1159832658557498e-05, + "loss": 0.0449, + "step": 274 + }, + { + "epoch": 0.5, + "learning_rate": 1.1100601953653393e-05, + "loss": 0.0684, + "step": 275 + }, + { + "epoch": 0.5, + "learning_rate": 1.1041332136975874e-05, + "loss": 0.0273, + "step": 276 + }, + { + "epoch": 0.5, + "learning_rate": 1.0982025314779287e-05, + "loss": 0.2375, + "step": 277 + }, + { + "epoch": 0.5, + "learning_rate": 1.092268359463302e-05, + "loss": 0.0353, + "step": 278 + }, + { + "epoch": 0.5, + "learning_rate": 1.086330908534663e-05, + "loss": 0.1224, + "step": 279 + }, + { + "epoch": 0.5, + "learning_rate": 1.0803903896894877e-05, + "loss": 0.1297, + "step": 280 + }, + { + "epoch": 0.51, + "learning_rate": 1.0744470140342775e-05, + "loss": 0.4464, + "step": 281 + }, + { + "epoch": 0.51, + "learning_rate": 1.0685009927770542e-05, + "loss": 0.103, + "step": 282 + }, + { + "epoch": 0.51, + "learning_rate": 1.0625525372198564e-05, + "loss": 0.0881, + "step": 283 + }, + { + "epoch": 0.51, + "learning_rate": 1.056601858751229e-05, + "loss": 0.075, + "step": 284 + }, + { + "epoch": 0.51, + "learning_rate": 1.0506491688387128e-05, + "loss": 0.0677, + "step": 285 + }, + { + "epoch": 0.52, + "learning_rate": 1.0446946790213275e-05, + "loss": 0.2301, + "step": 286 + }, + { + "epoch": 0.52, + "learning_rate": 1.0387386009020569e-05, + "loss": 0.0737, + "step": 287 + }, + { + "epoch": 0.52, + "learning_rate": 1.032781146140326e-05, + "loss": 0.1262, + "step": 288 + }, + { + "epoch": 0.52, + "learning_rate": 1.0268225264444829e-05, + "loss": 0.0252, + "step": 289 + }, + { + "epoch": 0.52, + "learning_rate": 1.0208629535642726e-05, + "loss": 0.0192, + "step": 290 + }, + { + "epoch": 0.52, + "learning_rate": 1.0149026392833137e-05, + "loss": 0.257, + "step": 291 + }, + { + "epoch": 0.53, + "learning_rate": 1.0089417954115715e-05, + "loss": 0.1876, + "step": 292 + }, + { + "epoch": 0.53, + "learning_rate": 1.002980633777831e-05, + "loss": 0.0341, + "step": 293 + }, + { + "epoch": 0.53, + "learning_rate": 9.970193662221694e-06, + "loss": 0.232, + "step": 294 + }, + { + "epoch": 0.53, + "learning_rate": 9.910582045884292e-06, + "loss": 0.1429, + "step": 295 + }, + { + "epoch": 0.53, + "learning_rate": 9.850973607166865e-06, + "loss": 0.2432, + "step": 296 + }, + { + "epoch": 0.54, + "learning_rate": 9.791370464357279e-06, + "loss": 0.0288, + "step": 297 + }, + { + "epoch": 0.54, + "learning_rate": 9.731774735555174e-06, + "loss": 0.2272, + "step": 298 + }, + { + "epoch": 0.54, + "learning_rate": 9.672188538596746e-06, + "loss": 0.1102, + "step": 299 + }, + { + "epoch": 0.54, + "learning_rate": 9.612613990979436e-06, + "loss": 0.0529, + "step": 300 + }, + { + "epoch": 0.54, + "learning_rate": 9.553053209786725e-06, + "loss": 0.1721, + "step": 301 + }, + { + "epoch": 0.54, + "learning_rate": 9.493508311612874e-06, + "loss": 0.0046, + "step": 302 + }, + { + "epoch": 0.55, + "learning_rate": 9.433981412487711e-06, + "loss": 0.043, + "step": 303 + }, + { + "epoch": 0.55, + "learning_rate": 9.374474627801439e-06, + "loss": 0.0589, + "step": 304 + }, + { + "epoch": 0.55, + "learning_rate": 9.314990072229461e-06, + "loss": 0.0114, + "step": 305 + }, + { + "epoch": 0.55, + "learning_rate": 9.25552985965723e-06, + "loss": 0.1645, + "step": 306 + }, + { + "epoch": 0.55, + "learning_rate": 9.196096103105127e-06, + "loss": 0.2002, + "step": 307 + }, + { + "epoch": 0.55, + "learning_rate": 9.136690914653377e-06, + "loss": 0.057, + "step": 308 + }, + { + "epoch": 0.56, + "learning_rate": 9.07731640536698e-06, + "loss": 0.1744, + "step": 309 + }, + { + "epoch": 0.56, + "learning_rate": 9.017974685220716e-06, + "loss": 0.0343, + "step": 310 + }, + { + "epoch": 0.56, + "learning_rate": 8.958667863024127e-06, + "loss": 0.0405, + "step": 311 + }, + { + "epoch": 0.56, + "learning_rate": 8.899398046346608e-06, + "loss": 0.2055, + "step": 312 + }, + { + "epoch": 0.56, + "learning_rate": 8.840167341442505e-06, + "loss": 0.0673, + "step": 313 + }, + { + "epoch": 0.57, + "learning_rate": 8.78097785317624e-06, + "loss": 0.0291, + "step": 314 + }, + { + "epoch": 0.57, + "learning_rate": 8.721831684947557e-06, + "loss": 0.2443, + "step": 315 + }, + { + "epoch": 0.57, + "learning_rate": 8.662730938616724e-06, + "loss": 0.058, + "step": 316 + }, + { + "epoch": 0.57, + "learning_rate": 8.603677714429888e-06, + "loss": 0.2347, + "step": 317 + }, + { + "epoch": 0.57, + "learning_rate": 8.54467411094439e-06, + "loss": 0.0307, + "step": 318 + }, + { + "epoch": 0.57, + "learning_rate": 8.485722224954237e-06, + "loss": 0.0094, + "step": 319 + }, + { + "epoch": 0.58, + "learning_rate": 8.426824151415548e-06, + "loss": 0.0724, + "step": 320 + }, + { + "epoch": 0.58, + "learning_rate": 8.367981983372143e-06, + "loss": 0.0816, + "step": 321 + }, + { + "epoch": 0.58, + "learning_rate": 8.309197811881128e-06, + "loss": 0.0375, + "step": 322 + }, + { + "epoch": 0.58, + "learning_rate": 8.250473725938608e-06, + "loss": 0.0106, + "step": 323 + }, + { + "epoch": 0.58, + "learning_rate": 8.191811812405453e-06, + "loss": 0.0701, + "step": 324 + }, + { + "epoch": 0.59, + "learning_rate": 8.133214155933118e-06, + "loss": 0.0134, + "step": 325 + }, + { + "epoch": 0.59, + "learning_rate": 8.074682838889581e-06, + "loss": 0.1992, + "step": 326 + }, + { + "epoch": 0.59, + "learning_rate": 8.01621994128533e-06, + "loss": 0.1688, + "step": 327 + }, + { + "epoch": 0.59, + "learning_rate": 7.95782754069946e-06, + "loss": 0.2751, + "step": 328 + }, + { + "epoch": 0.59, + "learning_rate": 7.899507712205818e-06, + "loss": 0.0192, + "step": 329 + }, + { + "epoch": 0.59, + "learning_rate": 7.841262528299296e-06, + "loss": 0.0797, + "step": 330 + }, + { + "epoch": 0.6, + "learning_rate": 7.783094058822147e-06, + "loss": 0.0867, + "step": 331 + }, + { + "epoch": 0.6, + "learning_rate": 7.72500437089046e-06, + "loss": 0.0445, + "step": 332 + }, + { + "epoch": 0.6, + "learning_rate": 7.666995528820673e-06, + "loss": 0.1654, + "step": 333 + }, + { + "epoch": 0.6, + "learning_rate": 7.609069594056234e-06, + "loss": 0.0168, + "step": 334 + }, + { + "epoch": 0.6, + "learning_rate": 7.551228625094349e-06, + "loss": 0.0779, + "step": 335 + }, + { + "epoch": 0.61, + "learning_rate": 7.493474677412795e-06, + "loss": 0.0444, + "step": 336 + }, + { + "epoch": 0.61, + "learning_rate": 7.435809803396923e-06, + "loss": 0.1839, + "step": 337 + }, + { + "epoch": 0.61, + "learning_rate": 7.37823605226668e-06, + "loss": 0.3834, + "step": 338 + }, + { + "epoch": 0.61, + "learning_rate": 7.320755470003822e-06, + "loss": 0.0261, + "step": 339 + }, + { + "epoch": 0.61, + "learning_rate": 7.263370099279173e-06, + "loss": 0.0084, + "step": 340 + }, + { + "epoch": 0.61, + "learning_rate": 7.2060819793800665e-06, + "loss": 0.0469, + "step": 341 + }, + { + "epoch": 0.62, + "learning_rate": 7.148893146137852e-06, + "loss": 0.3605, + "step": 342 + }, + { + "epoch": 0.62, + "learning_rate": 7.091805631855566e-06, + "loss": 0.0621, + "step": 343 + }, + { + "epoch": 0.62, + "learning_rate": 7.034821465235693e-06, + "loss": 0.099, + "step": 344 + }, + { + "epoch": 0.62, + "learning_rate": 6.977942671308087e-06, + "loss": 0.0641, + "step": 345 + }, + { + "epoch": 0.62, + "learning_rate": 6.921171271358007e-06, + "loss": 0.0859, + "step": 346 + }, + { + "epoch": 0.63, + "learning_rate": 6.864509282854272e-06, + "loss": 0.0564, + "step": 347 + }, + { + "epoch": 0.63, + "learning_rate": 6.8079587193775935e-06, + "loss": 0.0405, + "step": 348 + }, + { + "epoch": 0.63, + "learning_rate": 6.751521590548986e-06, + "loss": 0.101, + "step": 349 + }, + { + "epoch": 0.63, + "learning_rate": 6.695199901958386e-06, + "loss": 0.1178, + "step": 350 + }, + { + "epoch": 0.63, + "learning_rate": 6.638995655093351e-06, + "loss": 0.2406, + "step": 351 + }, + { + "epoch": 0.63, + "learning_rate": 6.582910847267957e-06, + "loss": 0.1846, + "step": 352 + }, + { + "epoch": 0.64, + "learning_rate": 6.526947471551799e-06, + "loss": 0.1374, + "step": 353 + }, + { + "epoch": 0.64, + "learning_rate": 6.471107516699183e-06, + "loss": 0.0863, + "step": 354 + }, + { + "epoch": 0.64, + "learning_rate": 6.415392967078438e-06, + "loss": 0.0755, + "step": 355 + }, + { + "epoch": 0.64, + "learning_rate": 6.3598058026013995e-06, + "loss": 0.0732, + "step": 356 + }, + { + "epoch": 0.64, + "learning_rate": 6.304347998653074e-06, + "loss": 0.0555, + "step": 357 + }, + { + "epoch": 0.65, + "learning_rate": 6.24902152602139e-06, + "loss": 0.0475, + "step": 358 + }, + { + "epoch": 0.65, + "learning_rate": 6.193828350827222e-06, + "loss": 0.036, + "step": 359 + }, + { + "epoch": 0.65, + "learning_rate": 6.1387704344544684e-06, + "loss": 0.2679, + "step": 360 + }, + { + "epoch": 0.65, + "learning_rate": 6.083849733480394e-06, + "loss": 0.0661, + "step": 361 + }, + { + "epoch": 0.65, + "learning_rate": 6.0290681996060605e-06, + "loss": 0.0362, + "step": 362 + }, + { + "epoch": 0.65, + "learning_rate": 5.974427779587004e-06, + "loss": 0.0815, + "step": 363 + }, + { + "epoch": 0.66, + "learning_rate": 5.919930415164033e-06, + "loss": 0.0205, + "step": 364 + }, + { + "epoch": 0.66, + "learning_rate": 5.865578042994227e-06, + "loss": 0.0065, + "step": 365 + }, + { + "epoch": 0.66, + "learning_rate": 5.8113725945821245e-06, + "loss": 0.2377, + "step": 366 + }, + { + "epoch": 0.66, + "learning_rate": 5.757315996211066e-06, + "loss": 0.0673, + "step": 367 + }, + { + "epoch": 0.66, + "learning_rate": 5.703410168874768e-06, + "loss": 0.1033, + "step": 368 + }, + { + "epoch": 0.66, + "learning_rate": 5.649657028209024e-06, + "loss": 0.1259, + "step": 369 + }, + { + "epoch": 0.67, + "learning_rate": 5.5960584844236565e-06, + "loss": 0.0052, + "step": 370 + }, + { + "epoch": 0.67, + "learning_rate": 5.542616442234618e-06, + "loss": 0.1048, + "step": 371 + }, + { + "epoch": 0.67, + "learning_rate": 5.48933280079631e-06, + "loss": 0.3342, + "step": 372 + }, + { + "epoch": 0.67, + "learning_rate": 5.436209453634087e-06, + "loss": 0.0725, + "step": 373 + }, + { + "epoch": 0.67, + "learning_rate": 5.3832482885769855e-06, + "loss": 0.1597, + "step": 374 + }, + { + "epoch": 0.68, + "learning_rate": 5.330451187690614e-06, + "loss": 0.2186, + "step": 375 + }, + { + "epoch": 0.68, + "learning_rate": 5.277820027210279e-06, + "loss": 0.0521, + "step": 376 + }, + { + "epoch": 0.68, + "learning_rate": 5.225356677474309e-06, + "loss": 0.0426, + "step": 377 + }, + { + "epoch": 0.68, + "learning_rate": 5.1730630028576055e-06, + "loss": 0.1171, + "step": 378 + }, + { + "epoch": 0.68, + "learning_rate": 5.120940861705357e-06, + "loss": 0.0551, + "step": 379 + }, + { + "epoch": 0.68, + "learning_rate": 5.068992106267021e-06, + "loss": 0.1238, + "step": 380 + }, + { + "epoch": 0.69, + "learning_rate": 5.017218582630507e-06, + "loss": 0.4425, + "step": 381 + }, + { + "epoch": 0.69, + "learning_rate": 4.965622130656551e-06, + "loss": 0.1591, + "step": 382 + }, + { + "epoch": 0.69, + "learning_rate": 4.914204583913349e-06, + "loss": 0.0568, + "step": 383 + }, + { + "epoch": 0.69, + "learning_rate": 4.862967769611389e-06, + "loss": 0.0159, + "step": 384 + }, + { + "epoch": 0.69, + "learning_rate": 4.8119135085385375e-06, + "loss": 0.055, + "step": 385 + }, + { + "epoch": 0.7, + "learning_rate": 4.7610436149953e-06, + "loss": 0.0356, + "step": 386 + }, + { + "epoch": 0.7, + "learning_rate": 4.710359896730379e-06, + "loss": 0.0969, + "step": 387 + }, + { + "epoch": 0.7, + "learning_rate": 4.659864154876411e-06, + "loss": 0.1161, + "step": 388 + }, + { + "epoch": 0.7, + "learning_rate": 4.609558183885979e-06, + "loss": 0.0437, + "step": 389 + }, + { + "epoch": 0.7, + "learning_rate": 4.559443771467833e-06, + "loss": 0.1526, + "step": 390 + }, + { + "epoch": 0.7, + "learning_rate": 4.509522698523352e-06, + "loss": 0.0183, + "step": 391 + }, + { + "epoch": 0.71, + "learning_rate": 4.4597967390832745e-06, + "loss": 0.073, + "step": 392 + }, + { + "epoch": 0.71, + "learning_rate": 4.4102676602446375e-06, + "loss": 0.0411, + "step": 393 + }, + { + "epoch": 0.71, + "learning_rate": 4.360937222108002e-06, + "loss": 0.0524, + "step": 394 + }, + { + "epoch": 0.71, + "learning_rate": 4.3118071777148865e-06, + "loss": 0.1156, + "step": 395 + }, + { + "epoch": 0.71, + "learning_rate": 4.262879272985468e-06, + "loss": 0.0311, + "step": 396 + }, + { + "epoch": 0.72, + "learning_rate": 4.21415524665655e-06, + "loss": 0.1253, + "step": 397 + }, + { + "epoch": 0.72, + "learning_rate": 4.165636830219776e-06, + "loss": 0.0589, + "step": 398 + }, + { + "epoch": 0.72, + "learning_rate": 4.117325747860077e-06, + "loss": 0.0248, + "step": 399 + }, + { + "epoch": 0.72, + "learning_rate": 4.069223716394419e-06, + "loss": 0.0164, + "step": 400 + }, + { + "epoch": 0.72, + "learning_rate": 4.021332445210785e-06, + "loss": 0.1801, + "step": 401 + }, + { + "epoch": 0.72, + "learning_rate": 3.973653636207437e-06, + "loss": 0.107, + "step": 402 + }, + { + "epoch": 0.73, + "learning_rate": 3.9261889837324245e-06, + "loss": 0.0477, + "step": 403 + }, + { + "epoch": 0.73, + "learning_rate": 3.878940174523371e-06, + "loss": 0.0214, + "step": 404 + }, + { + "epoch": 0.73, + "learning_rate": 3.8319088876475595e-06, + "loss": 0.1071, + "step": 405 + }, + { + "epoch": 0.73, + "learning_rate": 3.785096794442229e-06, + "loss": 0.071, + "step": 406 + }, + { + "epoch": 0.73, + "learning_rate": 3.7385055584552e-06, + "loss": 0.0623, + "step": 407 + }, + { + "epoch": 0.74, + "learning_rate": 3.6921368353857524e-06, + "loss": 0.0534, + "step": 408 + }, + { + "epoch": 0.74, + "learning_rate": 3.645992273025797e-06, + "loss": 0.1143, + "step": 409 + }, + { + "epoch": 0.74, + "learning_rate": 3.6000735112012984e-06, + "loss": 0.1056, + "step": 410 + }, + { + "epoch": 0.74, + "learning_rate": 3.5543821817140313e-06, + "loss": 0.0537, + "step": 411 + }, + { + "epoch": 0.74, + "learning_rate": 3.5089199082835436e-06, + "loss": 0.0065, + "step": 412 + }, + { + "epoch": 0.74, + "learning_rate": 3.463688306489511e-06, + "loss": 0.0995, + "step": 413 + }, + { + "epoch": 0.75, + "learning_rate": 3.418688983714291e-06, + "loss": 0.0818, + "step": 414 + }, + { + "epoch": 0.75, + "learning_rate": 3.373923539085805e-06, + "loss": 0.0481, + "step": 415 + }, + { + "epoch": 0.75, + "learning_rate": 3.329393563420713e-06, + "loss": 0.1379, + "step": 416 + }, + { + "epoch": 0.75, + "learning_rate": 3.285100639167883e-06, + "loss": 0.1759, + "step": 417 + }, + { + "epoch": 0.75, + "learning_rate": 3.2410463403521653e-06, + "loss": 0.0599, + "step": 418 + }, + { + "epoch": 0.75, + "learning_rate": 3.1972322325184347e-06, + "loss": 0.0898, + "step": 419 + }, + { + "epoch": 0.76, + "learning_rate": 3.1536598726759747e-06, + "loss": 0.0079, + "step": 420 + }, + { + "epoch": 0.76, + "learning_rate": 3.110330809243134e-06, + "loss": 0.0185, + "step": 421 + }, + { + "epoch": 0.76, + "learning_rate": 3.0672465819923215e-06, + "loss": 0.0792, + "step": 422 + }, + { + "epoch": 0.76, + "learning_rate": 3.0244087219952565e-06, + "loss": 0.1059, + "step": 423 + }, + { + "epoch": 0.76, + "learning_rate": 2.981818751568586e-06, + "loss": 0.044, + "step": 424 + }, + { + "epoch": 0.77, + "learning_rate": 2.939478184219777e-06, + "loss": 0.0766, + "step": 425 + }, + { + "epoch": 0.77, + "learning_rate": 2.8973885245933287e-06, + "loss": 0.1558, + "step": 426 + }, + { + "epoch": 0.77, + "learning_rate": 2.855551268417305e-06, + "loss": 0.0052, + "step": 427 + }, + { + "epoch": 0.77, + "learning_rate": 2.813967902450179e-06, + "loss": 0.0747, + "step": 428 + }, + { + "epoch": 0.77, + "learning_rate": 2.7726399044280107e-06, + "loss": 0.0868, + "step": 429 + }, + { + "epoch": 0.77, + "learning_rate": 2.7315687430119097e-06, + "loss": 0.047, + "step": 430 + }, + { + "epoch": 0.78, + "learning_rate": 2.6907558777358756e-06, + "loss": 0.0721, + "step": 431 + }, + { + "epoch": 0.78, + "learning_rate": 2.650202758954886e-06, + "loss": 0.128, + "step": 432 + }, + { + "epoch": 0.78, + "learning_rate": 2.6099108277934105e-06, + "loss": 0.08, + "step": 433 + }, + { + "epoch": 0.78, + "learning_rate": 2.5698815160941494e-06, + "loss": 0.0901, + "step": 434 + }, + { + "epoch": 0.78, + "learning_rate": 2.5301162463671845e-06, + "loss": 0.0965, + "step": 435 + }, + { + "epoch": 0.79, + "learning_rate": 2.4906164317394067e-06, + "loss": 0.062, + "step": 436 + }, + { + "epoch": 0.79, + "learning_rate": 2.451383475904304e-06, + "loss": 0.0634, + "step": 437 + }, + { + "epoch": 0.79, + "learning_rate": 2.4124187730720916e-06, + "loss": 0.1525, + "step": 438 + }, + { + "epoch": 0.79, + "learning_rate": 2.3737237079201437e-06, + "loss": 0.1071, + "step": 439 + }, + { + "epoch": 0.79, + "learning_rate": 2.3352996555438036e-06, + "loss": 0.0409, + "step": 440 + }, + { + "epoch": 0.79, + "learning_rate": 2.297147981407509e-06, + "loss": 0.1753, + "step": 441 + }, + { + "epoch": 0.8, + "learning_rate": 2.2592700412962775e-06, + "loss": 0.175, + "step": 442 + }, + { + "epoch": 0.8, + "learning_rate": 2.2216671812675118e-06, + "loss": 0.0348, + "step": 443 + }, + { + "epoch": 0.8, + "learning_rate": 2.184340737603178e-06, + "loss": 0.105, + "step": 444 + }, + { + "epoch": 0.8, + "learning_rate": 2.1472920367623094e-06, + "loss": 0.0477, + "step": 445 + }, + { + "epoch": 0.8, + "learning_rate": 2.1105223953338805e-06, + "loss": 0.0176, + "step": 446 + }, + { + "epoch": 0.81, + "learning_rate": 2.0740331199900053e-06, + "loss": 0.6195, + "step": 447 + }, + { + "epoch": 0.81, + "learning_rate": 2.0378255074395094e-06, + "loss": 0.0913, + "step": 448 + }, + { + "epoch": 0.81, + "learning_rate": 2.001900844381857e-06, + "loss": 0.0386, + "step": 449 + }, + { + "epoch": 0.81, + "learning_rate": 1.9662604074614044e-06, + "loss": 0.1309, + "step": 450 + }, + { + "epoch": 0.81, + "learning_rate": 1.9309054632220645e-06, + "loss": 0.0218, + "step": 451 + }, + { + "epoch": 0.81, + "learning_rate": 1.895837268062256e-06, + "loss": 0.0185, + "step": 452 + }, + { + "epoch": 0.82, + "learning_rate": 1.8610570681903018e-06, + "loss": 0.3416, + "step": 453 + }, + { + "epoch": 0.82, + "learning_rate": 1.8265660995801004e-06, + "loss": 0.2817, + "step": 454 + }, + { + "epoch": 0.82, + "learning_rate": 1.7923655879272395e-06, + "loss": 0.0182, + "step": 455 + }, + { + "epoch": 0.82, + "learning_rate": 1.7584567486054039e-06, + "loss": 0.0665, + "step": 456 + }, + { + "epoch": 0.82, + "learning_rate": 1.7248407866232175e-06, + "loss": 0.0403, + "step": 457 + }, + { + "epoch": 0.83, + "learning_rate": 1.6915188965814034e-06, + "loss": 0.017, + "step": 458 + }, + { + "epoch": 0.83, + "learning_rate": 1.6915188965814034e-06, + "loss": 0.3175, + "step": 459 + }, + { + "epoch": 0.83, + "learning_rate": 1.6584922626303325e-06, + "loss": 0.0474, + "step": 460 + }, + { + "epoch": 0.83, + "learning_rate": 1.6257620584279454e-06, + "loss": 0.0881, + "step": 461 + }, + { + "epoch": 0.83, + "learning_rate": 1.5933294470980443e-06, + "loss": 0.0475, + "step": 462 + }, + { + "epoch": 0.83, + "learning_rate": 1.5611955811889645e-06, + "loss": 0.0473, + "step": 463 + }, + { + "epoch": 0.84, + "learning_rate": 1.5293616026326053e-06, + "loss": 0.0143, + "step": 464 + }, + { + "epoch": 0.84, + "learning_rate": 1.4978286427038602e-06, + "loss": 0.1228, + "step": 465 + }, + { + "epoch": 0.84, + "learning_rate": 1.4665978219804056e-06, + "loss": 0.2635, + "step": 466 + }, + { + "epoch": 0.84, + "learning_rate": 1.435670250302892e-06, + "loss": 0.0668, + "step": 467 + }, + { + "epoch": 0.84, + "learning_rate": 1.405047026735491e-06, + "loss": 0.082, + "step": 468 + }, + { + "epoch": 0.85, + "learning_rate": 1.3747292395268407e-06, + "loss": 0.085, + "step": 469 + }, + { + "epoch": 0.85, + "learning_rate": 1.344717966071385e-06, + "loss": 0.1178, + "step": 470 + }, + { + "epoch": 0.85, + "learning_rate": 1.3150142728710669e-06, + "loss": 0.0633, + "step": 471 + }, + { + "epoch": 0.85, + "learning_rate": 1.2856192154974488e-06, + "loss": 0.0229, + "step": 472 + }, + { + "epoch": 0.85, + "learning_rate": 1.2565338385541792e-06, + "loss": 0.0356, + "step": 473 + }, + { + "epoch": 0.85, + "learning_rate": 1.2277591756398933e-06, + "loss": 0.1599, + "step": 474 + }, + { + "epoch": 0.86, + "learning_rate": 1.1992962493114645e-06, + "loss": 0.0168, + "step": 475 + }, + { + "epoch": 0.86, + "learning_rate": 1.171146071047683e-06, + "loss": 0.0626, + "step": 476 + }, + { + "epoch": 0.86, + "learning_rate": 1.1433096412132838e-06, + "loss": 0.1343, + "step": 477 + }, + { + "epoch": 0.86, + "learning_rate": 1.1157879490234346e-06, + "loss": 0.0529, + "step": 478 + }, + { + "epoch": 0.86, + "learning_rate": 1.088581972508549e-06, + "loss": 0.0556, + "step": 479 + }, + { + "epoch": 0.86, + "learning_rate": 1.0616926784795511e-06, + "loss": 0.0903, + "step": 480 + }, + { + "epoch": 0.87, + "learning_rate": 1.035121022493506e-06, + "loss": 0.0993, + "step": 481 + }, + { + "epoch": 0.87, + "learning_rate": 1.0088679488196695e-06, + "loss": 0.0673, + "step": 482 + }, + { + "epoch": 0.87, + "learning_rate": 9.829343904059342e-07, + "loss": 0.018, + "step": 483 + }, + { + "epoch": 0.87, + "learning_rate": 9.573212688456635e-07, + "loss": 0.1005, + "step": 484 + }, + { + "epoch": 0.87, + "learning_rate": 9.320294943449537e-07, + "loss": 0.0859, + "step": 485 + }, + { + "epoch": 0.88, + "learning_rate": 9.070599656902801e-07, + "loss": 0.0361, + "step": 486 + }, + { + "epoch": 0.88, + "learning_rate": 8.824135702165693e-07, + "loss": 0.0256, + "step": 487 + }, + { + "epoch": 0.88, + "learning_rate": 8.580911837756467e-07, + "loss": 0.0652, + "step": 488 + }, + { + "epoch": 0.88, + "learning_rate": 8.340936707051273e-07, + "loss": 0.103, + "step": 489 + }, + { + "epoch": 0.88, + "learning_rate": 8.10421883797694e-07, + "loss": 0.0589, + "step": 490 + }, + { + "epoch": 0.88, + "learning_rate": 7.87076664270795e-07, + "loss": 0.1919, + "step": 491 + }, + { + "epoch": 0.89, + "learning_rate": 7.6405884173675e-07, + "loss": 0.1313, + "step": 492 + }, + { + "epoch": 0.89, + "learning_rate": 7.413692341732582e-07, + "loss": 0.0657, + "step": 493 + }, + { + "epoch": 0.89, + "learning_rate": 7.190086478943459e-07, + "loss": 0.1785, + "step": 494 + }, + { + "epoch": 0.89, + "learning_rate": 6.969778775217007e-07, + "loss": 0.1866, + "step": 495 + }, + { + "epoch": 0.89, + "learning_rate": 6.752777059564431e-07, + "loss": 0.0295, + "step": 496 + }, + { + "epoch": 0.9, + "learning_rate": 6.539089043512914e-07, + "loss": 0.0316, + "step": 497 + }, + { + "epoch": 0.9, + "learning_rate": 6.328722320831737e-07, + "loss": 0.0702, + "step": 498 + }, + { + "epoch": 0.9, + "learning_rate": 6.121684367262271e-07, + "loss": 0.0271, + "step": 499 + }, + { + "epoch": 0.9, + "learning_rate": 5.917982540252442e-07, + "loss": 0.0398, + "step": 500 + }, + { + "epoch": 0.9, + "learning_rate": 5.71762407869515e-07, + "loss": 0.2131, + "step": 501 + }, + { + "epoch": 0.9, + "learning_rate": 5.520616102671128e-07, + "loss": 0.217, + "step": 502 + }, + { + "epoch": 0.91, + "learning_rate": 5.326965613195867e-07, + "loss": 0.0161, + "step": 503 + }, + { + "epoch": 0.91, + "learning_rate": 5.136679491970809e-07, + "loss": 0.0338, + "step": 504 + }, + { + "epoch": 0.91, + "learning_rate": 4.949764501138832e-07, + "loss": 0.0178, + "step": 505 + }, + { + "epoch": 0.91, + "learning_rate": 4.766227283043912e-07, + "loss": 0.0056, + "step": 506 + }, + { + "epoch": 0.91, + "learning_rate": 4.5860743599951186e-07, + "loss": 0.1492, + "step": 507 + }, + { + "epoch": 0.92, + "learning_rate": 4.4093121340347824e-07, + "loss": 0.1143, + "step": 508 + }, + { + "epoch": 0.92, + "learning_rate": 4.235946886711018e-07, + "loss": 0.1318, + "step": 509 + }, + { + "epoch": 0.92, + "learning_rate": 4.0659847788544926e-07, + "loss": 0.0485, + "step": 510 + }, + { + "epoch": 0.92, + "learning_rate": 3.899431850359503e-07, + "loss": 0.0155, + "step": 511 + }, + { + "epoch": 0.92, + "learning_rate": 3.736294019969311e-07, + "loss": 0.0895, + "step": 512 + }, + { + "epoch": 0.92, + "learning_rate": 3.5765770850658244e-07, + "loss": 0.0913, + "step": 513 + }, + { + "epoch": 0.93, + "learning_rate": 3.420286721463562e-07, + "loss": 0.0394, + "step": 514 + }, + { + "epoch": 0.93, + "learning_rate": 3.2674284832080127e-07, + "loss": 0.0125, + "step": 515 + }, + { + "epoch": 0.93, + "learning_rate": 3.118007802378198e-07, + "loss": 0.082, + "step": 516 + }, + { + "epoch": 0.93, + "learning_rate": 2.972029988893621e-07, + "loss": 0.2907, + "step": 517 + }, + { + "epoch": 0.93, + "learning_rate": 2.8295002303256546e-07, + "loss": 0.0428, + "step": 518 + }, + { + "epoch": 0.94, + "learning_rate": 2.6904235917131094e-07, + "loss": 0.1136, + "step": 519 + }, + { + "epoch": 0.94, + "learning_rate": 2.554805015382289e-07, + "loss": 0.2987, + "step": 520 + }, + { + "epoch": 0.94, + "learning_rate": 2.422649320771331e-07, + "loss": 0.1616, + "step": 521 + }, + { + "epoch": 0.94, + "learning_rate": 2.293961204258932e-07, + "loss": 0.1623, + "step": 522 + }, + { + "epoch": 0.94, + "learning_rate": 2.1687452389974829e-07, + "loss": 0.0428, + "step": 523 + }, + { + "epoch": 0.94, + "learning_rate": 2.0470058747505516e-07, + "loss": 0.0309, + "step": 524 + }, + { + "epoch": 0.95, + "learning_rate": 1.9287474377347238e-07, + "loss": 0.0533, + "step": 525 + }, + { + "epoch": 0.95, + "learning_rate": 1.8139741304658566e-07, + "loss": 0.0565, + "step": 526 + }, + { + "epoch": 0.95, + "learning_rate": 1.7026900316098217e-07, + "loss": 0.0545, + "step": 527 + }, + { + "epoch": 0.95, + "learning_rate": 1.5948990958374543e-07, + "loss": 0.1014, + "step": 528 + }, + { + "epoch": 0.95, + "learning_rate": 1.490605153684066e-07, + "loss": 0.2859, + "step": 529 + }, + { + "epoch": 0.95, + "learning_rate": 1.3898119114133192e-07, + "loss": 0.2631, + "step": 530 + }, + { + "epoch": 0.96, + "learning_rate": 1.292522950885533e-07, + "loss": 0.1341, + "step": 531 + }, + { + "epoch": 0.96, + "learning_rate": 1.1987417294303748e-07, + "loss": 0.1001, + "step": 532 + }, + { + "epoch": 0.96, + "learning_rate": 1.1084715797239798e-07, + "loss": 0.2334, + "step": 533 + }, + { + "epoch": 0.96, + "learning_rate": 1.0217157096705676e-07, + "loss": 0.0793, + "step": 534 + }, + { + "epoch": 0.96, + "learning_rate": 9.384772022884015e-08, + "loss": 0.0426, + "step": 535 + }, + { + "epoch": 0.97, + "learning_rate": 8.587590156002635e-08, + "loss": 0.0174, + "step": 536 + }, + { + "epoch": 0.97, + "learning_rate": 7.825639825282949e-08, + "loss": 0.1224, + "step": 537 + }, + { + "epoch": 0.97, + "learning_rate": 7.098948107933656e-08, + "loss": 0.0296, + "step": 538 + }, + { + "epoch": 0.97, + "learning_rate": 6.407540828188175e-08, + "loss": 0.0831, + "step": 539 + }, + { + "epoch": 0.97, + "learning_rate": 5.7514425563870436e-08, + "loss": 0.0264, + "step": 540 + }, + { + "epoch": 0.97, + "learning_rate": 5.1306766081048456e-08, + "loss": 0.0982, + "step": 541 + }, + { + "epoch": 0.98, + "learning_rate": 4.545265043321645e-08, + "loss": 0.0393, + "step": 542 + }, + { + "epoch": 0.98, + "learning_rate": 3.9952286656389506e-08, + "loss": 0.0695, + "step": 543 + }, + { + "epoch": 0.98, + "learning_rate": 3.480587021540527e-08, + "loss": 0.1458, + "step": 544 + }, + { + "epoch": 0.98, + "learning_rate": 3.001358399697618e-08, + "loss": 0.0065, + "step": 545 + }, + { + "epoch": 0.98, + "learning_rate": 2.557559830319245e-08, + "loss": 0.1492, + "step": 546 + }, + { + "epoch": 0.99, + "learning_rate": 2.1492070845468005e-08, + "loss": 0.094, + "step": 547 + }, + { + "epoch": 0.99, + "learning_rate": 1.7763146738938307e-08, + "loss": 0.2497, + "step": 548 + }, + { + "epoch": 0.99, + "learning_rate": 1.4388958497300043e-08, + "loss": 0.0833, + "step": 549 + }, + { + "epoch": 0.99, + "learning_rate": 1.1369626028104874e-08, + "loss": 0.0528, + "step": 550 + }, + { + "epoch": 0.99, + "learning_rate": 8.705256628499525e-09, + "loss": 0.0411, + "step": 551 + }, + { + "epoch": 0.99, + "learning_rate": 6.39594498140883e-09, + "loss": 0.0253, + "step": 552 + }, + { + "epoch": 1.0, + "learning_rate": 4.4417731521717576e-09, + "loss": 0.2015, + "step": 553 + }, + { + "epoch": 1.0, + "learning_rate": 2.842810585627076e-09, + "loss": 0.0077, + "step": 554 + }, + { + "epoch": 1.0, + "learning_rate": 1.5991141036475478e-09, + "loss": 0.1521, + "step": 555 + }, + { + "epoch": 1.0, + "step": 555, + "total_flos": 1196575985664.0, + "train_loss": 0.11872713004180172, + "train_runtime": 4113.0695, + "train_samples_per_second": 1.347, + "train_steps_per_second": 0.135 + } + ], + "logging_steps": 1.0, + "max_steps": 555, + "num_input_tokens_seen": 0, + "num_train_epochs": 1, + "save_steps": 500, + "total_flos": 1196575985664.0, + "train_batch_size": 10, + "trial_name": null, + "trial_params": null +} diff --git a/CheckGuard Models/wholeimage/bank_no/finetune_lora_llava_mistral.sh b/CheckGuard Models/wholeimage/bank_no/finetune_lora_llava_mistral.sh new file mode 100644 index 0000000000000000000000000000000000000000..a3fe33e51671ffc85a84fab135581b03b8095a37 --- /dev/null +++ b/CheckGuard Models/wholeimage/bank_no/finetune_lora_llava_mistral.sh @@ -0,0 +1,43 @@ +#!/bin/bash +# Use first parameter as GPU IDs, default to "0,1,2,3" if not provided +GPU_IDS=${1:-0,1,2,3} + + +CUDA_VISIBLE_DEVICES=0,1,2,3 deepspeed --include localhost:"$GPU_IDS" --master_port 29602\ + llava/train/train_mem.py \ + --lora_enable True --lora_r 128 --lora_alpha 256 --mm_projector_lr 2e-5 \ + --deepspeed ./scripts/zero3.json \ + --model_name_or_path liuhaotian/llava-v1.6-mistral-7b \ + --version mistral_instruct \ + --data_path /home/larry5/project/LLaVA-1.6-ft/data/peft/bank_no/bank_no_dataset.json \ + --image_folder /home/larry5/project/LLaVA-1.6-ft/data/data/ \ + --vision_tower openai/clip-vit-large-patch14-336 \ + --mm_projector_type mlp2x_gelu \ + --mm_vision_select_layer -2 \ + --mm_use_im_start_end False \ + --mm_use_im_patch_token False \ + --mm_patch_merge_type spatial_unpad \ + --image_aspect_ratio anyres \ + --group_by_modality_length False \ + --bf16 False \ + --fp16 True \ + --output_dir /home/larry5/project/LLaVA-1.6-ft/scripts_peft/mistral/lora/llava-lora-mistral-r128a256/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model \ + --num_train_epochs 1 \ + --per_device_train_batch_size 10 \ + --per_device_eval_batch_size 1 \ + --gradient_accumulation_steps 1 \ + --evaluation_strategy "no" \ + --save_strategy "steps" \ + --save_steps 500 \ + --save_total_limit 5 \ + --learning_rate 2e-5 \ + --weight_decay 0. \ + --warmup_ratio 0.05 \ + --lr_scheduler_type "cosine" \ + --logging_steps 1 \ + --tf32 True \ + --model_max_length 4096 \ + --gradient_checkpointing True \ + --dataloader_num_workers 4 \ + --lazy_preprocess True \ + --report_to wandb \ \ No newline at end of file diff --git a/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/README.md b/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/README.md new file mode 100644 index 0000000000000000000000000000000000000000..bdb138eee6972419f6d60676388b52fd99ec478e --- /dev/null +++ b/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/README.md @@ -0,0 +1,202 @@ +--- +library_name: peft +base_model: liuhaotian/llava-v1.6-mistral-7b +--- + +# Model Card for Model ID + + + + + +## Model Details + +### Model Description + + + + + +- **Developed by:** [More Information Needed] +- **Funded by [optional]:** [More Information Needed] +- **Shared by [optional]:** [More Information Needed] +- **Model type:** [More Information Needed] +- **Language(s) (NLP):** [More Information Needed] +- **License:** [More Information Needed] +- **Finetuned from model [optional]:** [More Information Needed] + +### Model Sources [optional] + + + +- **Repository:** [More Information Needed] +- **Paper [optional]:** [More Information Needed] +- **Demo [optional]:** [More Information Needed] + +## Uses + + + +### Direct Use + + + +[More Information Needed] + +### Downstream Use [optional] + + + +[More Information Needed] + +### Out-of-Scope Use + + + +[More Information Needed] + +## Bias, Risks, and Limitations + + + +[More Information Needed] + +### Recommendations + + + +Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. + +## How to Get Started with the Model + +Use the code below to get started with the model. + +[More Information Needed] + +## Training Details + +### Training Data + + + +[More Information Needed] + +### Training Procedure + + + +#### Preprocessing [optional] + +[More Information Needed] + + +#### Training Hyperparameters + +- **Training regime:** [More Information Needed] + +#### Speeds, Sizes, Times [optional] + + + +[More Information Needed] + +## Evaluation + + + +### Testing Data, Factors & Metrics + +#### Testing Data + + + +[More Information Needed] + +#### Factors + + + +[More Information Needed] + +#### Metrics + + + +[More Information Needed] + +### Results + +[More Information Needed] + +#### Summary + + + +## Model Examination [optional] + + + +[More Information Needed] + +## Environmental Impact + + + +Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). + +- **Hardware Type:** [More Information Needed] +- **Hours used:** [More Information Needed] +- **Cloud Provider:** [More Information Needed] +- **Compute Region:** [More Information Needed] +- **Carbon Emitted:** [More Information Needed] + +## Technical Specifications [optional] + +### Model Architecture and Objective + +[More Information Needed] + +### Compute Infrastructure + +[More Information Needed] + +#### Hardware + +[More Information Needed] + +#### Software + +[More Information Needed] + +## Citation [optional] + + + +**BibTeX:** + +[More Information Needed] + +**APA:** + +[More Information Needed] + +## Glossary [optional] + + + +[More Information Needed] + +## More Information [optional] + +[More Information Needed] + +## Model Card Authors [optional] + +[More Information Needed] + +## Model Card Contact + +[More Information Needed] +### Framework versions + +- PEFT 0.10.0 \ No newline at end of file diff --git a/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/adapter_config.json b/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/adapter_config.json new file mode 100644 index 0000000000000000000000000000000000000000..d5f15e977cddb84e185e90736f37a523f49d60a3 --- /dev/null +++ b/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/adapter_config.json @@ -0,0 +1,34 @@ +{ + "alpha_pattern": {}, + "auto_mapping": null, + "base_model_name_or_path": "liuhaotian/llava-v1.6-mistral-7b", + "bias": "none", + "fan_in_fan_out": false, + "inference_mode": true, + "init_lora_weights": true, + "layer_replication": null, + "layers_pattern": null, + "layers_to_transform": null, + "loftq_config": {}, + "lora_alpha": 256, + "lora_dropout": 0.05, + "megatron_config": null, + "megatron_core": "megatron.core", + "modules_to_save": null, + "peft_type": "LORA", + "r": 128, + "rank_pattern": {}, + "revision": null, + "target_modules": [ + "v_proj", + "q_proj", + "up_proj", + "k_proj", + "o_proj", + "gate_proj", + "down_proj" + ], + "task_type": "CAUSAL_LM", + "use_dora": false, + "use_rslora": false +} \ No newline at end of file diff --git a/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/adapter_model.safetensors b/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/adapter_model.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..6794c7b26c12da85cf1c14635fd74fb41fd33371 --- /dev/null +++ b/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/adapter_model.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6eea7f9e47bb7d2f074c81e49ccf9648c1394c7fbb7e851b9ac64e47efa2c03b +size 708924928 diff --git a/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/README.md b/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/README.md new file mode 100644 index 0000000000000000000000000000000000000000..bdb138eee6972419f6d60676388b52fd99ec478e --- /dev/null +++ b/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/README.md @@ -0,0 +1,202 @@ +--- +library_name: peft +base_model: liuhaotian/llava-v1.6-mistral-7b +--- + +# Model Card for Model ID + + + + + +## Model Details + +### Model Description + + + + + +- **Developed by:** [More Information Needed] +- **Funded by [optional]:** [More Information Needed] +- **Shared by [optional]:** [More Information Needed] +- **Model type:** [More Information Needed] +- **Language(s) (NLP):** [More Information Needed] +- **License:** [More Information Needed] +- **Finetuned from model [optional]:** [More Information Needed] + +### Model Sources [optional] + + + +- **Repository:** [More Information Needed] +- **Paper [optional]:** [More Information Needed] +- **Demo [optional]:** [More Information Needed] + +## Uses + + + +### Direct Use + + + +[More Information Needed] + +### Downstream Use [optional] + + + +[More Information Needed] + +### Out-of-Scope Use + + + +[More Information Needed] + +## Bias, Risks, and Limitations + + + +[More Information Needed] + +### Recommendations + + + +Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. + +## How to Get Started with the Model + +Use the code below to get started with the model. + +[More Information Needed] + +## Training Details + +### Training Data + + + +[More Information Needed] + +### Training Procedure + + + +#### Preprocessing [optional] + +[More Information Needed] + + +#### Training Hyperparameters + +- **Training regime:** [More Information Needed] + +#### Speeds, Sizes, Times [optional] + + + +[More Information Needed] + +## Evaluation + + + +### Testing Data, Factors & Metrics + +#### Testing Data + + + +[More Information Needed] + +#### Factors + + + +[More Information Needed] + +#### Metrics + + + +[More Information Needed] + +### Results + +[More Information Needed] + +#### Summary + + + +## Model Examination [optional] + + + +[More Information Needed] + +## Environmental Impact + + + +Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). + +- **Hardware Type:** [More Information Needed] +- **Hours used:** [More Information Needed] +- **Cloud Provider:** [More Information Needed] +- **Compute Region:** [More Information Needed] +- **Carbon Emitted:** [More Information Needed] + +## Technical Specifications [optional] + +### Model Architecture and Objective + +[More Information Needed] + +### Compute Infrastructure + +[More Information Needed] + +#### Hardware + +[More Information Needed] + +#### Software + +[More Information Needed] + +## Citation [optional] + + + +**BibTeX:** + +[More Information Needed] + +**APA:** + +[More Information Needed] + +## Glossary [optional] + + + +[More Information Needed] + +## More Information [optional] + +[More Information Needed] + +## Model Card Authors [optional] + +[More Information Needed] + +## Model Card Contact + +[More Information Needed] +### Framework versions + +- PEFT 0.10.0 \ No newline at end of file diff --git a/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/adapter_config.json b/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/adapter_config.json new file mode 100644 index 0000000000000000000000000000000000000000..d5f15e977cddb84e185e90736f37a523f49d60a3 --- /dev/null +++ b/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/adapter_config.json @@ -0,0 +1,34 @@ +{ + "alpha_pattern": {}, + "auto_mapping": null, + "base_model_name_or_path": "liuhaotian/llava-v1.6-mistral-7b", + "bias": "none", + "fan_in_fan_out": false, + "inference_mode": true, + "init_lora_weights": true, + "layer_replication": null, + "layers_pattern": null, + "layers_to_transform": null, + "loftq_config": {}, + "lora_alpha": 256, + "lora_dropout": 0.05, + "megatron_config": null, + "megatron_core": "megatron.core", + "modules_to_save": null, + "peft_type": "LORA", + "r": 128, + "rank_pattern": {}, + "revision": null, + "target_modules": [ + "v_proj", + "q_proj", + "up_proj", + "k_proj", + "o_proj", + "gate_proj", + "down_proj" + ], + "task_type": "CAUSAL_LM", + "use_dora": false, + "use_rslora": false +} \ No newline at end of file diff --git a/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/adapter_model.safetensors b/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/adapter_model.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..a312c3b4122fa707998f6937cc59f787cd537e86 --- /dev/null +++ b/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/adapter_model.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:645c293e131efb974f8c218e7d69c93bf50c753554c806d1cf561baa77311585 +size 1417762896 diff --git a/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/global_step500/zero_pp_rank_0_mp_rank_00_model_states.pt b/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/global_step500/zero_pp_rank_0_mp_rank_00_model_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..2148fda79de7d1a6e7f0b5258183d9c00a5fddfc --- /dev/null +++ b/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/global_step500/zero_pp_rank_0_mp_rank_00_model_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c3183212032ce3f53bf011c0ea2d72e73d90e4ae83d758f3cb2661945c405d2e +size 632242 diff --git a/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/global_step500/zero_pp_rank_0_mp_rank_00_optim_states.pt b/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/global_step500/zero_pp_rank_0_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..d2577799dcf426ba6536f827d460216ca98db03a --- /dev/null +++ b/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/global_step500/zero_pp_rank_0_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:67835d032628ab68661627ea5db2a21c8defdf7306ff43ec6d2d034f2a3add64 +size 4504787266 diff --git a/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/latest b/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/latest new file mode 100644 index 0000000000000000000000000000000000000000..f0b47ce15fff9a01b2a416a473b2148085048a50 --- /dev/null +++ b/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/latest @@ -0,0 +1 @@ +global_step500 \ No newline at end of file diff --git a/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/rng_state.pth b/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/rng_state.pth new file mode 100644 index 0000000000000000000000000000000000000000..1f078010075b06c4b35cef3a20eef2119ad7e065 --- /dev/null +++ b/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/rng_state.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1691c008dc15394c290eec92c6d96f1d3cc3096220a9fdad0f2210c4f3699fd5 +size 14244 diff --git a/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/scheduler.pt b/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/scheduler.pt new file mode 100644 index 0000000000000000000000000000000000000000..77ccb4bfa6c448fe73ca8ad7989c41505cb6d3d2 --- /dev/null +++ b/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/scheduler.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b37e2b05185c6152f2a40fb75a789b697d3a87176492c5cbb481ba82522c2163 +size 1064 diff --git a/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/special_tokens_map.json b/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/special_tokens_map.json new file mode 100644 index 0000000000000000000000000000000000000000..14761dcf1466dc232bd41de9c21d4c617b15755e --- /dev/null +++ b/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/special_tokens_map.json @@ -0,0 +1,24 @@ +{ + "bos_token": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "eos_token": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "pad_token": "", + "unk_token": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + } +} diff --git a/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/tokenizer.model b/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/tokenizer.model new file mode 100644 index 0000000000000000000000000000000000000000..8b443ef19c2a19acc3ac64fb9c3db4a72921dff6 --- /dev/null +++ b/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/tokenizer.model @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055 +size 493443 diff --git a/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/tokenizer_config.json b/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/tokenizer_config.json new file mode 100644 index 0000000000000000000000000000000000000000..d0ea5c3458cd84f0062b47fa0476bb328b3e208a --- /dev/null +++ b/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/tokenizer_config.json @@ -0,0 +1,44 @@ +{ + "add_bos_token": true, + "add_eos_token": false, + "added_tokens_decoder": { + "0": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "1": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "2": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + } + }, + "additional_special_tokens": [], + "bos_token": "", + "chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}", + "clean_up_tokenization_spaces": false, + "eos_token": "", + "legacy": true, + "model_max_length": 4096, + "pad_token": "", + "padding_side": "right", + "sp_model_kwargs": {}, + "spaces_between_special_tokens": false, + "tokenizer_class": "LlamaTokenizer", + "unk_token": "", + "use_default_system_prompt": false +} diff --git a/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/trainer_state.json b/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/trainer_state.json new file mode 100644 index 0000000000000000000000000000000000000000..8ec01250d70779c6350965e3194f8401eda3e3c1 --- /dev/null +++ b/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/trainer_state.json @@ -0,0 +1,3021 @@ +{ + "best_metric": null, + "best_model_checkpoint": null, + "epoch": 0.9242144177449169, + "eval_steps": 500, + "global_step": 500, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "epoch": 0.0, + "learning_rate": 7.142857142857143e-07, + "loss": 0.6789, + "step": 1 + }, + { + "epoch": 0.0, + "learning_rate": 1.4285714285714286e-06, + "loss": 0.8481, + "step": 2 + }, + { + "epoch": 0.01, + "learning_rate": 2.1428571428571427e-06, + "loss": 0.663, + "step": 3 + }, + { + "epoch": 0.01, + "learning_rate": 2.8571428571428573e-06, + "loss": 0.679, + "step": 4 + }, + { + "epoch": 0.01, + "learning_rate": 3.5714285714285718e-06, + "loss": 1.0166, + "step": 5 + }, + { + "epoch": 0.01, + "learning_rate": 4.2857142857142855e-06, + "loss": 0.4693, + "step": 6 + }, + { + "epoch": 0.01, + "learning_rate": 5e-06, + "loss": 0.4891, + "step": 7 + }, + { + "epoch": 0.01, + "learning_rate": 5.7142857142857145e-06, + "loss": 0.5523, + "step": 8 + }, + { + "epoch": 0.02, + "learning_rate": 6.4285714285714295e-06, + "loss": 0.2909, + "step": 9 + }, + { + "epoch": 0.02, + "learning_rate": 7.1428571428571436e-06, + "loss": 0.2598, + "step": 10 + }, + { + "epoch": 0.02, + "learning_rate": 7.857142857142858e-06, + "loss": 0.2532, + "step": 11 + }, + { + "epoch": 0.02, + "learning_rate": 7.857142857142858e-06, + "loss": 0.4867, + "step": 12 + }, + { + "epoch": 0.02, + "learning_rate": 8.571428571428571e-06, + "loss": 0.4145, + "step": 13 + }, + { + "epoch": 0.03, + "learning_rate": 8.571428571428571e-06, + "loss": 0.3161, + "step": 14 + }, + { + "epoch": 0.03, + "learning_rate": 9.285714285714288e-06, + "loss": 0.1836, + "step": 15 + }, + { + "epoch": 0.03, + "learning_rate": 1e-05, + "loss": 0.3355, + "step": 16 + }, + { + "epoch": 0.03, + "learning_rate": 1.0714285714285714e-05, + "loss": 0.2286, + "step": 17 + }, + { + "epoch": 0.03, + "learning_rate": 1.1428571428571429e-05, + "loss": 0.3594, + "step": 18 + }, + { + "epoch": 0.04, + "learning_rate": 1.2142857142857142e-05, + "loss": 0.2981, + "step": 19 + }, + { + "epoch": 0.04, + "learning_rate": 1.2857142857142859e-05, + "loss": 0.3021, + "step": 20 + }, + { + "epoch": 0.04, + "learning_rate": 1.3571428571428574e-05, + "loss": 0.3866, + "step": 21 + }, + { + "epoch": 0.04, + "learning_rate": 1.4285714285714287e-05, + "loss": 0.2409, + "step": 22 + }, + { + "epoch": 0.04, + "learning_rate": 1.5000000000000002e-05, + "loss": 0.1397, + "step": 23 + }, + { + "epoch": 0.04, + "learning_rate": 1.5714285714285715e-05, + "loss": 0.1416, + "step": 24 + }, + { + "epoch": 0.05, + "learning_rate": 1.642857142857143e-05, + "loss": 0.1838, + "step": 25 + }, + { + "epoch": 0.05, + "learning_rate": 1.7142857142857142e-05, + "loss": 0.1505, + "step": 26 + }, + { + "epoch": 0.05, + "learning_rate": 1.785714285714286e-05, + "loss": 0.3278, + "step": 27 + }, + { + "epoch": 0.05, + "learning_rate": 1.8571428571428575e-05, + "loss": 0.2567, + "step": 28 + }, + { + "epoch": 0.05, + "learning_rate": 1.928571428571429e-05, + "loss": 0.1218, + "step": 29 + }, + { + "epoch": 0.06, + "learning_rate": 2e-05, + "loss": 0.2288, + "step": 30 + }, + { + "epoch": 0.06, + "learning_rate": 1.9999812486015525e-05, + "loss": 0.1348, + "step": 31 + }, + { + "epoch": 0.06, + "learning_rate": 1.9999249951094388e-05, + "loss": 0.3734, + "step": 32 + }, + { + "epoch": 0.06, + "learning_rate": 1.999831241633323e-05, + "loss": 0.3169, + "step": 33 + }, + { + "epoch": 0.06, + "learning_rate": 1.9996999916892222e-05, + "loss": 0.1066, + "step": 34 + }, + { + "epoch": 0.06, + "learning_rate": 1.9995312501993765e-05, + "loss": 0.4434, + "step": 35 + }, + { + "epoch": 0.07, + "learning_rate": 1.9993250234920638e-05, + "loss": 0.198, + "step": 36 + }, + { + "epoch": 0.07, + "learning_rate": 1.9990813193013625e-05, + "loss": 0.115, + "step": 37 + }, + { + "epoch": 0.07, + "learning_rate": 1.9988001467668613e-05, + "loss": 0.2676, + "step": 38 + }, + { + "epoch": 0.07, + "learning_rate": 1.9984815164333163e-05, + "loss": 0.2201, + "step": 39 + }, + { + "epoch": 0.07, + "learning_rate": 1.9981254402502568e-05, + "loss": 0.1945, + "step": 40 + }, + { + "epoch": 0.08, + "learning_rate": 1.997731931571535e-05, + "loss": 0.1391, + "step": 41 + }, + { + "epoch": 0.08, + "learning_rate": 1.9973010051548274e-05, + "loss": 0.2697, + "step": 42 + }, + { + "epoch": 0.08, + "learning_rate": 1.9968326771610797e-05, + "loss": 0.1562, + "step": 43 + }, + { + "epoch": 0.08, + "learning_rate": 1.9963269651539018e-05, + "loss": 0.2204, + "step": 44 + }, + { + "epoch": 0.08, + "learning_rate": 1.9957838880989076e-05, + "loss": 0.2729, + "step": 45 + }, + { + "epoch": 0.09, + "learning_rate": 1.9952034663630064e-05, + "loss": 0.441, + "step": 46 + }, + { + "epoch": 0.09, + "learning_rate": 1.9952034663630064e-05, + "loss": 0.1401, + "step": 47 + }, + { + "epoch": 0.09, + "learning_rate": 1.9945857217136365e-05, + "loss": 0.3727, + "step": 48 + }, + { + "epoch": 0.09, + "learning_rate": 1.9939306773179498e-05, + "loss": 0.3269, + "step": 49 + }, + { + "epoch": 0.09, + "learning_rate": 1.9932383577419432e-05, + "loss": 0.0801, + "step": 50 + }, + { + "epoch": 0.09, + "learning_rate": 1.9925087889495374e-05, + "loss": 0.2772, + "step": 51 + }, + { + "epoch": 0.1, + "learning_rate": 1.9917419983016025e-05, + "loss": 0.2253, + "step": 52 + }, + { + "epoch": 0.1, + "learning_rate": 1.9909380145549325e-05, + "loss": 0.2318, + "step": 53 + }, + { + "epoch": 0.1, + "learning_rate": 1.9900968678611664e-05, + "loss": 0.1809, + "step": 54 + }, + { + "epoch": 0.1, + "learning_rate": 1.989218589765658e-05, + "loss": 0.1155, + "step": 55 + }, + { + "epoch": 0.1, + "learning_rate": 1.9883032132062926e-05, + "loss": 0.2356, + "step": 56 + }, + { + "epoch": 0.11, + "learning_rate": 1.9873507725122505e-05, + "loss": 0.1194, + "step": 57 + }, + { + "epoch": 0.11, + "learning_rate": 1.9863613034027224e-05, + "loss": 0.3272, + "step": 58 + }, + { + "epoch": 0.11, + "learning_rate": 1.985334842985567e-05, + "loss": 0.183, + "step": 59 + }, + { + "epoch": 0.11, + "learning_rate": 1.9842714297559212e-05, + "loss": 0.1217, + "step": 60 + }, + { + "epoch": 0.11, + "learning_rate": 1.9831711035947552e-05, + "loss": 0.1388, + "step": 61 + }, + { + "epoch": 0.11, + "learning_rate": 1.9820339057673773e-05, + "loss": 0.2112, + "step": 62 + }, + { + "epoch": 0.12, + "learning_rate": 1.9808598789218866e-05, + "loss": 0.0917, + "step": 63 + }, + { + "epoch": 0.12, + "learning_rate": 1.979649067087574e-05, + "loss": 0.1585, + "step": 64 + }, + { + "epoch": 0.12, + "learning_rate": 1.9784015156732693e-05, + "loss": 0.1446, + "step": 65 + }, + { + "epoch": 0.12, + "learning_rate": 1.97711727146564e-05, + "loss": 0.3511, + "step": 66 + }, + { + "epoch": 0.12, + "learning_rate": 1.9757963826274357e-05, + "loss": 0.1019, + "step": 67 + }, + { + "epoch": 0.13, + "learning_rate": 1.9744388986956824e-05, + "loss": 0.1165, + "step": 68 + }, + { + "epoch": 0.13, + "learning_rate": 1.973044870579824e-05, + "loss": 0.2189, + "step": 69 + }, + { + "epoch": 0.13, + "learning_rate": 1.971614350559814e-05, + "loss": 0.1254, + "step": 70 + }, + { + "epoch": 0.13, + "learning_rate": 1.970147392284154e-05, + "loss": 0.0627, + "step": 71 + }, + { + "epoch": 0.13, + "learning_rate": 1.9686440507678827e-05, + "loss": 0.0952, + "step": 72 + }, + { + "epoch": 0.13, + "learning_rate": 1.967104382390511e-05, + "loss": 0.1867, + "step": 73 + }, + { + "epoch": 0.14, + "learning_rate": 1.9655284448939094e-05, + "loss": 0.2003, + "step": 74 + }, + { + "epoch": 0.14, + "learning_rate": 1.9639162973801426e-05, + "loss": 0.1188, + "step": 75 + }, + { + "epoch": 0.14, + "learning_rate": 1.9622680003092503e-05, + "loss": 0.1111, + "step": 76 + }, + { + "epoch": 0.14, + "learning_rate": 1.960583615496984e-05, + "loss": 0.1203, + "step": 77 + }, + { + "epoch": 0.14, + "learning_rate": 1.9588632061124837e-05, + "loss": 0.1599, + "step": 78 + }, + { + "epoch": 0.15, + "learning_rate": 1.9571068366759143e-05, + "loss": 0.209, + "step": 79 + }, + { + "epoch": 0.15, + "learning_rate": 1.9553145730560415e-05, + "loss": 0.2183, + "step": 80 + }, + { + "epoch": 0.15, + "learning_rate": 1.953486482467764e-05, + "loss": 0.1351, + "step": 81 + }, + { + "epoch": 0.15, + "learning_rate": 1.951622633469592e-05, + "loss": 0.128, + "step": 82 + }, + { + "epoch": 0.15, + "learning_rate": 1.9497230959610757e-05, + "loss": 0.2241, + "step": 83 + }, + { + "epoch": 0.16, + "learning_rate": 1.9477879411801843e-05, + "loss": 0.0991, + "step": 84 + }, + { + "epoch": 0.16, + "learning_rate": 1.9458172417006347e-05, + "loss": 0.1165, + "step": 85 + }, + { + "epoch": 0.16, + "learning_rate": 1.9438110714291697e-05, + "loss": 0.0792, + "step": 86 + }, + { + "epoch": 0.16, + "learning_rate": 1.9417695056027847e-05, + "loss": 0.121, + "step": 87 + }, + { + "epoch": 0.16, + "learning_rate": 1.9396926207859085e-05, + "loss": 0.2727, + "step": 88 + }, + { + "epoch": 0.16, + "learning_rate": 1.9375804948675308e-05, + "loss": 0.1947, + "step": 89 + }, + { + "epoch": 0.17, + "learning_rate": 1.935433207058281e-05, + "loss": 0.2155, + "step": 90 + }, + { + "epoch": 0.17, + "learning_rate": 1.933250837887457e-05, + "loss": 0.0525, + "step": 91 + }, + { + "epoch": 0.17, + "learning_rate": 1.9310334692000077e-05, + "loss": 0.2401, + "step": 92 + }, + { + "epoch": 0.17, + "learning_rate": 1.9287811841534598e-05, + "loss": 0.0743, + "step": 93 + }, + { + "epoch": 0.17, + "learning_rate": 1.9264940672148018e-05, + "loss": 0.1659, + "step": 94 + }, + { + "epoch": 0.18, + "learning_rate": 1.9241722041573166e-05, + "loss": 0.1184, + "step": 95 + }, + { + "epoch": 0.18, + "learning_rate": 1.9218156820573618e-05, + "loss": 0.1207, + "step": 96 + }, + { + "epoch": 0.18, + "learning_rate": 1.9194245892911077e-05, + "loss": 0.1292, + "step": 97 + }, + { + "epoch": 0.18, + "learning_rate": 1.916999015531221e-05, + "loss": 0.2059, + "step": 98 + }, + { + "epoch": 0.18, + "learning_rate": 1.9145390517435013e-05, + "loss": 0.1682, + "step": 99 + }, + { + "epoch": 0.18, + "learning_rate": 1.9120447901834708e-05, + "loss": 0.1403, + "step": 100 + }, + { + "epoch": 0.19, + "learning_rate": 1.9095163243929143e-05, + "loss": 0.1752, + "step": 101 + }, + { + "epoch": 0.19, + "learning_rate": 1.906953749196371e-05, + "loss": 0.1616, + "step": 102 + }, + { + "epoch": 0.19, + "learning_rate": 1.9043571606975776e-05, + "loss": 0.1127, + "step": 103 + }, + { + "epoch": 0.19, + "learning_rate": 1.901726656275866e-05, + "loss": 0.2236, + "step": 104 + }, + { + "epoch": 0.19, + "learning_rate": 1.8990623345825084e-05, + "loss": 0.2308, + "step": 105 + }, + { + "epoch": 0.2, + "learning_rate": 1.8963642955370203e-05, + "loss": 0.1739, + "step": 106 + }, + { + "epoch": 0.2, + "learning_rate": 1.8936326403234125e-05, + "loss": 0.1762, + "step": 107 + }, + { + "epoch": 0.2, + "learning_rate": 1.890867471386395e-05, + "loss": 0.1457, + "step": 108 + }, + { + "epoch": 0.2, + "learning_rate": 1.888068892427538e-05, + "loss": 0.2768, + "step": 109 + }, + { + "epoch": 0.2, + "learning_rate": 1.8852370084013783e-05, + "loss": 0.1389, + "step": 110 + }, + { + "epoch": 0.21, + "learning_rate": 1.882371925511488e-05, + "loss": 0.2747, + "step": 111 + }, + { + "epoch": 0.21, + "learning_rate": 1.879473751206489e-05, + "loss": 0.0542, + "step": 112 + }, + { + "epoch": 0.21, + "learning_rate": 1.8765425941760237e-05, + "loss": 0.1414, + "step": 113 + }, + { + "epoch": 0.21, + "learning_rate": 1.8735785643466786e-05, + "loss": 0.2482, + "step": 114 + }, + { + "epoch": 0.21, + "learning_rate": 1.8705817728778626e-05, + "loss": 0.1602, + "step": 115 + }, + { + "epoch": 0.21, + "learning_rate": 1.867552332157637e-05, + "loss": 0.1342, + "step": 116 + }, + { + "epoch": 0.22, + "learning_rate": 1.8644903557985027e-05, + "loss": 0.077, + "step": 117 + }, + { + "epoch": 0.22, + "learning_rate": 1.8613959586331364e-05, + "loss": 0.0818, + "step": 118 + }, + { + "epoch": 0.22, + "learning_rate": 1.8582692567100866e-05, + "loss": 0.1443, + "step": 119 + }, + { + "epoch": 0.22, + "learning_rate": 1.855110367289421e-05, + "loss": 0.1148, + "step": 120 + }, + { + "epoch": 0.22, + "learning_rate": 1.851919408838327e-05, + "loss": 0.1661, + "step": 121 + }, + { + "epoch": 0.23, + "learning_rate": 1.8486965010266726e-05, + "loss": 0.1676, + "step": 122 + }, + { + "epoch": 0.23, + "learning_rate": 1.845441764722514e-05, + "loss": 0.1288, + "step": 123 + }, + { + "epoch": 0.23, + "learning_rate": 1.842155321987566e-05, + "loss": 0.0725, + "step": 124 + }, + { + "epoch": 0.23, + "learning_rate": 1.8388372960726228e-05, + "loss": 0.1258, + "step": 125 + }, + { + "epoch": 0.23, + "learning_rate": 1.8354878114129368e-05, + "loss": 0.068, + "step": 126 + }, + { + "epoch": 0.23, + "learning_rate": 1.8321069936235503e-05, + "loss": 0.1698, + "step": 127 + }, + { + "epoch": 0.24, + "learning_rate": 1.8286949694945864e-05, + "loss": 0.2038, + "step": 128 + }, + { + "epoch": 0.24, + "learning_rate": 1.8252518669864935e-05, + "loss": 0.0274, + "step": 129 + }, + { + "epoch": 0.24, + "learning_rate": 1.821777815225245e-05, + "loss": 0.0564, + "step": 130 + }, + { + "epoch": 0.24, + "learning_rate": 1.8182729444974993e-05, + "loss": 0.1182, + "step": 131 + }, + { + "epoch": 0.24, + "learning_rate": 1.8147373862457107e-05, + "loss": 0.3175, + "step": 132 + }, + { + "epoch": 0.25, + "learning_rate": 1.8111712730632024e-05, + "loss": 0.1017, + "step": 133 + }, + { + "epoch": 0.25, + "learning_rate": 1.807574738689193e-05, + "loss": 0.3348, + "step": 134 + }, + { + "epoch": 0.25, + "learning_rate": 1.8039479180037803e-05, + "loss": 0.3129, + "step": 135 + }, + { + "epoch": 0.25, + "learning_rate": 1.800290947022884e-05, + "loss": 0.1095, + "step": 136 + }, + { + "epoch": 0.25, + "learning_rate": 1.7966039628931447e-05, + "loss": 0.1922, + "step": 137 + }, + { + "epoch": 0.26, + "learning_rate": 1.7928871038867785e-05, + "loss": 0.1022, + "step": 138 + }, + { + "epoch": 0.26, + "learning_rate": 1.789140509396394e-05, + "loss": 0.2318, + "step": 139 + }, + { + "epoch": 0.26, + "learning_rate": 1.7853643199297632e-05, + "loss": 0.2374, + "step": 140 + }, + { + "epoch": 0.26, + "learning_rate": 1.7815586771045535e-05, + "loss": 0.1194, + "step": 141 + }, + { + "epoch": 0.26, + "learning_rate": 1.777723723643014e-05, + "loss": 0.1914, + "step": 142 + }, + { + "epoch": 0.26, + "learning_rate": 1.773859603366626e-05, + "loss": 0.0431, + "step": 143 + }, + { + "epoch": 0.27, + "learning_rate": 1.769966461190707e-05, + "loss": 0.081, + "step": 144 + }, + { + "epoch": 0.27, + "learning_rate": 1.766044443118978e-05, + "loss": 0.2162, + "step": 145 + }, + { + "epoch": 0.27, + "learning_rate": 1.762093696238086e-05, + "loss": 0.1151, + "step": 146 + }, + { + "epoch": 0.27, + "learning_rate": 1.7581143687120877e-05, + "loss": 0.184, + "step": 147 + }, + { + "epoch": 0.27, + "learning_rate": 1.7541066097768965e-05, + "loss": 0.1963, + "step": 148 + }, + { + "epoch": 0.28, + "learning_rate": 1.750070569734681e-05, + "loss": 0.1318, + "step": 149 + }, + { + "epoch": 0.28, + "learning_rate": 1.7460063999482314e-05, + "loss": 0.1163, + "step": 150 + }, + { + "epoch": 0.28, + "learning_rate": 1.7419142528352815e-05, + "loss": 0.1013, + "step": 151 + }, + { + "epoch": 0.28, + "learning_rate": 1.737794281862794e-05, + "loss": 0.0957, + "step": 152 + }, + { + "epoch": 0.28, + "learning_rate": 1.7336466415412028e-05, + "loss": 0.2023, + "step": 153 + }, + { + "epoch": 0.28, + "learning_rate": 1.729471487418621e-05, + "loss": 0.1398, + "step": 154 + }, + { + "epoch": 0.29, + "learning_rate": 1.7252689760750053e-05, + "loss": 0.1238, + "step": 155 + }, + { + "epoch": 0.29, + "learning_rate": 1.721039265116285e-05, + "loss": 0.2201, + "step": 156 + }, + { + "epoch": 0.29, + "learning_rate": 1.7167825131684516e-05, + "loss": 0.0698, + "step": 157 + }, + { + "epoch": 0.29, + "learning_rate": 1.7124988798716084e-05, + "loss": 0.0312, + "step": 158 + }, + { + "epoch": 0.29, + "learning_rate": 1.7081885258739846e-05, + "loss": 0.1443, + "step": 159 + }, + { + "epoch": 0.3, + "learning_rate": 1.7038516128259118e-05, + "loss": 0.1349, + "step": 160 + }, + { + "epoch": 0.3, + "learning_rate": 1.6994883033737582e-05, + "loss": 0.0751, + "step": 161 + }, + { + "epoch": 0.3, + "learning_rate": 1.695098761153832e-05, + "loss": 0.0543, + "step": 162 + }, + { + "epoch": 0.3, + "learning_rate": 1.6906831507862446e-05, + "loss": 0.0533, + "step": 163 + }, + { + "epoch": 0.3, + "learning_rate": 1.686241637868734e-05, + "loss": 0.1328, + "step": 164 + }, + { + "epoch": 0.3, + "learning_rate": 1.6817743889704564e-05, + "loss": 0.3057, + "step": 165 + }, + { + "epoch": 0.31, + "learning_rate": 1.6772815716257414e-05, + "loss": 0.1642, + "step": 166 + }, + { + "epoch": 0.31, + "learning_rate": 1.672763354327804e-05, + "loss": 0.1479, + "step": 167 + }, + { + "epoch": 0.31, + "learning_rate": 1.6682199065224307e-05, + "loss": 0.1163, + "step": 168 + }, + { + "epoch": 0.31, + "learning_rate": 1.6636513986016215e-05, + "loss": 0.0395, + "step": 169 + }, + { + "epoch": 0.31, + "learning_rate": 1.6590580018972012e-05, + "loss": 0.0456, + "step": 170 + }, + { + "epoch": 0.32, + "learning_rate": 1.6544398886743934e-05, + "loss": 0.2018, + "step": 171 + }, + { + "epoch": 0.32, + "learning_rate": 1.64979723212536e-05, + "loss": 0.1655, + "step": 172 + }, + { + "epoch": 0.32, + "learning_rate": 1.6451302063627067e-05, + "loss": 0.1805, + "step": 173 + }, + { + "epoch": 0.32, + "learning_rate": 1.6404389864129533e-05, + "loss": 0.2445, + "step": 174 + }, + { + "epoch": 0.32, + "learning_rate": 1.6357237482099682e-05, + "loss": 0.134, + "step": 175 + }, + { + "epoch": 0.33, + "learning_rate": 1.6309846685883726e-05, + "loss": 0.0976, + "step": 176 + }, + { + "epoch": 0.33, + "learning_rate": 1.6262219252769065e-05, + "loss": 0.0984, + "step": 177 + }, + { + "epoch": 0.33, + "learning_rate": 1.621435696891765e-05, + "loss": 0.0495, + "step": 178 + }, + { + "epoch": 0.33, + "learning_rate": 1.6166261629298996e-05, + "loss": 0.1005, + "step": 179 + }, + { + "epoch": 0.33, + "learning_rate": 1.6117935037622848e-05, + "loss": 0.1399, + "step": 180 + }, + { + "epoch": 0.33, + "learning_rate": 1.606937900627157e-05, + "loss": 0.2105, + "step": 181 + }, + { + "epoch": 0.34, + "learning_rate": 1.6020595356232137e-05, + "loss": 0.142, + "step": 182 + }, + { + "epoch": 0.34, + "learning_rate": 1.5971585917027864e-05, + "loss": 0.0791, + "step": 183 + }, + { + "epoch": 0.34, + "learning_rate": 1.5922352526649803e-05, + "loss": 0.2, + "step": 184 + }, + { + "epoch": 0.34, + "learning_rate": 1.587289703148779e-05, + "loss": 0.1317, + "step": 185 + }, + { + "epoch": 0.34, + "learning_rate": 1.5823221286261217e-05, + "loss": 0.1656, + "step": 186 + }, + { + "epoch": 0.35, + "learning_rate": 1.5773327153949465e-05, + "loss": 0.3358, + "step": 187 + }, + { + "epoch": 0.35, + "learning_rate": 1.572321650572205e-05, + "loss": 0.2216, + "step": 188 + }, + { + "epoch": 0.35, + "learning_rate": 1.567289122086843e-05, + "loss": 0.0937, + "step": 189 + }, + { + "epoch": 0.35, + "learning_rate": 1.5622353186727542e-05, + "loss": 0.0995, + "step": 190 + }, + { + "epoch": 0.35, + "learning_rate": 1.557160429861702e-05, + "loss": 0.2324, + "step": 191 + }, + { + "epoch": 0.35, + "learning_rate": 1.5520646459762102e-05, + "loss": 0.2847, + "step": 192 + }, + { + "epoch": 0.36, + "learning_rate": 1.5469481581224274e-05, + "loss": 0.1242, + "step": 193 + }, + { + "epoch": 0.36, + "learning_rate": 1.5418111581829575e-05, + "loss": 0.1771, + "step": 194 + }, + { + "epoch": 0.36, + "learning_rate": 1.536653838809667e-05, + "loss": 0.2115, + "step": 195 + }, + { + "epoch": 0.36, + "learning_rate": 1.531476393416456e-05, + "loss": 0.074, + "step": 196 + }, + { + "epoch": 0.36, + "learning_rate": 1.5262790161720082e-05, + "loss": 0.0893, + "step": 197 + }, + { + "epoch": 0.37, + "learning_rate": 1.5210619019925066e-05, + "loss": 0.0644, + "step": 198 + }, + { + "epoch": 0.37, + "learning_rate": 1.5158252465343242e-05, + "loss": 0.2146, + "step": 199 + }, + { + "epoch": 0.37, + "learning_rate": 1.5105692461866874e-05, + "loss": 0.2579, + "step": 200 + }, + { + "epoch": 0.37, + "learning_rate": 1.50529409806431e-05, + "loss": 0.0806, + "step": 201 + }, + { + "epoch": 0.37, + "learning_rate": 1.5000000000000002e-05, + "loss": 0.0806, + "step": 202 + }, + { + "epoch": 0.38, + "learning_rate": 1.4946871505372426e-05, + "loss": 0.132, + "step": 203 + }, + { + "epoch": 0.38, + "learning_rate": 1.4893557489227518e-05, + "loss": 0.1438, + "step": 204 + }, + { + "epoch": 0.38, + "learning_rate": 1.4840059950989992e-05, + "loss": 0.1703, + "step": 205 + }, + { + "epoch": 0.38, + "learning_rate": 1.478638089696716e-05, + "loss": 0.0903, + "step": 206 + }, + { + "epoch": 0.38, + "learning_rate": 1.4732522340273686e-05, + "loss": 0.1515, + "step": 207 + }, + { + "epoch": 0.38, + "learning_rate": 1.467848630075608e-05, + "loss": 0.2156, + "step": 208 + }, + { + "epoch": 0.39, + "learning_rate": 1.4624274804916958e-05, + "loss": 0.0783, + "step": 209 + }, + { + "epoch": 0.39, + "learning_rate": 1.456988988583904e-05, + "loss": 0.1432, + "step": 210 + }, + { + "epoch": 0.39, + "learning_rate": 1.4515333583108896e-05, + "loss": 0.1716, + "step": 211 + }, + { + "epoch": 0.39, + "learning_rate": 1.4460607942740468e-05, + "loss": 0.2328, + "step": 212 + }, + { + "epoch": 0.39, + "learning_rate": 1.4405715017098333e-05, + "loss": 0.1317, + "step": 213 + }, + { + "epoch": 0.4, + "learning_rate": 1.4350656864820733e-05, + "loss": 0.097, + "step": 214 + }, + { + "epoch": 0.4, + "learning_rate": 1.4295435550742372e-05, + "loss": 0.1547, + "step": 215 + }, + { + "epoch": 0.4, + "learning_rate": 1.4240053145816968e-05, + "loss": 0.0737, + "step": 216 + }, + { + "epoch": 0.4, + "learning_rate": 1.4184511727039612e-05, + "loss": 0.0926, + "step": 217 + }, + { + "epoch": 0.4, + "learning_rate": 1.4128813377368851e-05, + "loss": 0.0824, + "step": 218 + }, + { + "epoch": 0.4, + "learning_rate": 1.4072960185648576e-05, + "loss": 0.1236, + "step": 219 + }, + { + "epoch": 0.41, + "learning_rate": 1.4016954246529697e-05, + "loss": 0.157, + "step": 220 + }, + { + "epoch": 0.41, + "learning_rate": 1.396079766039157e-05, + "loss": 0.1241, + "step": 221 + }, + { + "epoch": 0.41, + "learning_rate": 1.3904492533263243e-05, + "loss": 0.1243, + "step": 222 + }, + { + "epoch": 0.41, + "learning_rate": 1.3848040976744459e-05, + "loss": 0.1429, + "step": 223 + }, + { + "epoch": 0.41, + "learning_rate": 1.3791445107926478e-05, + "loss": 0.0321, + "step": 224 + }, + { + "epoch": 0.42, + "learning_rate": 1.3734707049312674e-05, + "loss": 0.0398, + "step": 225 + }, + { + "epoch": 0.42, + "learning_rate": 1.3677828928738934e-05, + "loss": 0.2625, + "step": 226 + }, + { + "epoch": 0.42, + "learning_rate": 1.3620812879293864e-05, + "loss": 0.0926, + "step": 227 + }, + { + "epoch": 0.42, + "learning_rate": 1.3563661039238785e-05, + "loss": 0.06, + "step": 228 + }, + { + "epoch": 0.42, + "learning_rate": 1.3506375551927546e-05, + "loss": 0.2397, + "step": 229 + }, + { + "epoch": 0.43, + "learning_rate": 1.3448958565726144e-05, + "loss": 0.157, + "step": 230 + }, + { + "epoch": 0.43, + "learning_rate": 1.3391412233932148e-05, + "loss": 0.1105, + "step": 231 + }, + { + "epoch": 0.43, + "learning_rate": 1.3333738714693958e-05, + "loss": 0.0877, + "step": 232 + }, + { + "epoch": 0.43, + "learning_rate": 1.3275940170929845e-05, + "loss": 0.1821, + "step": 233 + }, + { + "epoch": 0.43, + "learning_rate": 1.3218018770246858e-05, + "loss": 0.0166, + "step": 234 + }, + { + "epoch": 0.43, + "learning_rate": 1.3159976684859528e-05, + "loss": 0.118, + "step": 235 + }, + { + "epoch": 0.44, + "learning_rate": 1.3101816091508389e-05, + "loss": 0.2289, + "step": 236 + }, + { + "epoch": 0.44, + "learning_rate": 1.3043539171378362e-05, + "loss": 0.0518, + "step": 237 + }, + { + "epoch": 0.44, + "learning_rate": 1.2985148110016947e-05, + "loss": 0.1012, + "step": 238 + }, + { + "epoch": 0.44, + "learning_rate": 1.292664509725226e-05, + "loss": 0.2009, + "step": 239 + }, + { + "epoch": 0.44, + "learning_rate": 1.2868032327110904e-05, + "loss": 0.252, + "step": 240 + }, + { + "epoch": 0.45, + "learning_rate": 1.2809311997735697e-05, + "loss": 0.2044, + "step": 241 + }, + { + "epoch": 0.45, + "learning_rate": 1.2750486311303218e-05, + "loss": 0.1908, + "step": 242 + }, + { + "epoch": 0.45, + "learning_rate": 1.2691557473941246e-05, + "loss": 0.3064, + "step": 243 + }, + { + "epoch": 0.45, + "learning_rate": 1.2632527695645993e-05, + "loss": 0.091, + "step": 244 + }, + { + "epoch": 0.45, + "learning_rate": 1.257339919019925e-05, + "loss": 0.0606, + "step": 245 + }, + { + "epoch": 0.45, + "learning_rate": 1.2514174175085346e-05, + "loss": 0.147, + "step": 246 + }, + { + "epoch": 0.46, + "learning_rate": 1.2454854871407993e-05, + "loss": 0.2029, + "step": 247 + }, + { + "epoch": 0.46, + "learning_rate": 1.239544350380699e-05, + "loss": 0.0851, + "step": 248 + }, + { + "epoch": 0.46, + "learning_rate": 1.2335942300374788e-05, + "loss": 0.0904, + "step": 249 + }, + { + "epoch": 0.46, + "learning_rate": 1.2276353492572937e-05, + "loss": 0.0721, + "step": 250 + }, + { + "epoch": 0.46, + "learning_rate": 1.2216679315148388e-05, + "loss": 0.1488, + "step": 251 + }, + { + "epoch": 0.47, + "learning_rate": 1.2156922006049703e-05, + "loss": 0.1927, + "step": 252 + }, + { + "epoch": 0.47, + "learning_rate": 1.2097083806343104e-05, + "loss": 0.029, + "step": 253 + }, + { + "epoch": 0.47, + "learning_rate": 1.2037166960128443e-05, + "loss": 0.0301, + "step": 254 + }, + { + "epoch": 0.47, + "learning_rate": 1.1977173714455034e-05, + "loss": 0.1231, + "step": 255 + }, + { + "epoch": 0.47, + "learning_rate": 1.1917106319237386e-05, + "loss": 0.0348, + "step": 256 + }, + { + "epoch": 0.48, + "learning_rate": 1.1856967027170818e-05, + "loss": 0.0869, + "step": 257 + }, + { + "epoch": 0.48, + "learning_rate": 1.1796758093646989e-05, + "loss": 0.1164, + "step": 258 + }, + { + "epoch": 0.48, + "learning_rate": 1.1736481776669307e-05, + "loss": 0.0388, + "step": 259 + }, + { + "epoch": 0.48, + "learning_rate": 1.1676140336768236e-05, + "loss": 0.0433, + "step": 260 + }, + { + "epoch": 0.48, + "learning_rate": 1.161573603691655e-05, + "loss": 0.1996, + "step": 261 + }, + { + "epoch": 0.48, + "learning_rate": 1.1555271142444433e-05, + "loss": 0.2182, + "step": 262 + }, + { + "epoch": 0.49, + "learning_rate": 1.1494747920954545e-05, + "loss": 0.0509, + "step": 263 + }, + { + "epoch": 0.49, + "learning_rate": 1.1434168642236964e-05, + "loss": 0.1078, + "step": 264 + }, + { + "epoch": 0.49, + "learning_rate": 1.1373535578184083e-05, + "loss": 0.0412, + "step": 265 + }, + { + "epoch": 0.49, + "learning_rate": 1.1312851002705383e-05, + "loss": 0.2425, + "step": 266 + }, + { + "epoch": 0.49, + "learning_rate": 1.1252117191642175e-05, + "loss": 0.1119, + "step": 267 + }, + { + "epoch": 0.5, + "learning_rate": 1.1191336422682237e-05, + "loss": 0.0455, + "step": 268 + }, + { + "epoch": 0.5, + "learning_rate": 1.1130510975274408e-05, + "loss": 0.2613, + "step": 269 + }, + { + "epoch": 0.5, + "learning_rate": 1.1069643130543084e-05, + "loss": 0.0651, + "step": 270 + }, + { + "epoch": 0.5, + "learning_rate": 1.1008735171202685e-05, + "loss": 0.1155, + "step": 271 + }, + { + "epoch": 0.5, + "learning_rate": 1.0947789381472035e-05, + "loss": 0.0661, + "step": 272 + }, + { + "epoch": 0.5, + "learning_rate": 1.0886808046988716e-05, + "loss": 0.0881, + "step": 273 + }, + { + "epoch": 0.51, + "learning_rate": 1.0825793454723325e-05, + "loss": 0.1123, + "step": 274 + }, + { + "epoch": 0.51, + "learning_rate": 1.0764747892893724e-05, + "loss": 0.14, + "step": 275 + }, + { + "epoch": 0.51, + "learning_rate": 1.0703673650879219e-05, + "loss": 0.0889, + "step": 276 + }, + { + "epoch": 0.51, + "learning_rate": 1.0642573019134703e-05, + "loss": 0.1333, + "step": 277 + }, + { + "epoch": 0.51, + "learning_rate": 1.0581448289104759e-05, + "loss": 0.0608, + "step": 278 + }, + { + "epoch": 0.52, + "learning_rate": 1.0520301753137725e-05, + "loss": 0.2882, + "step": 279 + }, + { + "epoch": 0.52, + "learning_rate": 1.045913570439972e-05, + "loss": 0.0661, + "step": 280 + }, + { + "epoch": 0.52, + "learning_rate": 1.0397952436788643e-05, + "loss": 0.107, + "step": 281 + }, + { + "epoch": 0.52, + "learning_rate": 1.0336754244848156e-05, + "loss": 0.0499, + "step": 282 + }, + { + "epoch": 0.52, + "learning_rate": 1.0275543423681622e-05, + "loss": 0.237, + "step": 283 + }, + { + "epoch": 0.52, + "learning_rate": 1.0214322268866033e-05, + "loss": 0.0301, + "step": 284 + }, + { + "epoch": 0.53, + "learning_rate": 1.0153093076365923e-05, + "loss": 0.0904, + "step": 285 + }, + { + "epoch": 0.53, + "learning_rate": 1.0091858142447266e-05, + "loss": 0.0165, + "step": 286 + }, + { + "epoch": 0.53, + "learning_rate": 1.0030619763591348e-05, + "loss": 0.0791, + "step": 287 + }, + { + "epoch": 0.53, + "learning_rate": 9.969380236408656e-06, + "loss": 0.1997, + "step": 288 + }, + { + "epoch": 0.53, + "learning_rate": 9.908141857552737e-06, + "loss": 0.0155, + "step": 289 + }, + { + "epoch": 0.54, + "learning_rate": 9.846906923634079e-06, + "loss": 0.0457, + "step": 290 + }, + { + "epoch": 0.54, + "learning_rate": 9.785677731133972e-06, + "loss": 0.0203, + "step": 291 + }, + { + "epoch": 0.54, + "learning_rate": 9.724456576318383e-06, + "loss": 0.2384, + "step": 292 + }, + { + "epoch": 0.54, + "learning_rate": 9.663245755151847e-06, + "loss": 0.1459, + "step": 293 + }, + { + "epoch": 0.54, + "learning_rate": 9.602047563211359e-06, + "loss": 0.2249, + "step": 294 + }, + { + "epoch": 0.55, + "learning_rate": 9.540864295600282e-06, + "loss": 0.037, + "step": 295 + }, + { + "epoch": 0.55, + "learning_rate": 9.479698246862277e-06, + "loss": 0.145, + "step": 296 + }, + { + "epoch": 0.55, + "learning_rate": 9.418551710895243e-06, + "loss": 0.1501, + "step": 297 + }, + { + "epoch": 0.55, + "learning_rate": 9.3574269808653e-06, + "loss": 0.0727, + "step": 298 + }, + { + "epoch": 0.55, + "learning_rate": 9.296326349120786e-06, + "loss": 0.0992, + "step": 299 + }, + { + "epoch": 0.55, + "learning_rate": 9.23525210710628e-06, + "loss": 0.2516, + "step": 300 + }, + { + "epoch": 0.56, + "learning_rate": 9.174206545276678e-06, + "loss": 0.0628, + "step": 301 + }, + { + "epoch": 0.56, + "learning_rate": 9.113191953011287e-06, + "loss": 0.132, + "step": 302 + }, + { + "epoch": 0.56, + "learning_rate": 9.052210618527966e-06, + "loss": 0.0908, + "step": 303 + }, + { + "epoch": 0.56, + "learning_rate": 8.991264828797319e-06, + "loss": 0.1432, + "step": 304 + }, + { + "epoch": 0.56, + "learning_rate": 8.93035686945692e-06, + "loss": 0.0493, + "step": 305 + }, + { + "epoch": 0.57, + "learning_rate": 8.869489024725595e-06, + "loss": 0.0578, + "step": 306 + }, + { + "epoch": 0.57, + "learning_rate": 8.808663577317765e-06, + "loss": 0.0909, + "step": 307 + }, + { + "epoch": 0.57, + "learning_rate": 8.747882808357828e-06, + "loss": 0.0646, + "step": 308 + }, + { + "epoch": 0.57, + "learning_rate": 8.687148997294622e-06, + "loss": 0.1308, + "step": 309 + }, + { + "epoch": 0.57, + "learning_rate": 8.626464421815919e-06, + "loss": 0.0729, + "step": 310 + }, + { + "epoch": 0.57, + "learning_rate": 8.565831357763039e-06, + "loss": 0.1871, + "step": 311 + }, + { + "epoch": 0.58, + "learning_rate": 8.505252079045459e-06, + "loss": 0.1577, + "step": 312 + }, + { + "epoch": 0.58, + "learning_rate": 8.444728857555572e-06, + "loss": 0.1844, + "step": 313 + }, + { + "epoch": 0.58, + "learning_rate": 8.384263963083453e-06, + "loss": 0.1673, + "step": 314 + }, + { + "epoch": 0.58, + "learning_rate": 8.323859663231768e-06, + "loss": 0.1898, + "step": 315 + }, + { + "epoch": 0.58, + "learning_rate": 8.263518223330698e-06, + "loss": 0.1106, + "step": 316 + }, + { + "epoch": 0.59, + "learning_rate": 8.203241906353014e-06, + "loss": 0.0476, + "step": 317 + }, + { + "epoch": 0.59, + "learning_rate": 8.143032972829184e-06, + "loss": 0.1432, + "step": 318 + }, + { + "epoch": 0.59, + "learning_rate": 8.082893680762619e-06, + "loss": 0.0249, + "step": 319 + }, + { + "epoch": 0.59, + "learning_rate": 8.022826285544967e-06, + "loss": 0.0762, + "step": 320 + }, + { + "epoch": 0.59, + "learning_rate": 7.962833039871562e-06, + "loss": 0.1468, + "step": 321 + }, + { + "epoch": 0.6, + "learning_rate": 7.902916193656898e-06, + "loss": 0.0272, + "step": 322 + }, + { + "epoch": 0.6, + "learning_rate": 7.843077993950302e-06, + "loss": 0.0495, + "step": 323 + }, + { + "epoch": 0.6, + "learning_rate": 7.783320684851613e-06, + "loss": 0.1958, + "step": 324 + }, + { + "epoch": 0.6, + "learning_rate": 7.72364650742707e-06, + "loss": 0.0869, + "step": 325 + }, + { + "epoch": 0.6, + "learning_rate": 7.664057699625215e-06, + "loss": 0.2957, + "step": 326 + }, + { + "epoch": 0.6, + "learning_rate": 7.604556496193015e-06, + "loss": 0.0833, + "step": 327 + }, + { + "epoch": 0.61, + "learning_rate": 7.545145128592009e-06, + "loss": 0.0978, + "step": 328 + }, + { + "epoch": 0.61, + "learning_rate": 7.485825824914658e-06, + "loss": 0.1941, + "step": 329 + }, + { + "epoch": 0.61, + "learning_rate": 7.426600809800753e-06, + "loss": 0.0384, + "step": 330 + }, + { + "epoch": 0.61, + "learning_rate": 7.367472304354011e-06, + "loss": 0.0872, + "step": 331 + }, + { + "epoch": 0.61, + "learning_rate": 7.308442526058757e-06, + "loss": 0.1051, + "step": 332 + }, + { + "epoch": 0.62, + "learning_rate": 7.249513688696786e-06, + "loss": 0.0918, + "step": 333 + }, + { + "epoch": 0.62, + "learning_rate": 7.190688002264308e-06, + "loss": 0.2169, + "step": 334 + }, + { + "epoch": 0.62, + "learning_rate": 7.131967672889101e-06, + "loss": 0.1647, + "step": 335 + }, + { + "epoch": 0.62, + "learning_rate": 7.073354902747742e-06, + "loss": 0.0585, + "step": 336 + }, + { + "epoch": 0.62, + "learning_rate": 7.014851889983058e-06, + "loss": 0.1743, + "step": 337 + }, + { + "epoch": 0.62, + "learning_rate": 6.956460828621641e-06, + "loss": 0.3001, + "step": 338 + }, + { + "epoch": 0.63, + "learning_rate": 6.898183908491617e-06, + "loss": 0.0977, + "step": 339 + }, + { + "epoch": 0.63, + "learning_rate": 6.840023315140476e-06, + "loss": 0.0549, + "step": 340 + }, + { + "epoch": 0.63, + "learning_rate": 6.781981229753145e-06, + "loss": 0.0738, + "step": 341 + }, + { + "epoch": 0.63, + "learning_rate": 6.7240598290701585e-06, + "loss": 0.027, + "step": 342 + }, + { + "epoch": 0.63, + "learning_rate": 6.666261285306048e-06, + "loss": 0.0647, + "step": 343 + }, + { + "epoch": 0.64, + "learning_rate": 6.608587766067853e-06, + "loss": 0.0531, + "step": 344 + }, + { + "epoch": 0.64, + "learning_rate": 6.551041434273862e-06, + "loss": 0.0582, + "step": 345 + }, + { + "epoch": 0.64, + "learning_rate": 6.4936244480724575e-06, + "loss": 0.2357, + "step": 346 + }, + { + "epoch": 0.64, + "learning_rate": 6.4363389607612204e-06, + "loss": 0.0614, + "step": 347 + }, + { + "epoch": 0.64, + "learning_rate": 6.379187120706138e-06, + "loss": 0.1516, + "step": 348 + }, + { + "epoch": 0.65, + "learning_rate": 6.322171071261071e-06, + "loss": 0.2906, + "step": 349 + }, + { + "epoch": 0.65, + "learning_rate": 6.265292950687329e-06, + "loss": 0.0402, + "step": 350 + }, + { + "epoch": 0.65, + "learning_rate": 6.208554892073528e-06, + "loss": 0.0895, + "step": 351 + }, + { + "epoch": 0.65, + "learning_rate": 6.151959023255545e-06, + "loss": 0.109, + "step": 352 + }, + { + "epoch": 0.65, + "learning_rate": 6.095507466736763e-06, + "loss": 0.1338, + "step": 353 + }, + { + "epoch": 0.65, + "learning_rate": 6.039202339608432e-06, + "loss": 0.0541, + "step": 354 + }, + { + "epoch": 0.66, + "learning_rate": 5.983045753470308e-06, + "loss": 0.0614, + "step": 355 + }, + { + "epoch": 0.66, + "learning_rate": 5.927039814351426e-06, + "loss": 0.2844, + "step": 356 + }, + { + "epoch": 0.66, + "learning_rate": 5.871186622631155e-06, + "loss": 0.1412, + "step": 357 + }, + { + "epoch": 0.66, + "learning_rate": 5.815488272960388e-06, + "loss": 0.0575, + "step": 358 + }, + { + "epoch": 0.66, + "learning_rate": 5.759946854183036e-06, + "loss": 0.1047, + "step": 359 + }, + { + "epoch": 0.67, + "learning_rate": 5.704564449257635e-06, + "loss": 0.2065, + "step": 360 + }, + { + "epoch": 0.67, + "learning_rate": 5.649343135179271e-06, + "loss": 0.0995, + "step": 361 + }, + { + "epoch": 0.67, + "learning_rate": 5.59428498290167e-06, + "loss": 0.1517, + "step": 362 + }, + { + "epoch": 0.67, + "learning_rate": 5.539392057259536e-06, + "loss": 0.1122, + "step": 363 + }, + { + "epoch": 0.67, + "learning_rate": 5.484666416891109e-06, + "loss": 0.0992, + "step": 364 + }, + { + "epoch": 0.67, + "learning_rate": 5.430110114160965e-06, + "loss": 0.1303, + "step": 365 + }, + { + "epoch": 0.68, + "learning_rate": 5.375725195083046e-06, + "loss": 0.1192, + "step": 366 + }, + { + "epoch": 0.68, + "learning_rate": 5.321513699243924e-06, + "loss": 0.0991, + "step": 367 + }, + { + "epoch": 0.68, + "learning_rate": 5.267477659726319e-06, + "loss": 0.077, + "step": 368 + }, + { + "epoch": 0.68, + "learning_rate": 5.213619103032845e-06, + "loss": 0.1052, + "step": 369 + }, + { + "epoch": 0.68, + "learning_rate": 5.159940049010015e-06, + "loss": 0.2359, + "step": 370 + }, + { + "epoch": 0.69, + "learning_rate": 5.106442510772489e-06, + "loss": 0.0501, + "step": 371 + }, + { + "epoch": 0.69, + "learning_rate": 5.053128494627578e-06, + "loss": 0.0803, + "step": 372 + }, + { + "epoch": 0.69, + "learning_rate": 5.000000000000003e-06, + "loss": 0.2073, + "step": 373 + }, + { + "epoch": 0.69, + "learning_rate": 4.947059019356904e-06, + "loss": 0.0479, + "step": 374 + }, + { + "epoch": 0.69, + "learning_rate": 4.89430753813313e-06, + "loss": 0.125, + "step": 375 + }, + { + "epoch": 0.7, + "learning_rate": 4.8417475346567635e-06, + "loss": 0.0715, + "step": 376 + }, + { + "epoch": 0.7, + "learning_rate": 4.78938098007494e-06, + "loss": 0.0242, + "step": 377 + }, + { + "epoch": 0.7, + "learning_rate": 4.737209838279923e-06, + "loss": 0.1242, + "step": 378 + }, + { + "epoch": 0.7, + "learning_rate": 4.685236065835443e-06, + "loss": 0.1771, + "step": 379 + }, + { + "epoch": 0.7, + "learning_rate": 4.633461611903336e-06, + "loss": 0.1037, + "step": 380 + }, + { + "epoch": 0.7, + "learning_rate": 4.581888418170429e-06, + "loss": 0.0733, + "step": 381 + }, + { + "epoch": 0.71, + "learning_rate": 4.530518418775734e-06, + "loss": 0.0565, + "step": 382 + }, + { + "epoch": 0.71, + "learning_rate": 4.479353540237903e-06, + "loss": 0.1092, + "step": 383 + }, + { + "epoch": 0.71, + "learning_rate": 4.4283957013829845e-06, + "loss": 0.0371, + "step": 384 + }, + { + "epoch": 0.71, + "learning_rate": 4.3776468132724605e-06, + "loss": 0.1105, + "step": 385 + }, + { + "epoch": 0.71, + "learning_rate": 4.327108779131573e-06, + "loss": 0.1856, + "step": 386 + }, + { + "epoch": 0.72, + "learning_rate": 4.276783494277954e-06, + "loss": 0.1237, + "step": 387 + }, + { + "epoch": 0.72, + "learning_rate": 4.226672846050538e-06, + "loss": 0.2521, + "step": 388 + }, + { + "epoch": 0.72, + "learning_rate": 4.176778713738787e-06, + "loss": 0.0565, + "step": 389 + }, + { + "epoch": 0.72, + "learning_rate": 4.127102968512214e-06, + "loss": 0.0518, + "step": 390 + }, + { + "epoch": 0.72, + "learning_rate": 4.077647473350201e-06, + "loss": 0.0735, + "step": 391 + }, + { + "epoch": 0.72, + "learning_rate": 4.028414082972141e-06, + "loss": 0.0786, + "step": 392 + }, + { + "epoch": 0.73, + "learning_rate": 3.9794046437678705e-06, + "loss": 0.025, + "step": 393 + }, + { + "epoch": 0.73, + "learning_rate": 3.930620993728434e-06, + "loss": 0.2235, + "step": 394 + }, + { + "epoch": 0.73, + "learning_rate": 3.882064962377154e-06, + "loss": 0.1307, + "step": 395 + }, + { + "epoch": 0.73, + "learning_rate": 3.83373837070101e-06, + "loss": 0.0224, + "step": 396 + }, + { + "epoch": 0.73, + "learning_rate": 3.7856430310823546e-06, + "loss": 0.1109, + "step": 397 + }, + { + "epoch": 0.74, + "learning_rate": 3.737780747230941e-06, + "loss": 0.0624, + "step": 398 + }, + { + "epoch": 0.74, + "learning_rate": 3.6901533141162804e-06, + "loss": 0.055, + "step": 399 + }, + { + "epoch": 0.74, + "learning_rate": 3.6427625179003223e-06, + "loss": 0.2079, + "step": 400 + }, + { + "epoch": 0.74, + "learning_rate": 3.595610135870472e-06, + "loss": 0.2215, + "step": 401 + }, + { + "epoch": 0.74, + "learning_rate": 3.548697936372937e-06, + "loss": 0.1016, + "step": 402 + }, + { + "epoch": 0.74, + "learning_rate": 3.5020276787464058e-06, + "loss": 0.1229, + "step": 403 + }, + { + "epoch": 0.75, + "learning_rate": 3.455601113256073e-06, + "loss": 0.0759, + "step": 404 + }, + { + "epoch": 0.75, + "learning_rate": 3.4094199810279926e-06, + "loss": 0.1667, + "step": 405 + }, + { + "epoch": 0.75, + "learning_rate": 3.3634860139837877e-06, + "loss": 0.048, + "step": 406 + }, + { + "epoch": 0.75, + "learning_rate": 3.317800934775696e-06, + "loss": 0.0543, + "step": 407 + }, + { + "epoch": 0.75, + "learning_rate": 3.2723664567219627e-06, + "loss": 0.1656, + "step": 408 + }, + { + "epoch": 0.76, + "learning_rate": 3.2271842837425917e-06, + "loss": 0.0409, + "step": 409 + }, + { + "epoch": 0.76, + "learning_rate": 3.1822561102954373e-06, + "loss": 0.1173, + "step": 410 + }, + { + "epoch": 0.76, + "learning_rate": 3.1375836213126653e-06, + "loss": 0.0964, + "step": 411 + }, + { + "epoch": 0.76, + "learning_rate": 3.0931684921375572e-06, + "loss": 0.0432, + "step": 412 + }, + { + "epoch": 0.76, + "learning_rate": 3.0490123884616795e-06, + "loss": 0.1451, + "step": 413 + }, + { + "epoch": 0.77, + "learning_rate": 3.0051169662624224e-06, + "loss": 0.1226, + "step": 414 + }, + { + "epoch": 0.77, + "learning_rate": 2.9614838717408866e-06, + "loss": 0.096, + "step": 415 + }, + { + "epoch": 0.77, + "learning_rate": 2.918114741260156e-06, + "loss": 0.1152, + "step": 416 + }, + { + "epoch": 0.77, + "learning_rate": 2.8750112012839215e-06, + "loss": 0.0575, + "step": 417 + }, + { + "epoch": 0.77, + "learning_rate": 2.8321748683154893e-06, + "loss": 0.097, + "step": 418 + }, + { + "epoch": 0.77, + "learning_rate": 2.7896073488371535e-06, + "loss": 0.0513, + "step": 419 + }, + { + "epoch": 0.78, + "learning_rate": 2.7473102392499517e-06, + "loss": 0.0566, + "step": 420 + }, + { + "epoch": 0.78, + "learning_rate": 2.7052851258137936e-06, + "loss": 0.0193, + "step": 421 + }, + { + "epoch": 0.78, + "learning_rate": 2.663533584587974e-06, + "loss": 0.1507, + "step": 422 + }, + { + "epoch": 0.78, + "learning_rate": 2.622057181372063e-06, + "loss": 0.0208, + "step": 423 + }, + { + "epoch": 0.78, + "learning_rate": 2.580857471647186e-06, + "loss": 0.0893, + "step": 424 + }, + { + "epoch": 0.79, + "learning_rate": 2.539936000517689e-06, + "loss": 0.0988, + "step": 425 + }, + { + "epoch": 0.79, + "learning_rate": 2.4992943026531935e-06, + "loss": 0.0368, + "step": 426 + }, + { + "epoch": 0.79, + "learning_rate": 2.4589339022310386e-06, + "loss": 0.0911, + "step": 427 + }, + { + "epoch": 0.79, + "learning_rate": 2.4188563128791255e-06, + "loss": 0.1093, + "step": 428 + }, + { + "epoch": 0.79, + "learning_rate": 2.379063037619146e-06, + "loss": 0.0717, + "step": 429 + }, + { + "epoch": 0.79, + "learning_rate": 2.339555568810221e-06, + "loss": 0.1486, + "step": 430 + }, + { + "epoch": 0.8, + "learning_rate": 2.300335388092929e-06, + "loss": 0.1174, + "step": 431 + }, + { + "epoch": 0.8, + "learning_rate": 2.261403966333742e-06, + "loss": 0.2022, + "step": 432 + }, + { + "epoch": 0.8, + "learning_rate": 2.2227627635698624e-06, + "loss": 0.0376, + "step": 433 + }, + { + "epoch": 0.8, + "learning_rate": 2.1844132289544684e-06, + "loss": 0.3022, + "step": 434 + }, + { + "epoch": 0.8, + "learning_rate": 2.1463568007023706e-06, + "loss": 0.0121, + "step": 435 + }, + { + "epoch": 0.81, + "learning_rate": 2.1085949060360654e-06, + "loss": 0.1441, + "step": 436 + }, + { + "epoch": 0.81, + "learning_rate": 2.0711289611322204e-06, + "loss": 0.0457, + "step": 437 + }, + { + "epoch": 0.81, + "learning_rate": 2.0339603710685574e-06, + "loss": 0.0324, + "step": 438 + }, + { + "epoch": 0.81, + "learning_rate": 1.9970905297711606e-06, + "loss": 0.045, + "step": 439 + }, + { + "epoch": 0.81, + "learning_rate": 1.9605208199621993e-06, + "loss": 0.0644, + "step": 440 + }, + { + "epoch": 0.82, + "learning_rate": 1.924252613108073e-06, + "loss": 0.0743, + "step": 441 + }, + { + "epoch": 0.82, + "learning_rate": 1.8882872693679787e-06, + "loss": 0.054, + "step": 442 + }, + { + "epoch": 0.82, + "learning_rate": 1.8526261375428955e-06, + "loss": 0.1679, + "step": 443 + }, + { + "epoch": 0.82, + "learning_rate": 1.8172705550250093e-06, + "loss": 0.0666, + "step": 444 + }, + { + "epoch": 0.82, + "learning_rate": 1.7822218477475496e-06, + "loss": 0.2, + "step": 445 + }, + { + "epoch": 0.82, + "learning_rate": 1.7474813301350668e-06, + "loss": 0.1191, + "step": 446 + }, + { + "epoch": 0.83, + "learning_rate": 1.7130503050541368e-06, + "loss": 0.1166, + "step": 447 + }, + { + "epoch": 0.83, + "learning_rate": 1.6789300637645e-06, + "loss": 0.0089, + "step": 448 + }, + { + "epoch": 0.83, + "learning_rate": 1.6451218858706374e-06, + "loss": 0.0848, + "step": 449 + }, + { + "epoch": 0.83, + "learning_rate": 1.6116270392737753e-06, + "loss": 0.1263, + "step": 450 + }, + { + "epoch": 0.83, + "learning_rate": 1.578446780124344e-06, + "loss": 0.1338, + "step": 451 + }, + { + "epoch": 0.84, + "learning_rate": 1.5455823527748626e-06, + "loss": 0.0566, + "step": 452 + }, + { + "epoch": 0.84, + "learning_rate": 1.5130349897332764e-06, + "loss": 0.0618, + "step": 453 + }, + { + "epoch": 0.84, + "learning_rate": 1.4808059116167306e-06, + "loss": 0.0259, + "step": 454 + }, + { + "epoch": 0.84, + "learning_rate": 1.4488963271057943e-06, + "loss": 0.1682, + "step": 455 + }, + { + "epoch": 0.84, + "learning_rate": 1.4173074328991376e-06, + "loss": 0.0967, + "step": 456 + }, + { + "epoch": 0.84, + "learning_rate": 1.3860404136686411e-06, + "loss": 0.0799, + "step": 457 + }, + { + "epoch": 0.85, + "learning_rate": 1.355096442014977e-06, + "loss": 0.1426, + "step": 458 + }, + { + "epoch": 0.85, + "learning_rate": 1.3244766784236307e-06, + "loss": 0.1401, + "step": 459 + }, + { + "epoch": 0.85, + "learning_rate": 1.294182271221377e-06, + "loss": 0.0526, + "step": 460 + }, + { + "epoch": 0.85, + "learning_rate": 1.2642143565332154e-06, + "loss": 0.1516, + "step": 461 + }, + { + "epoch": 0.85, + "learning_rate": 1.2345740582397647e-06, + "loss": 0.0326, + "step": 462 + }, + { + "epoch": 0.86, + "learning_rate": 1.2052624879351105e-06, + "loss": 0.0517, + "step": 463 + }, + { + "epoch": 0.86, + "learning_rate": 1.176280744885121e-06, + "loss": 0.094, + "step": 464 + }, + { + "epoch": 0.86, + "learning_rate": 1.1476299159862204e-06, + "loss": 0.0684, + "step": 465 + }, + { + "epoch": 0.86, + "learning_rate": 1.1193110757246251e-06, + "loss": 0.0845, + "step": 466 + }, + { + "epoch": 0.86, + "learning_rate": 1.09132528613605e-06, + "loss": 0.1105, + "step": 467 + }, + { + "epoch": 0.87, + "learning_rate": 1.0636735967658785e-06, + "loss": 0.0947, + "step": 468 + }, + { + "epoch": 0.87, + "learning_rate": 1.0363570446297999e-06, + "loss": 0.0685, + "step": 469 + }, + { + "epoch": 0.87, + "learning_rate": 1.0093766541749206e-06, + "loss": 0.0902, + "step": 470 + }, + { + "epoch": 0.87, + "learning_rate": 9.827334372413444e-07, + "loss": 0.0257, + "step": 471 + }, + { + "epoch": 0.87, + "learning_rate": 9.564283930242258e-07, + "loss": 0.1048, + "step": 472 + }, + { + "epoch": 0.87, + "learning_rate": 9.304625080362939e-07, + "loss": 0.1365, + "step": 473 + }, + { + "epoch": 0.88, + "learning_rate": 9.048367560708604e-07, + "loss": 0.2323, + "step": 474 + }, + { + "epoch": 0.88, + "learning_rate": 8.79552098165296e-07, + "loss": 0.0435, + "step": 475 + }, + { + "epoch": 0.88, + "learning_rate": 8.546094825649909e-07, + "loss": 0.0644, + "step": 476 + }, + { + "epoch": 0.88, + "learning_rate": 8.300098446877925e-07, + "loss": 0.0884, + "step": 477 + }, + { + "epoch": 0.88, + "learning_rate": 8.057541070889229e-07, + "loss": 0.1381, + "step": 478 + }, + { + "epoch": 0.89, + "learning_rate": 7.818431794263837e-07, + "loss": 0.0472, + "step": 479 + }, + { + "epoch": 0.89, + "learning_rate": 7.582779584268374e-07, + "loss": 0.0606, + "step": 480 + }, + { + "epoch": 0.89, + "learning_rate": 7.350593278519824e-07, + "loss": 0.0325, + "step": 481 + }, + { + "epoch": 0.89, + "learning_rate": 7.121881584654056e-07, + "loss": 0.0391, + "step": 482 + }, + { + "epoch": 0.89, + "learning_rate": 6.896653079999249e-07, + "loss": 0.0965, + "step": 483 + }, + { + "epoch": 0.89, + "learning_rate": 6.67491621125429e-07, + "loss": 0.0288, + "step": 484 + }, + { + "epoch": 0.9, + "learning_rate": 6.45667929417193e-07, + "loss": 0.0608, + "step": 485 + }, + { + "epoch": 0.9, + "learning_rate": 6.241950513246931e-07, + "loss": 0.0619, + "step": 486 + }, + { + "epoch": 0.9, + "learning_rate": 6.030737921409169e-07, + "loss": 0.2691, + "step": 487 + }, + { + "epoch": 0.9, + "learning_rate": 5.823049439721562e-07, + "loss": 0.1071, + "step": 488 + }, + { + "epoch": 0.9, + "learning_rate": 5.618892857083069e-07, + "loss": 0.1501, + "step": 489 + }, + { + "epoch": 0.91, + "learning_rate": 5.418275829936537e-07, + "loss": 0.0807, + "step": 490 + }, + { + "epoch": 0.91, + "learning_rate": 5.221205881981594e-07, + "loss": 0.0666, + "step": 491 + }, + { + "epoch": 0.91, + "learning_rate": 5.027690403892461e-07, + "loss": 0.0993, + "step": 492 + }, + { + "epoch": 0.91, + "learning_rate": 4.837736653040825e-07, + "loss": 0.2467, + "step": 493 + }, + { + "epoch": 0.91, + "learning_rate": 4.6513517532236096e-07, + "loss": 0.0563, + "step": 494 + }, + { + "epoch": 0.91, + "learning_rate": 4.468542694395861e-07, + "loss": 0.0792, + "step": 495 + }, + { + "epoch": 0.92, + "learning_rate": 4.2893163324085886e-07, + "loss": 0.0648, + "step": 496 + }, + { + "epoch": 0.92, + "learning_rate": 4.113679388751635e-07, + "loss": 0.3011, + "step": 497 + }, + { + "epoch": 0.92, + "learning_rate": 3.941638450301644e-07, + "loss": 0.221, + "step": 498 + }, + { + "epoch": 0.92, + "learning_rate": 3.773199969074959e-07, + "loss": 0.0961, + "step": 499 + }, + { + "epoch": 0.92, + "learning_rate": 3.608370261985761e-07, + "loss": 0.0816, + "step": 500 + } + ], + "logging_steps": 1.0, + "max_steps": 541, + "num_input_tokens_seen": 0, + "num_train_epochs": 1, + "save_steps": 500, + "total_flos": 1194534973440.0, + "train_batch_size": 10, + "trial_name": null, + "trial_params": null +} diff --git a/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/training_args.bin b/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/training_args.bin new file mode 100644 index 0000000000000000000000000000000000000000..6f6c18888b670fc1c3b31717a960603a6a87885d --- /dev/null +++ b/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/training_args.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:39a1b7853796df569dea25e1cfc44a0eebd9c31bc3cf60c516910866a1ef6ae7 +size 6968 diff --git a/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/zero_to_fp32.py b/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/zero_to_fp32.py new file mode 100644 index 0000000000000000000000000000000000000000..c98caae31534368be22b67fc4ae906836c992a8d --- /dev/null +++ b/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/zero_to_fp32.py @@ -0,0 +1,587 @@ +#!/usr/bin/env python + +# Copyright (c) Microsoft Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team + +# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets +# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in +# the future. Once extracted, the weights don't require DeepSpeed and can be used in any +# application. +# +# example: python zero_to_fp32.py . pytorch_model.bin + +import argparse +import torch +import glob +import math +import os +import re +from collections import OrderedDict +from dataclasses import dataclass + +# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with +# DeepSpeed data structures it has to be available in the current python environment. +from deepspeed.utils import logger +from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS, + FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES, + FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS) + + +@dataclass +class zero_model_state: + buffers: dict() + param_shapes: dict() + shared_params: list + ds_version: int + frozen_param_shapes: dict() + frozen_param_fragments: dict() + + +debug = 0 + +# load to cpu +device = torch.device('cpu') + + +def atoi(text): + return int(text) if text.isdigit() else text + + +def natural_keys(text): + ''' + alist.sort(key=natural_keys) sorts in human order + http://nedbatchelder.com/blog/200712/human_sorting.html + (See Toothy's implementation in the comments) + ''' + return [atoi(c) for c in re.split(r'(\d+)', text)] + + +def get_model_state_file(checkpoint_dir, zero_stage): + if not os.path.isdir(checkpoint_dir): + raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist") + + # there should be only one file + if zero_stage <= 2: + file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt") + elif zero_stage == 3: + file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt") + + if not os.path.exists(file): + raise FileNotFoundError(f"can't find model states file at '{file}'") + + return file + + +def get_checkpoint_files(checkpoint_dir, glob_pattern): + # XXX: need to test that this simple glob rule works for multi-node setup too + ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys) + + if len(ckpt_files) == 0: + raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'") + + return ckpt_files + + +def get_optim_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt") + + +def get_model_state_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_model_states.pt") + + +def parse_model_states(files): + zero_model_states = [] + for file in files: + state_dict = torch.load(file, map_location=device) + + if BUFFER_NAMES not in state_dict: + raise ValueError(f"{file} is not a model state checkpoint") + buffer_names = state_dict[BUFFER_NAMES] + if debug: + print("Found buffers:", buffer_names) + + # recover just the buffers while restoring them to fp32 if they were saved in fp16 + buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names} + param_shapes = state_dict[PARAM_SHAPES] + + # collect parameters that are included in param_shapes + param_names = [] + for s in param_shapes: + for name in s.keys(): + param_names.append(name) + + # update with frozen parameters + frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None) + if frozen_param_shapes is not None: + if debug: + print(f"Found frozen_param_shapes: {frozen_param_shapes}") + param_names += list(frozen_param_shapes.keys()) + + # handle shared params + shared_params = [[k, v] for k, v in state_dict["shared_params"].items()] + + ds_version = state_dict.get(DS_VERSION, None) + + frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None) + + z_model_state = zero_model_state(buffers=buffers, + param_shapes=param_shapes, + shared_params=shared_params, + ds_version=ds_version, + frozen_param_shapes=frozen_param_shapes, + frozen_param_fragments=frozen_param_fragments) + zero_model_states.append(z_model_state) + + return zero_model_states + + +def parse_optim_states(files, ds_checkpoint_dir): + + total_files = len(files) + state_dicts = [] + for f in files: + state_dict = torch.load(f, map_location=device) + # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights + # and also handle the case where it was already removed by another helper script + state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None) + state_dicts.append(state_dict) + + if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]: + raise ValueError(f"{files[0]} is not a zero checkpoint") + zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE] + world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT] + + # For ZeRO-2 each param group can have different partition_count as data parallelism for expert + # parameters can be different from data parallelism for non-expert parameters. So we can just + # use the max of the partition_count to get the dp world_size. + + if type(world_size) is list: + world_size = max(world_size) + + if world_size != total_files: + raise ValueError( + f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. " + "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes." + ) + + # the groups are named differently in each stage + if zero_stage <= 2: + fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS + elif zero_stage == 3: + fp32_groups_key = FP32_FLAT_GROUPS + else: + raise ValueError(f"unknown zero stage {zero_stage}") + + if zero_stage <= 2: + fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))] + elif zero_stage == 3: + # if there is more than one param group, there will be multiple flattened tensors - one + # flattened tensor per group - for simplicity merge them into a single tensor + # + # XXX: could make the script more memory efficient for when there are multiple groups - it + # will require matching the sub-lists of param_shapes for each param group flattened tensor + + fp32_flat_groups = [ + torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts)) + ] + + return zero_stage, world_size, fp32_flat_groups + + +def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir): + """ + Returns fp32 state_dict reconstructed from ds checkpoint + + Args: + - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are) + + """ + print(f"Processing zero checkpoint '{ds_checkpoint_dir}'") + + optim_files = get_optim_files(ds_checkpoint_dir) + zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir) + print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}") + + model_files = get_model_state_files(ds_checkpoint_dir) + + zero_model_states = parse_model_states(model_files) + print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}') + + if zero_stage <= 2: + return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states) + elif zero_stage == 3: + return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states) + + +def _zero2_merge_frozen_params(state_dict, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + frozen_param_fragments = zero_model_states[0].frozen_param_fragments + + if debug: + num_elem = sum(s.numel() for s in frozen_param_shapes.values()) + print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in frozen_param_fragments.values()]) + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + state_dict[name] = frozen_param_fragments[name] + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + + # Reconstruction protocol: + # + # XXX: document this + + if debug: + for i in range(world_size): + for j in range(len(fp32_flat_groups[0])): + print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}") + + # XXX: memory usage doubles here (zero2) + num_param_groups = len(fp32_flat_groups[0]) + merged_single_partition_of_fp32_groups = [] + for i in range(num_param_groups): + merged_partitions = [sd[i] for sd in fp32_flat_groups] + full_single_fp32_vector = torch.cat(merged_partitions, 0) + merged_single_partition_of_fp32_groups.append(full_single_fp32_vector) + avail_numel = sum( + [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups]) + + if debug: + wanted_params = sum([len(shapes) for shapes in param_shapes]) + wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes]) + # not asserting if there is a mismatch due to possible padding + print(f"Have {avail_numel} numels to process.") + print(f"Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + total_numel = 0 + total_params = 0 + for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups): + offset = 0 + avail_numel = full_single_fp32_vector.numel() + for name, shape in shapes.items(): + + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + total_params += 1 + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape) + offset += unpartitioned_numel + + # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and + # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex + # paddings performed in the code it's almost impossible to predict the exact numbers w/o the + # live optimizer object, so we are checking that the numbers are within the right range + align_to = 2 * world_size + + def zero2_align(x): + return align_to * math.ceil(x / align_to) + + if debug: + print(f"original offset={offset}, avail_numel={avail_numel}") + + offset = zero2_align(offset) + avail_numel = zero2_align(avail_numel) + + if debug: + print(f"aligned offset={offset}, avail_numel={avail_numel}") + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + _zero2_merge_frozen_params(state_dict, zero_model_states) + + _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def zero3_partitioned_param_info(unpartitioned_numel, world_size): + remainder = unpartitioned_numel % world_size + padding_numel = (world_size - remainder) if remainder else 0 + partitioned_numel = math.ceil(unpartitioned_numel / world_size) + return partitioned_numel, padding_numel + + +def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + if debug: + for i in range(world_size): + num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values()) + print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in zero_model_states[0].frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states) + state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape) + + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + avail_numel = fp32_flat_groups[0].numel() * world_size + # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each + # param, re-consolidating each param, while dealing with padding if any + + # merge list of dicts, preserving order + param_shapes = {k: v for d in param_shapes for k, v in d.items()} + + if debug: + for i in range(world_size): + print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}") + + wanted_params = len(param_shapes) + wanted_numel = sum(shape.numel() for shape in param_shapes.values()) + # not asserting if there is a mismatch due to possible padding + avail_numel = fp32_flat_groups[0].numel() * world_size + print(f"Trainable params: Have {avail_numel} numels to process.") + print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + offset = 0 + total_numel = 0 + total_params = 0 + for name, shape in param_shapes.items(): + + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + total_params += 1 + + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + # XXX: memory usage doubles here + state_dict[name] = torch.cat( + tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)), + 0).narrow(0, 0, unpartitioned_numel).view(shape) + offset += partitioned_numel + + offset *= world_size + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + _zero3_merge_frozen_params(state_dict, world_size, zero_model_states) + + _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with + ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example + via a model hub. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14`` + + Returns: + - pytorch ``state_dict`` + + Note: this approach may not work if your application doesn't have sufficient free CPU memory and + you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with + the checkpoint. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + # do the training and checkpoint saving + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu + model = model.cpu() # move to cpu + model.load_state_dict(state_dict) + # submit to model hub or save the model to share with others + + In this example the ``model`` will no longer be usable in the deepspeed context of the same + application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead. + + """ + if tag is None: + latest_path = os.path.join(checkpoint_dir, 'latest') + if os.path.isfile(latest_path): + with open(latest_path, 'r') as fd: + tag = fd.read().strip() + else: + raise ValueError(f"Unable to find 'latest' file at {latest_path}") + + ds_checkpoint_dir = os.path.join(checkpoint_dir, tag) + + if not os.path.isdir(ds_checkpoint_dir): + raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist") + + return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir) + + +def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be + loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin) + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + """ + + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) + print(f"Saving fp32 state dict to {output_file}") + torch.save(state_dict, output_file) + + +def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None): + """ + 1. Put the provided model to cpu + 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` + 3. Load it into the provided model + + Args: + - ``model``: the model object to update + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + + Returns: + - ``model`: modified model + + Make sure you have plenty of CPU memory available before you call this function. If you don't + have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it + conveniently placed for you in the checkpoint folder. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint + model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) + # submit to model hub or save the model to share with others + + Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context + of the same application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + """ + logger.info(f"Extracting fp32 weights") + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) + + logger.info(f"Overwriting model with fp32 weights") + model = model.cpu() + model.load_state_dict(state_dict, strict=False) + + return model + + +if __name__ == "__main__": + + parser = argparse.ArgumentParser() + parser.add_argument("checkpoint_dir", + type=str, + help="path to the desired checkpoint folder, e.g., path/checkpoint-12") + parser.add_argument( + "output_file", + type=str, + help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)") + parser.add_argument("-t", + "--tag", + type=str, + default=None, + help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1") + parser.add_argument("-d", "--debug", action='store_true', help="enable debug") + args = parser.parse_args() + + debug = args.debug + + convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag) diff --git a/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/config.json b/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/config.json new file mode 100644 index 0000000000000000000000000000000000000000..93e133af45036a778791b5679a8953a4f6a35a33 --- /dev/null +++ b/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/config.json @@ -0,0 +1,70 @@ +{ + "_name_or_path": "liuhaotian/llava-v1.6-mistral-7b", + "architectures": [ + "LlavaMistralForCausalLM" + ], + "attention_dropout": 0.0, + "bos_token_id": 1, + "eos_token_id": 2, + "freeze_mm_mlp_adapter": false, + "freeze_mm_vision_resampler": false, + "hidden_act": "silu", + "hidden_size": 4096, + "image_aspect_ratio": "anyres", + "image_crop_resolution": 224, + "image_grid_pinpoints": [ + [ + 336, + 672 + ], + [ + 672, + 336 + ], + [ + 672, + 672 + ], + [ + 1008, + 336 + ], + [ + 336, + 1008 + ] + ], + "image_split_resolution": 224, + "initializer_range": 0.02, + "intermediate_size": 14336, + "max_position_embeddings": 32768, + "mm_hidden_size": 1024, + "mm_patch_merge_type": "spatial_unpad", + "mm_projector_lr": 2e-05, + "mm_projector_type": "mlp2x_gelu", + "mm_resampler_type": null, + "mm_use_im_patch_token": false, + "mm_use_im_start_end": false, + "mm_vision_select_feature": "patch", + "mm_vision_select_layer": -2, + "mm_vision_tower": "openai/clip-vit-large-patch14-336", + "mm_vision_tower_lr": 2e-06, + "model_type": "llava_mistral", + "num_attention_heads": 32, + "num_hidden_layers": 32, + "num_key_value_heads": 8, + "rms_norm_eps": 1e-05, + "rope_theta": 1000000.0, + "sliding_window": null, + "tie_word_embeddings": false, + "tokenizer_model_max_length": 4096, + "tokenizer_padding_side": "right", + "torch_dtype": "bfloat16", + "transformers_version": "4.37.2", + "tune_mm_mlp_adapter": false, + "tune_mm_vision_resampler": false, + "unfreeze_mm_vision_tower": true, + "use_cache": true, + "use_mm_proj": true, + "vocab_size": 32000 +} diff --git a/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/non_lora_trainables.bin b/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/non_lora_trainables.bin new file mode 100644 index 0000000000000000000000000000000000000000..4782a8ced628946bd00542cbef1cbaa4c56f8be6 --- /dev/null +++ b/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/non_lora_trainables.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b0102c05ff05f99863f06b141ed5812df27620d7c8dd7551f8bac60d6b2f9f0e +size 41961648 diff --git a/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/trainer_state.json b/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/trainer_state.json new file mode 100644 index 0000000000000000000000000000000000000000..bf6f9339414af492906d46a281548c34a3f5ebae --- /dev/null +++ b/CheckGuard Models/wholeimage/bank_no/llava-lora-mistral-r128a256-10BS-model/trainer_state.json @@ -0,0 +1,3276 @@ +{ + "best_metric": null, + "best_model_checkpoint": null, + "epoch": 1.0, + "eval_steps": 500, + "global_step": 541, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "epoch": 0.0, + "learning_rate": 7.142857142857143e-07, + "loss": 0.6789, + "step": 1 + }, + { + "epoch": 0.0, + "learning_rate": 1.4285714285714286e-06, + "loss": 0.8481, + "step": 2 + }, + { + "epoch": 0.01, + "learning_rate": 2.1428571428571427e-06, + "loss": 0.663, + "step": 3 + }, + { + "epoch": 0.01, + "learning_rate": 2.8571428571428573e-06, + "loss": 0.679, + "step": 4 + }, + { + "epoch": 0.01, + "learning_rate": 3.5714285714285718e-06, + "loss": 1.0166, + "step": 5 + }, + { + "epoch": 0.01, + "learning_rate": 4.2857142857142855e-06, + "loss": 0.4693, + "step": 6 + }, + { + "epoch": 0.01, + "learning_rate": 5e-06, + "loss": 0.4891, + "step": 7 + }, + { + "epoch": 0.01, + "learning_rate": 5.7142857142857145e-06, + "loss": 0.5523, + "step": 8 + }, + { + "epoch": 0.02, + "learning_rate": 6.4285714285714295e-06, + "loss": 0.2909, + "step": 9 + }, + { + "epoch": 0.02, + "learning_rate": 7.1428571428571436e-06, + "loss": 0.2598, + "step": 10 + }, + { + "epoch": 0.02, + "learning_rate": 7.857142857142858e-06, + "loss": 0.2532, + "step": 11 + }, + { + "epoch": 0.02, + "learning_rate": 7.857142857142858e-06, + "loss": 0.4867, + "step": 12 + }, + { + "epoch": 0.02, + "learning_rate": 8.571428571428571e-06, + "loss": 0.4145, + "step": 13 + }, + { + "epoch": 0.03, + "learning_rate": 8.571428571428571e-06, + "loss": 0.3161, + "step": 14 + }, + { + "epoch": 0.03, + "learning_rate": 9.285714285714288e-06, + "loss": 0.1836, + "step": 15 + }, + { + "epoch": 0.03, + "learning_rate": 1e-05, + "loss": 0.3355, + "step": 16 + }, + { + "epoch": 0.03, + "learning_rate": 1.0714285714285714e-05, + "loss": 0.2286, + "step": 17 + }, + { + "epoch": 0.03, + "learning_rate": 1.1428571428571429e-05, + "loss": 0.3594, + "step": 18 + }, + { + "epoch": 0.04, + "learning_rate": 1.2142857142857142e-05, + "loss": 0.2981, + "step": 19 + }, + { + "epoch": 0.04, + "learning_rate": 1.2857142857142859e-05, + "loss": 0.3021, + "step": 20 + }, + { + "epoch": 0.04, + "learning_rate": 1.3571428571428574e-05, + "loss": 0.3866, + "step": 21 + }, + { + "epoch": 0.04, + "learning_rate": 1.4285714285714287e-05, + "loss": 0.2409, + "step": 22 + }, + { + "epoch": 0.04, + "learning_rate": 1.5000000000000002e-05, + "loss": 0.1397, + "step": 23 + }, + { + "epoch": 0.04, + "learning_rate": 1.5714285714285715e-05, + "loss": 0.1416, + "step": 24 + }, + { + "epoch": 0.05, + "learning_rate": 1.642857142857143e-05, + "loss": 0.1838, + "step": 25 + }, + { + "epoch": 0.05, + "learning_rate": 1.7142857142857142e-05, + "loss": 0.1505, + "step": 26 + }, + { + "epoch": 0.05, + "learning_rate": 1.785714285714286e-05, + "loss": 0.3278, + "step": 27 + }, + { + "epoch": 0.05, + "learning_rate": 1.8571428571428575e-05, + "loss": 0.2567, + "step": 28 + }, + { + "epoch": 0.05, + "learning_rate": 1.928571428571429e-05, + "loss": 0.1218, + "step": 29 + }, + { + "epoch": 0.06, + "learning_rate": 2e-05, + "loss": 0.2288, + "step": 30 + }, + { + "epoch": 0.06, + "learning_rate": 1.9999812486015525e-05, + "loss": 0.1348, + "step": 31 + }, + { + "epoch": 0.06, + "learning_rate": 1.9999249951094388e-05, + "loss": 0.3734, + "step": 32 + }, + { + "epoch": 0.06, + "learning_rate": 1.999831241633323e-05, + "loss": 0.3169, + "step": 33 + }, + { + "epoch": 0.06, + "learning_rate": 1.9996999916892222e-05, + "loss": 0.1066, + "step": 34 + }, + { + "epoch": 0.06, + "learning_rate": 1.9995312501993765e-05, + "loss": 0.4434, + "step": 35 + }, + { + "epoch": 0.07, + "learning_rate": 1.9993250234920638e-05, + "loss": 0.198, + "step": 36 + }, + { + "epoch": 0.07, + "learning_rate": 1.9990813193013625e-05, + "loss": 0.115, + "step": 37 + }, + { + "epoch": 0.07, + "learning_rate": 1.9988001467668613e-05, + "loss": 0.2676, + "step": 38 + }, + { + "epoch": 0.07, + "learning_rate": 1.9984815164333163e-05, + "loss": 0.2201, + "step": 39 + }, + { + "epoch": 0.07, + "learning_rate": 1.9981254402502568e-05, + "loss": 0.1945, + "step": 40 + }, + { + "epoch": 0.08, + "learning_rate": 1.997731931571535e-05, + "loss": 0.1391, + "step": 41 + }, + { + "epoch": 0.08, + "learning_rate": 1.9973010051548274e-05, + "loss": 0.2697, + "step": 42 + }, + { + "epoch": 0.08, + "learning_rate": 1.9968326771610797e-05, + "loss": 0.1562, + "step": 43 + }, + { + "epoch": 0.08, + "learning_rate": 1.9963269651539018e-05, + "loss": 0.2204, + "step": 44 + }, + { + "epoch": 0.08, + "learning_rate": 1.9957838880989076e-05, + "loss": 0.2729, + "step": 45 + }, + { + "epoch": 0.09, + "learning_rate": 1.9952034663630064e-05, + "loss": 0.441, + "step": 46 + }, + { + "epoch": 0.09, + "learning_rate": 1.9952034663630064e-05, + "loss": 0.1401, + "step": 47 + }, + { + "epoch": 0.09, + "learning_rate": 1.9945857217136365e-05, + "loss": 0.3727, + "step": 48 + }, + { + "epoch": 0.09, + "learning_rate": 1.9939306773179498e-05, + "loss": 0.3269, + "step": 49 + }, + { + "epoch": 0.09, + "learning_rate": 1.9932383577419432e-05, + "loss": 0.0801, + "step": 50 + }, + { + "epoch": 0.09, + "learning_rate": 1.9925087889495374e-05, + "loss": 0.2772, + "step": 51 + }, + { + "epoch": 0.1, + "learning_rate": 1.9917419983016025e-05, + "loss": 0.2253, + "step": 52 + }, + { + "epoch": 0.1, + "learning_rate": 1.9909380145549325e-05, + "loss": 0.2318, + "step": 53 + }, + { + "epoch": 0.1, + "learning_rate": 1.9900968678611664e-05, + "loss": 0.1809, + "step": 54 + }, + { + "epoch": 0.1, + "learning_rate": 1.989218589765658e-05, + "loss": 0.1155, + "step": 55 + }, + { + "epoch": 0.1, + "learning_rate": 1.9883032132062926e-05, + "loss": 0.2356, + "step": 56 + }, + { + "epoch": 0.11, + "learning_rate": 1.9873507725122505e-05, + "loss": 0.1194, + "step": 57 + }, + { + "epoch": 0.11, + "learning_rate": 1.9863613034027224e-05, + "loss": 0.3272, + "step": 58 + }, + { + "epoch": 0.11, + "learning_rate": 1.985334842985567e-05, + "loss": 0.183, + "step": 59 + }, + { + "epoch": 0.11, + "learning_rate": 1.9842714297559212e-05, + "loss": 0.1217, + "step": 60 + }, + { + "epoch": 0.11, + "learning_rate": 1.9831711035947552e-05, + "loss": 0.1388, + "step": 61 + }, + { + "epoch": 0.11, + "learning_rate": 1.9820339057673773e-05, + "loss": 0.2112, + "step": 62 + }, + { + "epoch": 0.12, + "learning_rate": 1.9808598789218866e-05, + "loss": 0.0917, + "step": 63 + }, + { + "epoch": 0.12, + "learning_rate": 1.979649067087574e-05, + "loss": 0.1585, + "step": 64 + }, + { + "epoch": 0.12, + "learning_rate": 1.9784015156732693e-05, + "loss": 0.1446, + "step": 65 + }, + { + "epoch": 0.12, + "learning_rate": 1.97711727146564e-05, + "loss": 0.3511, + "step": 66 + }, + { + "epoch": 0.12, + "learning_rate": 1.9757963826274357e-05, + "loss": 0.1019, + "step": 67 + }, + { + "epoch": 0.13, + "learning_rate": 1.9744388986956824e-05, + "loss": 0.1165, + "step": 68 + }, + { + "epoch": 0.13, + "learning_rate": 1.973044870579824e-05, + "loss": 0.2189, + "step": 69 + }, + { + "epoch": 0.13, + "learning_rate": 1.971614350559814e-05, + "loss": 0.1254, + "step": 70 + }, + { + "epoch": 0.13, + "learning_rate": 1.970147392284154e-05, + "loss": 0.0627, + "step": 71 + }, + { + "epoch": 0.13, + "learning_rate": 1.9686440507678827e-05, + "loss": 0.0952, + "step": 72 + }, + { + "epoch": 0.13, + "learning_rate": 1.967104382390511e-05, + "loss": 0.1867, + "step": 73 + }, + { + "epoch": 0.14, + "learning_rate": 1.9655284448939094e-05, + "loss": 0.2003, + "step": 74 + }, + { + "epoch": 0.14, + "learning_rate": 1.9639162973801426e-05, + "loss": 0.1188, + "step": 75 + }, + { + "epoch": 0.14, + "learning_rate": 1.9622680003092503e-05, + "loss": 0.1111, + "step": 76 + }, + { + "epoch": 0.14, + "learning_rate": 1.960583615496984e-05, + "loss": 0.1203, + "step": 77 + }, + { + "epoch": 0.14, + "learning_rate": 1.9588632061124837e-05, + "loss": 0.1599, + "step": 78 + }, + { + "epoch": 0.15, + "learning_rate": 1.9571068366759143e-05, + "loss": 0.209, + "step": 79 + }, + { + "epoch": 0.15, + "learning_rate": 1.9553145730560415e-05, + "loss": 0.2183, + "step": 80 + }, + { + "epoch": 0.15, + "learning_rate": 1.953486482467764e-05, + "loss": 0.1351, + "step": 81 + }, + { + "epoch": 0.15, + "learning_rate": 1.951622633469592e-05, + "loss": 0.128, + "step": 82 + }, + { + "epoch": 0.15, + "learning_rate": 1.9497230959610757e-05, + "loss": 0.2241, + "step": 83 + }, + { + "epoch": 0.16, + "learning_rate": 1.9477879411801843e-05, + "loss": 0.0991, + "step": 84 + }, + { + "epoch": 0.16, + "learning_rate": 1.9458172417006347e-05, + "loss": 0.1165, + "step": 85 + }, + { + "epoch": 0.16, + "learning_rate": 1.9438110714291697e-05, + "loss": 0.0792, + "step": 86 + }, + { + "epoch": 0.16, + "learning_rate": 1.9417695056027847e-05, + "loss": 0.121, + "step": 87 + }, + { + "epoch": 0.16, + "learning_rate": 1.9396926207859085e-05, + "loss": 0.2727, + "step": 88 + }, + { + "epoch": 0.16, + "learning_rate": 1.9375804948675308e-05, + "loss": 0.1947, + "step": 89 + }, + { + "epoch": 0.17, + "learning_rate": 1.935433207058281e-05, + "loss": 0.2155, + "step": 90 + }, + { + "epoch": 0.17, + "learning_rate": 1.933250837887457e-05, + "loss": 0.0525, + "step": 91 + }, + { + "epoch": 0.17, + "learning_rate": 1.9310334692000077e-05, + "loss": 0.2401, + "step": 92 + }, + { + "epoch": 0.17, + "learning_rate": 1.9287811841534598e-05, + "loss": 0.0743, + "step": 93 + }, + { + "epoch": 0.17, + "learning_rate": 1.9264940672148018e-05, + "loss": 0.1659, + "step": 94 + }, + { + "epoch": 0.18, + "learning_rate": 1.9241722041573166e-05, + "loss": 0.1184, + "step": 95 + }, + { + "epoch": 0.18, + "learning_rate": 1.9218156820573618e-05, + "loss": 0.1207, + "step": 96 + }, + { + "epoch": 0.18, + "learning_rate": 1.9194245892911077e-05, + "loss": 0.1292, + "step": 97 + }, + { + "epoch": 0.18, + "learning_rate": 1.916999015531221e-05, + "loss": 0.2059, + "step": 98 + }, + { + "epoch": 0.18, + "learning_rate": 1.9145390517435013e-05, + "loss": 0.1682, + "step": 99 + }, + { + "epoch": 0.18, + "learning_rate": 1.9120447901834708e-05, + "loss": 0.1403, + "step": 100 + }, + { + "epoch": 0.19, + "learning_rate": 1.9095163243929143e-05, + "loss": 0.1752, + "step": 101 + }, + { + "epoch": 0.19, + "learning_rate": 1.906953749196371e-05, + "loss": 0.1616, + "step": 102 + }, + { + "epoch": 0.19, + "learning_rate": 1.9043571606975776e-05, + "loss": 0.1127, + "step": 103 + }, + { + "epoch": 0.19, + "learning_rate": 1.901726656275866e-05, + "loss": 0.2236, + "step": 104 + }, + { + "epoch": 0.19, + "learning_rate": 1.8990623345825084e-05, + "loss": 0.2308, + "step": 105 + }, + { + "epoch": 0.2, + "learning_rate": 1.8963642955370203e-05, + "loss": 0.1739, + "step": 106 + }, + { + "epoch": 0.2, + "learning_rate": 1.8936326403234125e-05, + "loss": 0.1762, + "step": 107 + }, + { + "epoch": 0.2, + "learning_rate": 1.890867471386395e-05, + "loss": 0.1457, + "step": 108 + }, + { + "epoch": 0.2, + "learning_rate": 1.888068892427538e-05, + "loss": 0.2768, + "step": 109 + }, + { + "epoch": 0.2, + "learning_rate": 1.8852370084013783e-05, + "loss": 0.1389, + "step": 110 + }, + { + "epoch": 0.21, + "learning_rate": 1.882371925511488e-05, + "loss": 0.2747, + "step": 111 + }, + { + "epoch": 0.21, + "learning_rate": 1.879473751206489e-05, + "loss": 0.0542, + "step": 112 + }, + { + "epoch": 0.21, + "learning_rate": 1.8765425941760237e-05, + "loss": 0.1414, + "step": 113 + }, + { + "epoch": 0.21, + "learning_rate": 1.8735785643466786e-05, + "loss": 0.2482, + "step": 114 + }, + { + "epoch": 0.21, + "learning_rate": 1.8705817728778626e-05, + "loss": 0.1602, + "step": 115 + }, + { + "epoch": 0.21, + "learning_rate": 1.867552332157637e-05, + "loss": 0.1342, + "step": 116 + }, + { + "epoch": 0.22, + "learning_rate": 1.8644903557985027e-05, + "loss": 0.077, + "step": 117 + }, + { + "epoch": 0.22, + "learning_rate": 1.8613959586331364e-05, + "loss": 0.0818, + "step": 118 + }, + { + "epoch": 0.22, + "learning_rate": 1.8582692567100866e-05, + "loss": 0.1443, + "step": 119 + }, + { + "epoch": 0.22, + "learning_rate": 1.855110367289421e-05, + "loss": 0.1148, + "step": 120 + }, + { + "epoch": 0.22, + "learning_rate": 1.851919408838327e-05, + "loss": 0.1661, + "step": 121 + }, + { + "epoch": 0.23, + "learning_rate": 1.8486965010266726e-05, + "loss": 0.1676, + "step": 122 + }, + { + "epoch": 0.23, + "learning_rate": 1.845441764722514e-05, + "loss": 0.1288, + "step": 123 + }, + { + "epoch": 0.23, + "learning_rate": 1.842155321987566e-05, + "loss": 0.0725, + "step": 124 + }, + { + "epoch": 0.23, + "learning_rate": 1.8388372960726228e-05, + "loss": 0.1258, + "step": 125 + }, + { + "epoch": 0.23, + "learning_rate": 1.8354878114129368e-05, + "loss": 0.068, + "step": 126 + }, + { + "epoch": 0.23, + "learning_rate": 1.8321069936235503e-05, + "loss": 0.1698, + "step": 127 + }, + { + "epoch": 0.24, + "learning_rate": 1.8286949694945864e-05, + "loss": 0.2038, + "step": 128 + }, + { + "epoch": 0.24, + "learning_rate": 1.8252518669864935e-05, + "loss": 0.0274, + "step": 129 + }, + { + "epoch": 0.24, + "learning_rate": 1.821777815225245e-05, + "loss": 0.0564, + "step": 130 + }, + { + "epoch": 0.24, + "learning_rate": 1.8182729444974993e-05, + "loss": 0.1182, + "step": 131 + }, + { + "epoch": 0.24, + "learning_rate": 1.8147373862457107e-05, + "loss": 0.3175, + "step": 132 + }, + { + "epoch": 0.25, + "learning_rate": 1.8111712730632024e-05, + "loss": 0.1017, + "step": 133 + }, + { + "epoch": 0.25, + "learning_rate": 1.807574738689193e-05, + "loss": 0.3348, + "step": 134 + }, + { + "epoch": 0.25, + "learning_rate": 1.8039479180037803e-05, + "loss": 0.3129, + "step": 135 + }, + { + "epoch": 0.25, + "learning_rate": 1.800290947022884e-05, + "loss": 0.1095, + "step": 136 + }, + { + "epoch": 0.25, + "learning_rate": 1.7966039628931447e-05, + "loss": 0.1922, + "step": 137 + }, + { + "epoch": 0.26, + "learning_rate": 1.7928871038867785e-05, + "loss": 0.1022, + "step": 138 + }, + { + "epoch": 0.26, + "learning_rate": 1.789140509396394e-05, + "loss": 0.2318, + "step": 139 + }, + { + "epoch": 0.26, + "learning_rate": 1.7853643199297632e-05, + "loss": 0.2374, + "step": 140 + }, + { + "epoch": 0.26, + "learning_rate": 1.7815586771045535e-05, + "loss": 0.1194, + "step": 141 + }, + { + "epoch": 0.26, + "learning_rate": 1.777723723643014e-05, + "loss": 0.1914, + "step": 142 + }, + { + "epoch": 0.26, + "learning_rate": 1.773859603366626e-05, + "loss": 0.0431, + "step": 143 + }, + { + "epoch": 0.27, + "learning_rate": 1.769966461190707e-05, + "loss": 0.081, + "step": 144 + }, + { + "epoch": 0.27, + "learning_rate": 1.766044443118978e-05, + "loss": 0.2162, + "step": 145 + }, + { + "epoch": 0.27, + "learning_rate": 1.762093696238086e-05, + "loss": 0.1151, + "step": 146 + }, + { + "epoch": 0.27, + "learning_rate": 1.7581143687120877e-05, + "loss": 0.184, + "step": 147 + }, + { + "epoch": 0.27, + "learning_rate": 1.7541066097768965e-05, + "loss": 0.1963, + "step": 148 + }, + { + "epoch": 0.28, + "learning_rate": 1.750070569734681e-05, + "loss": 0.1318, + "step": 149 + }, + { + "epoch": 0.28, + "learning_rate": 1.7460063999482314e-05, + "loss": 0.1163, + "step": 150 + }, + { + "epoch": 0.28, + "learning_rate": 1.7419142528352815e-05, + "loss": 0.1013, + "step": 151 + }, + { + "epoch": 0.28, + "learning_rate": 1.737794281862794e-05, + "loss": 0.0957, + "step": 152 + }, + { + "epoch": 0.28, + "learning_rate": 1.7336466415412028e-05, + "loss": 0.2023, + "step": 153 + }, + { + "epoch": 0.28, + "learning_rate": 1.729471487418621e-05, + "loss": 0.1398, + "step": 154 + }, + { + "epoch": 0.29, + "learning_rate": 1.7252689760750053e-05, + "loss": 0.1238, + "step": 155 + }, + { + "epoch": 0.29, + "learning_rate": 1.721039265116285e-05, + "loss": 0.2201, + "step": 156 + }, + { + "epoch": 0.29, + "learning_rate": 1.7167825131684516e-05, + "loss": 0.0698, + "step": 157 + }, + { + "epoch": 0.29, + "learning_rate": 1.7124988798716084e-05, + "loss": 0.0312, + "step": 158 + }, + { + "epoch": 0.29, + "learning_rate": 1.7081885258739846e-05, + "loss": 0.1443, + "step": 159 + }, + { + "epoch": 0.3, + "learning_rate": 1.7038516128259118e-05, + "loss": 0.1349, + "step": 160 + }, + { + "epoch": 0.3, + "learning_rate": 1.6994883033737582e-05, + "loss": 0.0751, + "step": 161 + }, + { + "epoch": 0.3, + "learning_rate": 1.695098761153832e-05, + "loss": 0.0543, + "step": 162 + }, + { + "epoch": 0.3, + "learning_rate": 1.6906831507862446e-05, + "loss": 0.0533, + "step": 163 + }, + { + "epoch": 0.3, + "learning_rate": 1.686241637868734e-05, + "loss": 0.1328, + "step": 164 + }, + { + "epoch": 0.3, + "learning_rate": 1.6817743889704564e-05, + "loss": 0.3057, + "step": 165 + }, + { + "epoch": 0.31, + "learning_rate": 1.6772815716257414e-05, + "loss": 0.1642, + "step": 166 + }, + { + "epoch": 0.31, + "learning_rate": 1.672763354327804e-05, + "loss": 0.1479, + "step": 167 + }, + { + "epoch": 0.31, + "learning_rate": 1.6682199065224307e-05, + "loss": 0.1163, + "step": 168 + }, + { + "epoch": 0.31, + "learning_rate": 1.6636513986016215e-05, + "loss": 0.0395, + "step": 169 + }, + { + "epoch": 0.31, + "learning_rate": 1.6590580018972012e-05, + "loss": 0.0456, + "step": 170 + }, + { + "epoch": 0.32, + "learning_rate": 1.6544398886743934e-05, + "loss": 0.2018, + "step": 171 + }, + { + "epoch": 0.32, + "learning_rate": 1.64979723212536e-05, + "loss": 0.1655, + "step": 172 + }, + { + "epoch": 0.32, + "learning_rate": 1.6451302063627067e-05, + "loss": 0.1805, + "step": 173 + }, + { + "epoch": 0.32, + "learning_rate": 1.6404389864129533e-05, + "loss": 0.2445, + "step": 174 + }, + { + "epoch": 0.32, + "learning_rate": 1.6357237482099682e-05, + "loss": 0.134, + "step": 175 + }, + { + "epoch": 0.33, + "learning_rate": 1.6309846685883726e-05, + "loss": 0.0976, + "step": 176 + }, + { + "epoch": 0.33, + "learning_rate": 1.6262219252769065e-05, + "loss": 0.0984, + "step": 177 + }, + { + "epoch": 0.33, + "learning_rate": 1.621435696891765e-05, + "loss": 0.0495, + "step": 178 + }, + { + "epoch": 0.33, + "learning_rate": 1.6166261629298996e-05, + "loss": 0.1005, + "step": 179 + }, + { + "epoch": 0.33, + "learning_rate": 1.6117935037622848e-05, + "loss": 0.1399, + "step": 180 + }, + { + "epoch": 0.33, + "learning_rate": 1.606937900627157e-05, + "loss": 0.2105, + "step": 181 + }, + { + "epoch": 0.34, + "learning_rate": 1.6020595356232137e-05, + "loss": 0.142, + "step": 182 + }, + { + "epoch": 0.34, + "learning_rate": 1.5971585917027864e-05, + "loss": 0.0791, + "step": 183 + }, + { + "epoch": 0.34, + "learning_rate": 1.5922352526649803e-05, + "loss": 0.2, + "step": 184 + }, + { + "epoch": 0.34, + "learning_rate": 1.587289703148779e-05, + "loss": 0.1317, + "step": 185 + }, + { + "epoch": 0.34, + "learning_rate": 1.5823221286261217e-05, + "loss": 0.1656, + "step": 186 + }, + { + "epoch": 0.35, + "learning_rate": 1.5773327153949465e-05, + "loss": 0.3358, + "step": 187 + }, + { + "epoch": 0.35, + "learning_rate": 1.572321650572205e-05, + "loss": 0.2216, + "step": 188 + }, + { + "epoch": 0.35, + "learning_rate": 1.567289122086843e-05, + "loss": 0.0937, + "step": 189 + }, + { + "epoch": 0.35, + "learning_rate": 1.5622353186727542e-05, + "loss": 0.0995, + "step": 190 + }, + { + "epoch": 0.35, + "learning_rate": 1.557160429861702e-05, + "loss": 0.2324, + "step": 191 + }, + { + "epoch": 0.35, + "learning_rate": 1.5520646459762102e-05, + "loss": 0.2847, + "step": 192 + }, + { + "epoch": 0.36, + "learning_rate": 1.5469481581224274e-05, + "loss": 0.1242, + "step": 193 + }, + { + "epoch": 0.36, + "learning_rate": 1.5418111581829575e-05, + "loss": 0.1771, + "step": 194 + }, + { + "epoch": 0.36, + "learning_rate": 1.536653838809667e-05, + "loss": 0.2115, + "step": 195 + }, + { + "epoch": 0.36, + "learning_rate": 1.531476393416456e-05, + "loss": 0.074, + "step": 196 + }, + { + "epoch": 0.36, + "learning_rate": 1.5262790161720082e-05, + "loss": 0.0893, + "step": 197 + }, + { + "epoch": 0.37, + "learning_rate": 1.5210619019925066e-05, + "loss": 0.0644, + "step": 198 + }, + { + "epoch": 0.37, + "learning_rate": 1.5158252465343242e-05, + "loss": 0.2146, + "step": 199 + }, + { + "epoch": 0.37, + "learning_rate": 1.5105692461866874e-05, + "loss": 0.2579, + "step": 200 + }, + { + "epoch": 0.37, + "learning_rate": 1.50529409806431e-05, + "loss": 0.0806, + "step": 201 + }, + { + "epoch": 0.37, + "learning_rate": 1.5000000000000002e-05, + "loss": 0.0806, + "step": 202 + }, + { + "epoch": 0.38, + "learning_rate": 1.4946871505372426e-05, + "loss": 0.132, + "step": 203 + }, + { + "epoch": 0.38, + "learning_rate": 1.4893557489227518e-05, + "loss": 0.1438, + "step": 204 + }, + { + "epoch": 0.38, + "learning_rate": 1.4840059950989992e-05, + "loss": 0.1703, + "step": 205 + }, + { + "epoch": 0.38, + "learning_rate": 1.478638089696716e-05, + "loss": 0.0903, + "step": 206 + }, + { + "epoch": 0.38, + "learning_rate": 1.4732522340273686e-05, + "loss": 0.1515, + "step": 207 + }, + { + "epoch": 0.38, + "learning_rate": 1.467848630075608e-05, + "loss": 0.2156, + "step": 208 + }, + { + "epoch": 0.39, + "learning_rate": 1.4624274804916958e-05, + "loss": 0.0783, + "step": 209 + }, + { + "epoch": 0.39, + "learning_rate": 1.456988988583904e-05, + "loss": 0.1432, + "step": 210 + }, + { + "epoch": 0.39, + "learning_rate": 1.4515333583108896e-05, + "loss": 0.1716, + "step": 211 + }, + { + "epoch": 0.39, + "learning_rate": 1.4460607942740468e-05, + "loss": 0.2328, + "step": 212 + }, + { + "epoch": 0.39, + "learning_rate": 1.4405715017098333e-05, + "loss": 0.1317, + "step": 213 + }, + { + "epoch": 0.4, + "learning_rate": 1.4350656864820733e-05, + "loss": 0.097, + "step": 214 + }, + { + "epoch": 0.4, + "learning_rate": 1.4295435550742372e-05, + "loss": 0.1547, + "step": 215 + }, + { + "epoch": 0.4, + "learning_rate": 1.4240053145816968e-05, + "loss": 0.0737, + "step": 216 + }, + { + "epoch": 0.4, + "learning_rate": 1.4184511727039612e-05, + "loss": 0.0926, + "step": 217 + }, + { + "epoch": 0.4, + "learning_rate": 1.4128813377368851e-05, + "loss": 0.0824, + "step": 218 + }, + { + "epoch": 0.4, + "learning_rate": 1.4072960185648576e-05, + "loss": 0.1236, + "step": 219 + }, + { + "epoch": 0.41, + "learning_rate": 1.4016954246529697e-05, + "loss": 0.157, + "step": 220 + }, + { + "epoch": 0.41, + "learning_rate": 1.396079766039157e-05, + "loss": 0.1241, + "step": 221 + }, + { + "epoch": 0.41, + "learning_rate": 1.3904492533263243e-05, + "loss": 0.1243, + "step": 222 + }, + { + "epoch": 0.41, + "learning_rate": 1.3848040976744459e-05, + "loss": 0.1429, + "step": 223 + }, + { + "epoch": 0.41, + "learning_rate": 1.3791445107926478e-05, + "loss": 0.0321, + "step": 224 + }, + { + "epoch": 0.42, + "learning_rate": 1.3734707049312674e-05, + "loss": 0.0398, + "step": 225 + }, + { + "epoch": 0.42, + "learning_rate": 1.3677828928738934e-05, + "loss": 0.2625, + "step": 226 + }, + { + "epoch": 0.42, + "learning_rate": 1.3620812879293864e-05, + "loss": 0.0926, + "step": 227 + }, + { + "epoch": 0.42, + "learning_rate": 1.3563661039238785e-05, + "loss": 0.06, + "step": 228 + }, + { + "epoch": 0.42, + "learning_rate": 1.3506375551927546e-05, + "loss": 0.2397, + "step": 229 + }, + { + "epoch": 0.43, + "learning_rate": 1.3448958565726144e-05, + "loss": 0.157, + "step": 230 + }, + { + "epoch": 0.43, + "learning_rate": 1.3391412233932148e-05, + "loss": 0.1105, + "step": 231 + }, + { + "epoch": 0.43, + "learning_rate": 1.3333738714693958e-05, + "loss": 0.0877, + "step": 232 + }, + { + "epoch": 0.43, + "learning_rate": 1.3275940170929845e-05, + "loss": 0.1821, + "step": 233 + }, + { + "epoch": 0.43, + "learning_rate": 1.3218018770246858e-05, + "loss": 0.0166, + "step": 234 + }, + { + "epoch": 0.43, + "learning_rate": 1.3159976684859528e-05, + "loss": 0.118, + "step": 235 + }, + { + "epoch": 0.44, + "learning_rate": 1.3101816091508389e-05, + "loss": 0.2289, + "step": 236 + }, + { + "epoch": 0.44, + "learning_rate": 1.3043539171378362e-05, + "loss": 0.0518, + "step": 237 + }, + { + "epoch": 0.44, + "learning_rate": 1.2985148110016947e-05, + "loss": 0.1012, + "step": 238 + }, + { + "epoch": 0.44, + "learning_rate": 1.292664509725226e-05, + "loss": 0.2009, + "step": 239 + }, + { + "epoch": 0.44, + "learning_rate": 1.2868032327110904e-05, + "loss": 0.252, + "step": 240 + }, + { + "epoch": 0.45, + "learning_rate": 1.2809311997735697e-05, + "loss": 0.2044, + "step": 241 + }, + { + "epoch": 0.45, + "learning_rate": 1.2750486311303218e-05, + "loss": 0.1908, + "step": 242 + }, + { + "epoch": 0.45, + "learning_rate": 1.2691557473941246e-05, + "loss": 0.3064, + "step": 243 + }, + { + "epoch": 0.45, + "learning_rate": 1.2632527695645993e-05, + "loss": 0.091, + "step": 244 + }, + { + "epoch": 0.45, + "learning_rate": 1.257339919019925e-05, + "loss": 0.0606, + "step": 245 + }, + { + "epoch": 0.45, + "learning_rate": 1.2514174175085346e-05, + "loss": 0.147, + "step": 246 + }, + { + "epoch": 0.46, + "learning_rate": 1.2454854871407993e-05, + "loss": 0.2029, + "step": 247 + }, + { + "epoch": 0.46, + "learning_rate": 1.239544350380699e-05, + "loss": 0.0851, + "step": 248 + }, + { + "epoch": 0.46, + "learning_rate": 1.2335942300374788e-05, + "loss": 0.0904, + "step": 249 + }, + { + "epoch": 0.46, + "learning_rate": 1.2276353492572937e-05, + "loss": 0.0721, + "step": 250 + }, + { + "epoch": 0.46, + "learning_rate": 1.2216679315148388e-05, + "loss": 0.1488, + "step": 251 + }, + { + "epoch": 0.47, + "learning_rate": 1.2156922006049703e-05, + "loss": 0.1927, + "step": 252 + }, + { + "epoch": 0.47, + "learning_rate": 1.2097083806343104e-05, + "loss": 0.029, + "step": 253 + }, + { + "epoch": 0.47, + "learning_rate": 1.2037166960128443e-05, + "loss": 0.0301, + "step": 254 + }, + { + "epoch": 0.47, + "learning_rate": 1.1977173714455034e-05, + "loss": 0.1231, + "step": 255 + }, + { + "epoch": 0.47, + "learning_rate": 1.1917106319237386e-05, + "loss": 0.0348, + "step": 256 + }, + { + "epoch": 0.48, + "learning_rate": 1.1856967027170818e-05, + "loss": 0.0869, + "step": 257 + }, + { + "epoch": 0.48, + "learning_rate": 1.1796758093646989e-05, + "loss": 0.1164, + "step": 258 + }, + { + "epoch": 0.48, + "learning_rate": 1.1736481776669307e-05, + "loss": 0.0388, + "step": 259 + }, + { + "epoch": 0.48, + "learning_rate": 1.1676140336768236e-05, + "loss": 0.0433, + "step": 260 + }, + { + "epoch": 0.48, + "learning_rate": 1.161573603691655e-05, + "loss": 0.1996, + "step": 261 + }, + { + "epoch": 0.48, + "learning_rate": 1.1555271142444433e-05, + "loss": 0.2182, + "step": 262 + }, + { + "epoch": 0.49, + "learning_rate": 1.1494747920954545e-05, + "loss": 0.0509, + "step": 263 + }, + { + "epoch": 0.49, + "learning_rate": 1.1434168642236964e-05, + "loss": 0.1078, + "step": 264 + }, + { + "epoch": 0.49, + "learning_rate": 1.1373535578184083e-05, + "loss": 0.0412, + "step": 265 + }, + { + "epoch": 0.49, + "learning_rate": 1.1312851002705383e-05, + "loss": 0.2425, + "step": 266 + }, + { + "epoch": 0.49, + "learning_rate": 1.1252117191642175e-05, + "loss": 0.1119, + "step": 267 + }, + { + "epoch": 0.5, + "learning_rate": 1.1191336422682237e-05, + "loss": 0.0455, + "step": 268 + }, + { + "epoch": 0.5, + "learning_rate": 1.1130510975274408e-05, + "loss": 0.2613, + "step": 269 + }, + { + "epoch": 0.5, + "learning_rate": 1.1069643130543084e-05, + "loss": 0.0651, + "step": 270 + }, + { + "epoch": 0.5, + "learning_rate": 1.1008735171202685e-05, + "loss": 0.1155, + "step": 271 + }, + { + "epoch": 0.5, + "learning_rate": 1.0947789381472035e-05, + "loss": 0.0661, + "step": 272 + }, + { + "epoch": 0.5, + "learning_rate": 1.0886808046988716e-05, + "loss": 0.0881, + "step": 273 + }, + { + "epoch": 0.51, + "learning_rate": 1.0825793454723325e-05, + "loss": 0.1123, + "step": 274 + }, + { + "epoch": 0.51, + "learning_rate": 1.0764747892893724e-05, + "loss": 0.14, + "step": 275 + }, + { + "epoch": 0.51, + "learning_rate": 1.0703673650879219e-05, + "loss": 0.0889, + "step": 276 + }, + { + "epoch": 0.51, + "learning_rate": 1.0642573019134703e-05, + "loss": 0.1333, + "step": 277 + }, + { + "epoch": 0.51, + "learning_rate": 1.0581448289104759e-05, + "loss": 0.0608, + "step": 278 + }, + { + "epoch": 0.52, + "learning_rate": 1.0520301753137725e-05, + "loss": 0.2882, + "step": 279 + }, + { + "epoch": 0.52, + "learning_rate": 1.045913570439972e-05, + "loss": 0.0661, + "step": 280 + }, + { + "epoch": 0.52, + "learning_rate": 1.0397952436788643e-05, + "loss": 0.107, + "step": 281 + }, + { + "epoch": 0.52, + "learning_rate": 1.0336754244848156e-05, + "loss": 0.0499, + "step": 282 + }, + { + "epoch": 0.52, + "learning_rate": 1.0275543423681622e-05, + "loss": 0.237, + "step": 283 + }, + { + "epoch": 0.52, + "learning_rate": 1.0214322268866033e-05, + "loss": 0.0301, + "step": 284 + }, + { + "epoch": 0.53, + "learning_rate": 1.0153093076365923e-05, + "loss": 0.0904, + "step": 285 + }, + { + "epoch": 0.53, + "learning_rate": 1.0091858142447266e-05, + "loss": 0.0165, + "step": 286 + }, + { + "epoch": 0.53, + "learning_rate": 1.0030619763591348e-05, + "loss": 0.0791, + "step": 287 + }, + { + "epoch": 0.53, + "learning_rate": 9.969380236408656e-06, + "loss": 0.1997, + "step": 288 + }, + { + "epoch": 0.53, + "learning_rate": 9.908141857552737e-06, + "loss": 0.0155, + "step": 289 + }, + { + "epoch": 0.54, + "learning_rate": 9.846906923634079e-06, + "loss": 0.0457, + "step": 290 + }, + { + "epoch": 0.54, + "learning_rate": 9.785677731133972e-06, + "loss": 0.0203, + "step": 291 + }, + { + "epoch": 0.54, + "learning_rate": 9.724456576318383e-06, + "loss": 0.2384, + "step": 292 + }, + { + "epoch": 0.54, + "learning_rate": 9.663245755151847e-06, + "loss": 0.1459, + "step": 293 + }, + { + "epoch": 0.54, + "learning_rate": 9.602047563211359e-06, + "loss": 0.2249, + "step": 294 + }, + { + "epoch": 0.55, + "learning_rate": 9.540864295600282e-06, + "loss": 0.037, + "step": 295 + }, + { + "epoch": 0.55, + "learning_rate": 9.479698246862277e-06, + "loss": 0.145, + "step": 296 + }, + { + "epoch": 0.55, + "learning_rate": 9.418551710895243e-06, + "loss": 0.1501, + "step": 297 + }, + { + "epoch": 0.55, + "learning_rate": 9.3574269808653e-06, + "loss": 0.0727, + "step": 298 + }, + { + "epoch": 0.55, + "learning_rate": 9.296326349120786e-06, + "loss": 0.0992, + "step": 299 + }, + { + "epoch": 0.55, + "learning_rate": 9.23525210710628e-06, + "loss": 0.2516, + "step": 300 + }, + { + "epoch": 0.56, + "learning_rate": 9.174206545276678e-06, + "loss": 0.0628, + "step": 301 + }, + { + "epoch": 0.56, + "learning_rate": 9.113191953011287e-06, + "loss": 0.132, + "step": 302 + }, + { + "epoch": 0.56, + "learning_rate": 9.052210618527966e-06, + "loss": 0.0908, + "step": 303 + }, + { + "epoch": 0.56, + "learning_rate": 8.991264828797319e-06, + "loss": 0.1432, + "step": 304 + }, + { + "epoch": 0.56, + "learning_rate": 8.93035686945692e-06, + "loss": 0.0493, + "step": 305 + }, + { + "epoch": 0.57, + "learning_rate": 8.869489024725595e-06, + "loss": 0.0578, + "step": 306 + }, + { + "epoch": 0.57, + "learning_rate": 8.808663577317765e-06, + "loss": 0.0909, + "step": 307 + }, + { + "epoch": 0.57, + "learning_rate": 8.747882808357828e-06, + "loss": 0.0646, + "step": 308 + }, + { + "epoch": 0.57, + "learning_rate": 8.687148997294622e-06, + "loss": 0.1308, + "step": 309 + }, + { + "epoch": 0.57, + "learning_rate": 8.626464421815919e-06, + "loss": 0.0729, + "step": 310 + }, + { + "epoch": 0.57, + "learning_rate": 8.565831357763039e-06, + "loss": 0.1871, + "step": 311 + }, + { + "epoch": 0.58, + "learning_rate": 8.505252079045459e-06, + "loss": 0.1577, + "step": 312 + }, + { + "epoch": 0.58, + "learning_rate": 8.444728857555572e-06, + "loss": 0.1844, + "step": 313 + }, + { + "epoch": 0.58, + "learning_rate": 8.384263963083453e-06, + "loss": 0.1673, + "step": 314 + }, + { + "epoch": 0.58, + "learning_rate": 8.323859663231768e-06, + "loss": 0.1898, + "step": 315 + }, + { + "epoch": 0.58, + "learning_rate": 8.263518223330698e-06, + "loss": 0.1106, + "step": 316 + }, + { + "epoch": 0.59, + "learning_rate": 8.203241906353014e-06, + "loss": 0.0476, + "step": 317 + }, + { + "epoch": 0.59, + "learning_rate": 8.143032972829184e-06, + "loss": 0.1432, + "step": 318 + }, + { + "epoch": 0.59, + "learning_rate": 8.082893680762619e-06, + "loss": 0.0249, + "step": 319 + }, + { + "epoch": 0.59, + "learning_rate": 8.022826285544967e-06, + "loss": 0.0762, + "step": 320 + }, + { + "epoch": 0.59, + "learning_rate": 7.962833039871562e-06, + "loss": 0.1468, + "step": 321 + }, + { + "epoch": 0.6, + "learning_rate": 7.902916193656898e-06, + "loss": 0.0272, + "step": 322 + }, + { + "epoch": 0.6, + "learning_rate": 7.843077993950302e-06, + "loss": 0.0495, + "step": 323 + }, + { + "epoch": 0.6, + "learning_rate": 7.783320684851613e-06, + "loss": 0.1958, + "step": 324 + }, + { + "epoch": 0.6, + "learning_rate": 7.72364650742707e-06, + "loss": 0.0869, + "step": 325 + }, + { + "epoch": 0.6, + "learning_rate": 7.664057699625215e-06, + "loss": 0.2957, + "step": 326 + }, + { + "epoch": 0.6, + "learning_rate": 7.604556496193015e-06, + "loss": 0.0833, + "step": 327 + }, + { + "epoch": 0.61, + "learning_rate": 7.545145128592009e-06, + "loss": 0.0978, + "step": 328 + }, + { + "epoch": 0.61, + "learning_rate": 7.485825824914658e-06, + "loss": 0.1941, + "step": 329 + }, + { + "epoch": 0.61, + "learning_rate": 7.426600809800753e-06, + "loss": 0.0384, + "step": 330 + }, + { + "epoch": 0.61, + "learning_rate": 7.367472304354011e-06, + "loss": 0.0872, + "step": 331 + }, + { + "epoch": 0.61, + "learning_rate": 7.308442526058757e-06, + "loss": 0.1051, + "step": 332 + }, + { + "epoch": 0.62, + "learning_rate": 7.249513688696786e-06, + "loss": 0.0918, + "step": 333 + }, + { + "epoch": 0.62, + "learning_rate": 7.190688002264308e-06, + "loss": 0.2169, + "step": 334 + }, + { + "epoch": 0.62, + "learning_rate": 7.131967672889101e-06, + "loss": 0.1647, + "step": 335 + }, + { + "epoch": 0.62, + "learning_rate": 7.073354902747742e-06, + "loss": 0.0585, + "step": 336 + }, + { + "epoch": 0.62, + "learning_rate": 7.014851889983058e-06, + "loss": 0.1743, + "step": 337 + }, + { + "epoch": 0.62, + "learning_rate": 6.956460828621641e-06, + "loss": 0.3001, + "step": 338 + }, + { + "epoch": 0.63, + "learning_rate": 6.898183908491617e-06, + "loss": 0.0977, + "step": 339 + }, + { + "epoch": 0.63, + "learning_rate": 6.840023315140476e-06, + "loss": 0.0549, + "step": 340 + }, + { + "epoch": 0.63, + "learning_rate": 6.781981229753145e-06, + "loss": 0.0738, + "step": 341 + }, + { + "epoch": 0.63, + "learning_rate": 6.7240598290701585e-06, + "loss": 0.027, + "step": 342 + }, + { + "epoch": 0.63, + "learning_rate": 6.666261285306048e-06, + "loss": 0.0647, + "step": 343 + }, + { + "epoch": 0.64, + "learning_rate": 6.608587766067853e-06, + "loss": 0.0531, + "step": 344 + }, + { + "epoch": 0.64, + "learning_rate": 6.551041434273862e-06, + "loss": 0.0582, + "step": 345 + }, + { + "epoch": 0.64, + "learning_rate": 6.4936244480724575e-06, + "loss": 0.2357, + "step": 346 + }, + { + "epoch": 0.64, + "learning_rate": 6.4363389607612204e-06, + "loss": 0.0614, + "step": 347 + }, + { + "epoch": 0.64, + "learning_rate": 6.379187120706138e-06, + "loss": 0.1516, + "step": 348 + }, + { + "epoch": 0.65, + "learning_rate": 6.322171071261071e-06, + "loss": 0.2906, + "step": 349 + }, + { + "epoch": 0.65, + "learning_rate": 6.265292950687329e-06, + "loss": 0.0402, + "step": 350 + }, + { + "epoch": 0.65, + "learning_rate": 6.208554892073528e-06, + "loss": 0.0895, + "step": 351 + }, + { + "epoch": 0.65, + "learning_rate": 6.151959023255545e-06, + "loss": 0.109, + "step": 352 + }, + { + "epoch": 0.65, + "learning_rate": 6.095507466736763e-06, + "loss": 0.1338, + "step": 353 + }, + { + "epoch": 0.65, + "learning_rate": 6.039202339608432e-06, + "loss": 0.0541, + "step": 354 + }, + { + "epoch": 0.66, + "learning_rate": 5.983045753470308e-06, + "loss": 0.0614, + "step": 355 + }, + { + "epoch": 0.66, + "learning_rate": 5.927039814351426e-06, + "loss": 0.2844, + "step": 356 + }, + { + "epoch": 0.66, + "learning_rate": 5.871186622631155e-06, + "loss": 0.1412, + "step": 357 + }, + { + "epoch": 0.66, + "learning_rate": 5.815488272960388e-06, + "loss": 0.0575, + "step": 358 + }, + { + "epoch": 0.66, + "learning_rate": 5.759946854183036e-06, + "loss": 0.1047, + "step": 359 + }, + { + "epoch": 0.67, + "learning_rate": 5.704564449257635e-06, + "loss": 0.2065, + "step": 360 + }, + { + "epoch": 0.67, + "learning_rate": 5.649343135179271e-06, + "loss": 0.0995, + "step": 361 + }, + { + "epoch": 0.67, + "learning_rate": 5.59428498290167e-06, + "loss": 0.1517, + "step": 362 + }, + { + "epoch": 0.67, + "learning_rate": 5.539392057259536e-06, + "loss": 0.1122, + "step": 363 + }, + { + "epoch": 0.67, + "learning_rate": 5.484666416891109e-06, + "loss": 0.0992, + "step": 364 + }, + { + "epoch": 0.67, + "learning_rate": 5.430110114160965e-06, + "loss": 0.1303, + "step": 365 + }, + { + "epoch": 0.68, + "learning_rate": 5.375725195083046e-06, + "loss": 0.1192, + "step": 366 + }, + { + "epoch": 0.68, + "learning_rate": 5.321513699243924e-06, + "loss": 0.0991, + "step": 367 + }, + { + "epoch": 0.68, + "learning_rate": 5.267477659726319e-06, + "loss": 0.077, + "step": 368 + }, + { + "epoch": 0.68, + "learning_rate": 5.213619103032845e-06, + "loss": 0.1052, + "step": 369 + }, + { + "epoch": 0.68, + "learning_rate": 5.159940049010015e-06, + "loss": 0.2359, + "step": 370 + }, + { + "epoch": 0.69, + "learning_rate": 5.106442510772489e-06, + "loss": 0.0501, + "step": 371 + }, + { + "epoch": 0.69, + "learning_rate": 5.053128494627578e-06, + "loss": 0.0803, + "step": 372 + }, + { + "epoch": 0.69, + "learning_rate": 5.000000000000003e-06, + "loss": 0.2073, + "step": 373 + }, + { + "epoch": 0.69, + "learning_rate": 4.947059019356904e-06, + "loss": 0.0479, + "step": 374 + }, + { + "epoch": 0.69, + "learning_rate": 4.89430753813313e-06, + "loss": 0.125, + "step": 375 + }, + { + "epoch": 0.7, + "learning_rate": 4.8417475346567635e-06, + "loss": 0.0715, + "step": 376 + }, + { + "epoch": 0.7, + "learning_rate": 4.78938098007494e-06, + "loss": 0.0242, + "step": 377 + }, + { + "epoch": 0.7, + "learning_rate": 4.737209838279923e-06, + "loss": 0.1242, + "step": 378 + }, + { + "epoch": 0.7, + "learning_rate": 4.685236065835443e-06, + "loss": 0.1771, + "step": 379 + }, + { + "epoch": 0.7, + "learning_rate": 4.633461611903336e-06, + "loss": 0.1037, + "step": 380 + }, + { + "epoch": 0.7, + "learning_rate": 4.581888418170429e-06, + "loss": 0.0733, + "step": 381 + }, + { + "epoch": 0.71, + "learning_rate": 4.530518418775734e-06, + "loss": 0.0565, + "step": 382 + }, + { + "epoch": 0.71, + "learning_rate": 4.479353540237903e-06, + "loss": 0.1092, + "step": 383 + }, + { + "epoch": 0.71, + "learning_rate": 4.4283957013829845e-06, + "loss": 0.0371, + "step": 384 + }, + { + "epoch": 0.71, + "learning_rate": 4.3776468132724605e-06, + "loss": 0.1105, + "step": 385 + }, + { + "epoch": 0.71, + "learning_rate": 4.327108779131573e-06, + "loss": 0.1856, + "step": 386 + }, + { + "epoch": 0.72, + "learning_rate": 4.276783494277954e-06, + "loss": 0.1237, + "step": 387 + }, + { + "epoch": 0.72, + "learning_rate": 4.226672846050538e-06, + "loss": 0.2521, + "step": 388 + }, + { + "epoch": 0.72, + "learning_rate": 4.176778713738787e-06, + "loss": 0.0565, + "step": 389 + }, + { + "epoch": 0.72, + "learning_rate": 4.127102968512214e-06, + "loss": 0.0518, + "step": 390 + }, + { + "epoch": 0.72, + "learning_rate": 4.077647473350201e-06, + "loss": 0.0735, + "step": 391 + }, + { + "epoch": 0.72, + "learning_rate": 4.028414082972141e-06, + "loss": 0.0786, + "step": 392 + }, + { + "epoch": 0.73, + "learning_rate": 3.9794046437678705e-06, + "loss": 0.025, + "step": 393 + }, + { + "epoch": 0.73, + "learning_rate": 3.930620993728434e-06, + "loss": 0.2235, + "step": 394 + }, + { + "epoch": 0.73, + "learning_rate": 3.882064962377154e-06, + "loss": 0.1307, + "step": 395 + }, + { + "epoch": 0.73, + "learning_rate": 3.83373837070101e-06, + "loss": 0.0224, + "step": 396 + }, + { + "epoch": 0.73, + "learning_rate": 3.7856430310823546e-06, + "loss": 0.1109, + "step": 397 + }, + { + "epoch": 0.74, + "learning_rate": 3.737780747230941e-06, + "loss": 0.0624, + "step": 398 + }, + { + "epoch": 0.74, + "learning_rate": 3.6901533141162804e-06, + "loss": 0.055, + "step": 399 + }, + { + "epoch": 0.74, + "learning_rate": 3.6427625179003223e-06, + "loss": 0.2079, + "step": 400 + }, + { + "epoch": 0.74, + "learning_rate": 3.595610135870472e-06, + "loss": 0.2215, + "step": 401 + }, + { + "epoch": 0.74, + "learning_rate": 3.548697936372937e-06, + "loss": 0.1016, + "step": 402 + }, + { + "epoch": 0.74, + "learning_rate": 3.5020276787464058e-06, + "loss": 0.1229, + "step": 403 + }, + { + "epoch": 0.75, + "learning_rate": 3.455601113256073e-06, + "loss": 0.0759, + "step": 404 + }, + { + "epoch": 0.75, + "learning_rate": 3.4094199810279926e-06, + "loss": 0.1667, + "step": 405 + }, + { + "epoch": 0.75, + "learning_rate": 3.3634860139837877e-06, + "loss": 0.048, + "step": 406 + }, + { + "epoch": 0.75, + "learning_rate": 3.317800934775696e-06, + "loss": 0.0543, + "step": 407 + }, + { + "epoch": 0.75, + "learning_rate": 3.2723664567219627e-06, + "loss": 0.1656, + "step": 408 + }, + { + "epoch": 0.76, + "learning_rate": 3.2271842837425917e-06, + "loss": 0.0409, + "step": 409 + }, + { + "epoch": 0.76, + "learning_rate": 3.1822561102954373e-06, + "loss": 0.1173, + "step": 410 + }, + { + "epoch": 0.76, + "learning_rate": 3.1375836213126653e-06, + "loss": 0.0964, + "step": 411 + }, + { + "epoch": 0.76, + "learning_rate": 3.0931684921375572e-06, + "loss": 0.0432, + "step": 412 + }, + { + "epoch": 0.76, + "learning_rate": 3.0490123884616795e-06, + "loss": 0.1451, + "step": 413 + }, + { + "epoch": 0.77, + "learning_rate": 3.0051169662624224e-06, + "loss": 0.1226, + "step": 414 + }, + { + "epoch": 0.77, + "learning_rate": 2.9614838717408866e-06, + "loss": 0.096, + "step": 415 + }, + { + "epoch": 0.77, + "learning_rate": 2.918114741260156e-06, + "loss": 0.1152, + "step": 416 + }, + { + "epoch": 0.77, + "learning_rate": 2.8750112012839215e-06, + "loss": 0.0575, + "step": 417 + }, + { + "epoch": 0.77, + "learning_rate": 2.8321748683154893e-06, + "loss": 0.097, + "step": 418 + }, + { + "epoch": 0.77, + "learning_rate": 2.7896073488371535e-06, + "loss": 0.0513, + "step": 419 + }, + { + "epoch": 0.78, + "learning_rate": 2.7473102392499517e-06, + "loss": 0.0566, + "step": 420 + }, + { + "epoch": 0.78, + "learning_rate": 2.7052851258137936e-06, + "loss": 0.0193, + "step": 421 + }, + { + "epoch": 0.78, + "learning_rate": 2.663533584587974e-06, + "loss": 0.1507, + "step": 422 + }, + { + "epoch": 0.78, + "learning_rate": 2.622057181372063e-06, + "loss": 0.0208, + "step": 423 + }, + { + "epoch": 0.78, + "learning_rate": 2.580857471647186e-06, + "loss": 0.0893, + "step": 424 + }, + { + "epoch": 0.79, + "learning_rate": 2.539936000517689e-06, + "loss": 0.0988, + "step": 425 + }, + { + "epoch": 0.79, + "learning_rate": 2.4992943026531935e-06, + "loss": 0.0368, + "step": 426 + }, + { + "epoch": 0.79, + "learning_rate": 2.4589339022310386e-06, + "loss": 0.0911, + "step": 427 + }, + { + "epoch": 0.79, + "learning_rate": 2.4188563128791255e-06, + "loss": 0.1093, + "step": 428 + }, + { + "epoch": 0.79, + "learning_rate": 2.379063037619146e-06, + "loss": 0.0717, + "step": 429 + }, + { + "epoch": 0.79, + "learning_rate": 2.339555568810221e-06, + "loss": 0.1486, + "step": 430 + }, + { + "epoch": 0.8, + "learning_rate": 2.300335388092929e-06, + "loss": 0.1174, + "step": 431 + }, + { + "epoch": 0.8, + "learning_rate": 2.261403966333742e-06, + "loss": 0.2022, + "step": 432 + }, + { + "epoch": 0.8, + "learning_rate": 2.2227627635698624e-06, + "loss": 0.0376, + "step": 433 + }, + { + "epoch": 0.8, + "learning_rate": 2.1844132289544684e-06, + "loss": 0.3022, + "step": 434 + }, + { + "epoch": 0.8, + "learning_rate": 2.1463568007023706e-06, + "loss": 0.0121, + "step": 435 + }, + { + "epoch": 0.81, + "learning_rate": 2.1085949060360654e-06, + "loss": 0.1441, + "step": 436 + }, + { + "epoch": 0.81, + "learning_rate": 2.0711289611322204e-06, + "loss": 0.0457, + "step": 437 + }, + { + "epoch": 0.81, + "learning_rate": 2.0339603710685574e-06, + "loss": 0.0324, + "step": 438 + }, + { + "epoch": 0.81, + "learning_rate": 1.9970905297711606e-06, + "loss": 0.045, + "step": 439 + }, + { + "epoch": 0.81, + "learning_rate": 1.9605208199621993e-06, + "loss": 0.0644, + "step": 440 + }, + { + "epoch": 0.82, + "learning_rate": 1.924252613108073e-06, + "loss": 0.0743, + "step": 441 + }, + { + "epoch": 0.82, + "learning_rate": 1.8882872693679787e-06, + "loss": 0.054, + "step": 442 + }, + { + "epoch": 0.82, + "learning_rate": 1.8526261375428955e-06, + "loss": 0.1679, + "step": 443 + }, + { + "epoch": 0.82, + "learning_rate": 1.8172705550250093e-06, + "loss": 0.0666, + "step": 444 + }, + { + "epoch": 0.82, + "learning_rate": 1.7822218477475496e-06, + "loss": 0.2, + "step": 445 + }, + { + "epoch": 0.82, + "learning_rate": 1.7474813301350668e-06, + "loss": 0.1191, + "step": 446 + }, + { + "epoch": 0.83, + "learning_rate": 1.7130503050541368e-06, + "loss": 0.1166, + "step": 447 + }, + { + "epoch": 0.83, + "learning_rate": 1.6789300637645e-06, + "loss": 0.0089, + "step": 448 + }, + { + "epoch": 0.83, + "learning_rate": 1.6451218858706374e-06, + "loss": 0.0848, + "step": 449 + }, + { + "epoch": 0.83, + "learning_rate": 1.6116270392737753e-06, + "loss": 0.1263, + "step": 450 + }, + { + "epoch": 0.83, + "learning_rate": 1.578446780124344e-06, + "loss": 0.1338, + "step": 451 + }, + { + "epoch": 0.84, + "learning_rate": 1.5455823527748626e-06, + "loss": 0.0566, + "step": 452 + }, + { + "epoch": 0.84, + "learning_rate": 1.5130349897332764e-06, + "loss": 0.0618, + "step": 453 + }, + { + "epoch": 0.84, + "learning_rate": 1.4808059116167306e-06, + "loss": 0.0259, + "step": 454 + }, + { + "epoch": 0.84, + "learning_rate": 1.4488963271057943e-06, + "loss": 0.1682, + "step": 455 + }, + { + "epoch": 0.84, + "learning_rate": 1.4173074328991376e-06, + "loss": 0.0967, + "step": 456 + }, + { + "epoch": 0.84, + "learning_rate": 1.3860404136686411e-06, + "loss": 0.0799, + "step": 457 + }, + { + "epoch": 0.85, + "learning_rate": 1.355096442014977e-06, + "loss": 0.1426, + "step": 458 + }, + { + "epoch": 0.85, + "learning_rate": 1.3244766784236307e-06, + "loss": 0.1401, + "step": 459 + }, + { + "epoch": 0.85, + "learning_rate": 1.294182271221377e-06, + "loss": 0.0526, + "step": 460 + }, + { + "epoch": 0.85, + "learning_rate": 1.2642143565332154e-06, + "loss": 0.1516, + "step": 461 + }, + { + "epoch": 0.85, + "learning_rate": 1.2345740582397647e-06, + "loss": 0.0326, + "step": 462 + }, + { + "epoch": 0.86, + "learning_rate": 1.2052624879351105e-06, + "loss": 0.0517, + "step": 463 + }, + { + "epoch": 0.86, + "learning_rate": 1.176280744885121e-06, + "loss": 0.094, + "step": 464 + }, + { + "epoch": 0.86, + "learning_rate": 1.1476299159862204e-06, + "loss": 0.0684, + "step": 465 + }, + { + "epoch": 0.86, + "learning_rate": 1.1193110757246251e-06, + "loss": 0.0845, + "step": 466 + }, + { + "epoch": 0.86, + "learning_rate": 1.09132528613605e-06, + "loss": 0.1105, + "step": 467 + }, + { + "epoch": 0.87, + "learning_rate": 1.0636735967658785e-06, + "loss": 0.0947, + "step": 468 + }, + { + "epoch": 0.87, + "learning_rate": 1.0363570446297999e-06, + "loss": 0.0685, + "step": 469 + }, + { + "epoch": 0.87, + "learning_rate": 1.0093766541749206e-06, + "loss": 0.0902, + "step": 470 + }, + { + "epoch": 0.87, + "learning_rate": 9.827334372413444e-07, + "loss": 0.0257, + "step": 471 + }, + { + "epoch": 0.87, + "learning_rate": 9.564283930242258e-07, + "loss": 0.1048, + "step": 472 + }, + { + "epoch": 0.87, + "learning_rate": 9.304625080362939e-07, + "loss": 0.1365, + "step": 473 + }, + { + "epoch": 0.88, + "learning_rate": 9.048367560708604e-07, + "loss": 0.2323, + "step": 474 + }, + { + "epoch": 0.88, + "learning_rate": 8.79552098165296e-07, + "loss": 0.0435, + "step": 475 + }, + { + "epoch": 0.88, + "learning_rate": 8.546094825649909e-07, + "loss": 0.0644, + "step": 476 + }, + { + "epoch": 0.88, + "learning_rate": 8.300098446877925e-07, + "loss": 0.0884, + "step": 477 + }, + { + "epoch": 0.88, + "learning_rate": 8.057541070889229e-07, + "loss": 0.1381, + "step": 478 + }, + { + "epoch": 0.89, + "learning_rate": 7.818431794263837e-07, + "loss": 0.0472, + "step": 479 + }, + { + "epoch": 0.89, + "learning_rate": 7.582779584268374e-07, + "loss": 0.0606, + "step": 480 + }, + { + "epoch": 0.89, + "learning_rate": 7.350593278519824e-07, + "loss": 0.0325, + "step": 481 + }, + { + "epoch": 0.89, + "learning_rate": 7.121881584654056e-07, + "loss": 0.0391, + "step": 482 + }, + { + "epoch": 0.89, + "learning_rate": 6.896653079999249e-07, + "loss": 0.0965, + "step": 483 + }, + { + "epoch": 0.89, + "learning_rate": 6.67491621125429e-07, + "loss": 0.0288, + "step": 484 + }, + { + "epoch": 0.9, + "learning_rate": 6.45667929417193e-07, + "loss": 0.0608, + "step": 485 + }, + { + "epoch": 0.9, + "learning_rate": 6.241950513246931e-07, + "loss": 0.0619, + "step": 486 + }, + { + "epoch": 0.9, + "learning_rate": 6.030737921409169e-07, + "loss": 0.2691, + "step": 487 + }, + { + "epoch": 0.9, + "learning_rate": 5.823049439721562e-07, + "loss": 0.1071, + "step": 488 + }, + { + "epoch": 0.9, + "learning_rate": 5.618892857083069e-07, + "loss": 0.1501, + "step": 489 + }, + { + "epoch": 0.91, + "learning_rate": 5.418275829936537e-07, + "loss": 0.0807, + "step": 490 + }, + { + "epoch": 0.91, + "learning_rate": 5.221205881981594e-07, + "loss": 0.0666, + "step": 491 + }, + { + "epoch": 0.91, + "learning_rate": 5.027690403892461e-07, + "loss": 0.0993, + "step": 492 + }, + { + "epoch": 0.91, + "learning_rate": 4.837736653040825e-07, + "loss": 0.2467, + "step": 493 + }, + { + "epoch": 0.91, + "learning_rate": 4.6513517532236096e-07, + "loss": 0.0563, + "step": 494 + }, + { + "epoch": 0.91, + "learning_rate": 4.468542694395861e-07, + "loss": 0.0792, + "step": 495 + }, + { + "epoch": 0.92, + "learning_rate": 4.2893163324085886e-07, + "loss": 0.0648, + "step": 496 + }, + { + "epoch": 0.92, + "learning_rate": 4.113679388751635e-07, + "loss": 0.3011, + "step": 497 + }, + { + "epoch": 0.92, + "learning_rate": 3.941638450301644e-07, + "loss": 0.221, + "step": 498 + }, + { + "epoch": 0.92, + "learning_rate": 3.773199969074959e-07, + "loss": 0.0961, + "step": 499 + }, + { + "epoch": 0.92, + "learning_rate": 3.608370261985761e-07, + "loss": 0.0816, + "step": 500 + }, + { + "epoch": 0.93, + "learning_rate": 3.4471555106090573e-07, + "loss": 0.0565, + "step": 501 + }, + { + "epoch": 0.93, + "learning_rate": 3.2895617609489337e-07, + "loss": 0.0703, + "step": 502 + }, + { + "epoch": 0.93, + "learning_rate": 3.135594923211771e-07, + "loss": 0.0622, + "step": 503 + }, + { + "epoch": 0.93, + "learning_rate": 2.9852607715846194e-07, + "loss": 0.1138, + "step": 504 + }, + { + "epoch": 0.93, + "learning_rate": 2.838564944018618e-07, + "loss": 0.2741, + "step": 505 + }, + { + "epoch": 0.94, + "learning_rate": 2.6955129420176193e-07, + "loss": 0.06, + "step": 506 + }, + { + "epoch": 0.94, + "learning_rate": 2.556110130431788e-07, + "loss": 0.0322, + "step": 507 + }, + { + "epoch": 0.94, + "learning_rate": 2.420361737256438e-07, + "loss": 0.1867, + "step": 508 + }, + { + "epoch": 0.94, + "learning_rate": 2.2882728534360131e-07, + "loss": 0.2815, + "step": 509 + }, + { + "epoch": 0.94, + "learning_rate": 2.159848432673084e-07, + "loss": 0.133, + "step": 510 + }, + { + "epoch": 0.94, + "learning_rate": 2.035093291242607e-07, + "loss": 0.134, + "step": 511 + }, + { + "epoch": 0.95, + "learning_rate": 1.914012107811336e-07, + "loss": 0.1156, + "step": 512 + }, + { + "epoch": 0.95, + "learning_rate": 1.7966094232622856e-07, + "loss": 0.3407, + "step": 513 + }, + { + "epoch": 0.95, + "learning_rate": 1.6828896405244988e-07, + "loss": 0.0641, + "step": 514 + }, + { + "epoch": 0.95, + "learning_rate": 1.572857024407881e-07, + "loss": 0.0459, + "step": 515 + }, + { + "epoch": 0.95, + "learning_rate": 1.466515701443294e-07, + "loss": 0.1403, + "step": 516 + }, + { + "epoch": 0.96, + "learning_rate": 1.3638696597277678e-07, + "loss": 0.0836, + "step": 517 + }, + { + "epoch": 0.96, + "learning_rate": 1.264922748774955e-07, + "loss": 0.1507, + "step": 518 + }, + { + "epoch": 0.96, + "learning_rate": 1.1696786793707782e-07, + "loss": 0.1091, + "step": 519 + }, + { + "epoch": 0.96, + "learning_rate": 1.0781410234342093e-07, + "loss": 0.0432, + "step": 520 + }, + { + "epoch": 0.96, + "learning_rate": 9.90313213883376e-08, + "loss": 0.0166, + "step": 521 + }, + { + "epoch": 0.96, + "learning_rate": 9.061985445067756e-08, + "loss": 0.1675, + "step": 522 + }, + { + "epoch": 0.97, + "learning_rate": 8.258001698397744e-08, + "loss": 0.0462, + "step": 523 + }, + { + "epoch": 0.97, + "learning_rate": 7.491211050462798e-08, + "loss": 0.0219, + "step": 524 + }, + { + "epoch": 0.97, + "learning_rate": 6.761642258056977e-08, + "loss": 0.1261, + "step": 525 + }, + { + "epoch": 0.97, + "learning_rate": 6.069322682050516e-08, + "loss": 0.1249, + "step": 526 + }, + { + "epoch": 0.97, + "learning_rate": 5.414278286363761e-08, + "loss": 0.0674, + "step": 527 + }, + { + "epoch": 0.98, + "learning_rate": 4.796533636993728e-08, + "loss": 0.0171, + "step": 528 + }, + { + "epoch": 0.98, + "learning_rate": 4.216111901092501e-08, + "loss": 0.0653, + "step": 529 + }, + { + "epoch": 0.98, + "learning_rate": 3.6730348460986e-08, + "loss": 0.0292, + "step": 530 + }, + { + "epoch": 0.98, + "learning_rate": 3.167322838920406e-08, + "loss": 0.1442, + "step": 531 + }, + { + "epoch": 0.98, + "learning_rate": 2.6989948451726643e-08, + "loss": 0.0773, + "step": 532 + }, + { + "epoch": 0.99, + "learning_rate": 2.2680684284650532e-08, + "loss": 0.0428, + "step": 533 + }, + { + "epoch": 0.99, + "learning_rate": 1.8745597497433765e-08, + "loss": 0.2392, + "step": 534 + }, + { + "epoch": 0.99, + "learning_rate": 1.518483566683826e-08, + "loss": 0.1413, + "step": 535 + }, + { + "epoch": 0.99, + "learning_rate": 1.1998532331389812e-08, + "loss": 0.0554, + "step": 536 + }, + { + "epoch": 0.99, + "learning_rate": 9.186806986376528e-09, + "loss": 0.1174, + "step": 537 + }, + { + "epoch": 0.99, + "learning_rate": 6.749765079363535e-09, + "loss": 0.048, + "step": 538 + }, + { + "epoch": 1.0, + "learning_rate": 4.687498006236135e-09, + "loss": 0.1818, + "step": 539 + }, + { + "epoch": 1.0, + "learning_rate": 3.0000831077803273e-09, + "loss": 0.083, + "step": 540 + }, + { + "epoch": 1.0, + "learning_rate": 1.6875836667729073e-09, + "loss": 0.0186, + "step": 541 + }, + { + "epoch": 1.0, + "step": 541, + "total_flos": 1291092221952.0, + "train_loss": 0.14259492732281495, + "train_runtime": 4024.6248, + "train_samples_per_second": 1.342, + "train_steps_per_second": 0.134 + } + ], + "logging_steps": 1.0, + "max_steps": 541, + "num_input_tokens_seen": 0, + "num_train_epochs": 1, + "save_steps": 500, + "total_flos": 1291092221952.0, + "train_batch_size": 10, + "trial_name": null, + "trial_params": null +} diff --git a/CheckGuard Models/wholeimage/check_no/finetune_lora_llava_mistral.sh b/CheckGuard Models/wholeimage/check_no/finetune_lora_llava_mistral.sh new file mode 100644 index 0000000000000000000000000000000000000000..5ca5fe49f959f0b968b4d2e38d75e79f56d60a65 --- /dev/null +++ b/CheckGuard Models/wholeimage/check_no/finetune_lora_llava_mistral.sh @@ -0,0 +1,43 @@ +#!/bin/bash +# Use first parameter as GPU IDs, default to "0,1,2,3" if not provided +GPU_IDS=${1:-0,1,2,3} + + +CUDA_VISIBLE_DEVICES=0,1,2,3 deepspeed --include localhost:"$GPU_IDS" --master_port 29604\ + llava/train/train_mem.py \ + --lora_enable True --lora_r 128 --lora_alpha 256 --mm_projector_lr 2e-5 \ + --deepspeed ./scripts/zero3.json \ + --model_name_or_path liuhaotian/llava-v1.6-mistral-7b \ + --version mistral_instruct \ + --data_path /home/larry5/project/LLaVA-1.6-ft/data/peft/check_no/check_no_dataset.json \ + --image_folder /home/larry5/project/LLaVA-1.6-ft/data/data/ \ + --vision_tower openai/clip-vit-large-patch14-336 \ + --mm_projector_type mlp2x_gelu \ + --mm_vision_select_layer -2 \ + --mm_use_im_start_end False \ + --mm_use_im_patch_token False \ + --mm_patch_merge_type spatial_unpad \ + --image_aspect_ratio anyres \ + --group_by_modality_length False \ + --bf16 False \ + --fp16 True \ + --output_dir /home/larry5/project/LLaVA-1.6-ft/scripts_peft/mistral/lora/llava-lora-mistral-r128a256/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model \ + --num_train_epochs 1 \ + --per_device_train_batch_size 10 \ + --per_device_eval_batch_size 1 \ + --gradient_accumulation_steps 1 \ + --evaluation_strategy "no" \ + --save_strategy "steps" \ + --save_steps 500 \ + --save_total_limit 5 \ + --learning_rate 2e-5 \ + --weight_decay 0. \ + --warmup_ratio 0.05 \ + --lr_scheduler_type "cosine" \ + --logging_steps 1 \ + --tf32 True \ + --model_max_length 4096 \ + --gradient_checkpointing True \ + --dataloader_num_workers 4 \ + --lazy_preprocess True \ + --report_to wandb \ \ No newline at end of file diff --git a/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/README.md b/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/README.md new file mode 100644 index 0000000000000000000000000000000000000000..bdb138eee6972419f6d60676388b52fd99ec478e --- /dev/null +++ b/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/README.md @@ -0,0 +1,202 @@ +--- +library_name: peft +base_model: liuhaotian/llava-v1.6-mistral-7b +--- + +# Model Card for Model ID + + + + + +## Model Details + +### Model Description + + + + + +- **Developed by:** [More Information Needed] +- **Funded by [optional]:** [More Information Needed] +- **Shared by [optional]:** [More Information Needed] +- **Model type:** [More Information Needed] +- **Language(s) (NLP):** [More Information Needed] +- **License:** [More Information Needed] +- **Finetuned from model [optional]:** [More Information Needed] + +### Model Sources [optional] + + + +- **Repository:** [More Information Needed] +- **Paper [optional]:** [More Information Needed] +- **Demo [optional]:** [More Information Needed] + +## Uses + + + +### Direct Use + + + +[More Information Needed] + +### Downstream Use [optional] + + + +[More Information Needed] + +### Out-of-Scope Use + + + +[More Information Needed] + +## Bias, Risks, and Limitations + + + +[More Information Needed] + +### Recommendations + + + +Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. + +## How to Get Started with the Model + +Use the code below to get started with the model. + +[More Information Needed] + +## Training Details + +### Training Data + + + +[More Information Needed] + +### Training Procedure + + + +#### Preprocessing [optional] + +[More Information Needed] + + +#### Training Hyperparameters + +- **Training regime:** [More Information Needed] + +#### Speeds, Sizes, Times [optional] + + + +[More Information Needed] + +## Evaluation + + + +### Testing Data, Factors & Metrics + +#### Testing Data + + + +[More Information Needed] + +#### Factors + + + +[More Information Needed] + +#### Metrics + + + +[More Information Needed] + +### Results + +[More Information Needed] + +#### Summary + + + +## Model Examination [optional] + + + +[More Information Needed] + +## Environmental Impact + + + +Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). + +- **Hardware Type:** [More Information Needed] +- **Hours used:** [More Information Needed] +- **Cloud Provider:** [More Information Needed] +- **Compute Region:** [More Information Needed] +- **Carbon Emitted:** [More Information Needed] + +## Technical Specifications [optional] + +### Model Architecture and Objective + +[More Information Needed] + +### Compute Infrastructure + +[More Information Needed] + +#### Hardware + +[More Information Needed] + +#### Software + +[More Information Needed] + +## Citation [optional] + + + +**BibTeX:** + +[More Information Needed] + +**APA:** + +[More Information Needed] + +## Glossary [optional] + + + +[More Information Needed] + +## More Information [optional] + +[More Information Needed] + +## Model Card Authors [optional] + +[More Information Needed] + +## Model Card Contact + +[More Information Needed] +### Framework versions + +- PEFT 0.10.0 \ No newline at end of file diff --git a/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/adapter_config.json b/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/adapter_config.json new file mode 100644 index 0000000000000000000000000000000000000000..0e163707620676751a77d129283cfb640741b250 --- /dev/null +++ b/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/adapter_config.json @@ -0,0 +1,34 @@ +{ + "alpha_pattern": {}, + "auto_mapping": null, + "base_model_name_or_path": "liuhaotian/llava-v1.6-mistral-7b", + "bias": "none", + "fan_in_fan_out": false, + "inference_mode": true, + "init_lora_weights": true, + "layer_replication": null, + "layers_pattern": null, + "layers_to_transform": null, + "loftq_config": {}, + "lora_alpha": 256, + "lora_dropout": 0.05, + "megatron_config": null, + "megatron_core": "megatron.core", + "modules_to_save": null, + "peft_type": "LORA", + "r": 128, + "rank_pattern": {}, + "revision": null, + "target_modules": [ + "down_proj", + "v_proj", + "k_proj", + "up_proj", + "o_proj", + "q_proj", + "gate_proj" + ], + "task_type": "CAUSAL_LM", + "use_dora": false, + "use_rslora": false +} \ No newline at end of file diff --git a/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/adapter_model.safetensors b/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/adapter_model.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..793a1a71ca546956a55b6828f4e3ea4e67ae6fb5 --- /dev/null +++ b/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/adapter_model.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c8f0dbb6856b765a05c7e93391c05550af39b46719ef6459192604c7184f0a89 +size 708924928 diff --git a/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/README.md b/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/README.md new file mode 100644 index 0000000000000000000000000000000000000000..bdb138eee6972419f6d60676388b52fd99ec478e --- /dev/null +++ b/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/README.md @@ -0,0 +1,202 @@ +--- +library_name: peft +base_model: liuhaotian/llava-v1.6-mistral-7b +--- + +# Model Card for Model ID + + + + + +## Model Details + +### Model Description + + + + + +- **Developed by:** [More Information Needed] +- **Funded by [optional]:** [More Information Needed] +- **Shared by [optional]:** [More Information Needed] +- **Model type:** [More Information Needed] +- **Language(s) (NLP):** [More Information Needed] +- **License:** [More Information Needed] +- **Finetuned from model [optional]:** [More Information Needed] + +### Model Sources [optional] + + + +- **Repository:** [More Information Needed] +- **Paper [optional]:** [More Information Needed] +- **Demo [optional]:** [More Information Needed] + +## Uses + + + +### Direct Use + + + +[More Information Needed] + +### Downstream Use [optional] + + + +[More Information Needed] + +### Out-of-Scope Use + + + +[More Information Needed] + +## Bias, Risks, and Limitations + + + +[More Information Needed] + +### Recommendations + + + +Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. + +## How to Get Started with the Model + +Use the code below to get started with the model. + +[More Information Needed] + +## Training Details + +### Training Data + + + +[More Information Needed] + +### Training Procedure + + + +#### Preprocessing [optional] + +[More Information Needed] + + +#### Training Hyperparameters + +- **Training regime:** [More Information Needed] + +#### Speeds, Sizes, Times [optional] + + + +[More Information Needed] + +## Evaluation + + + +### Testing Data, Factors & Metrics + +#### Testing Data + + + +[More Information Needed] + +#### Factors + + + +[More Information Needed] + +#### Metrics + + + +[More Information Needed] + +### Results + +[More Information Needed] + +#### Summary + + + +## Model Examination [optional] + + + +[More Information Needed] + +## Environmental Impact + + + +Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). + +- **Hardware Type:** [More Information Needed] +- **Hours used:** [More Information Needed] +- **Cloud Provider:** [More Information Needed] +- **Compute Region:** [More Information Needed] +- **Carbon Emitted:** [More Information Needed] + +## Technical Specifications [optional] + +### Model Architecture and Objective + +[More Information Needed] + +### Compute Infrastructure + +[More Information Needed] + +#### Hardware + +[More Information Needed] + +#### Software + +[More Information Needed] + +## Citation [optional] + + + +**BibTeX:** + +[More Information Needed] + +**APA:** + +[More Information Needed] + +## Glossary [optional] + + + +[More Information Needed] + +## More Information [optional] + +[More Information Needed] + +## Model Card Authors [optional] + +[More Information Needed] + +## Model Card Contact + +[More Information Needed] +### Framework versions + +- PEFT 0.10.0 \ No newline at end of file diff --git a/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/adapter_config.json b/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/adapter_config.json new file mode 100644 index 0000000000000000000000000000000000000000..0e163707620676751a77d129283cfb640741b250 --- /dev/null +++ b/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/adapter_config.json @@ -0,0 +1,34 @@ +{ + "alpha_pattern": {}, + "auto_mapping": null, + "base_model_name_or_path": "liuhaotian/llava-v1.6-mistral-7b", + "bias": "none", + "fan_in_fan_out": false, + "inference_mode": true, + "init_lora_weights": true, + "layer_replication": null, + "layers_pattern": null, + "layers_to_transform": null, + "loftq_config": {}, + "lora_alpha": 256, + "lora_dropout": 0.05, + "megatron_config": null, + "megatron_core": "megatron.core", + "modules_to_save": null, + "peft_type": "LORA", + "r": 128, + "rank_pattern": {}, + "revision": null, + "target_modules": [ + "down_proj", + "v_proj", + "k_proj", + "up_proj", + "o_proj", + "q_proj", + "gate_proj" + ], + "task_type": "CAUSAL_LM", + "use_dora": false, + "use_rslora": false +} \ No newline at end of file diff --git a/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/adapter_model.safetensors b/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/adapter_model.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..a2557ce3d3357d955269e2a1a3620e9e96c42728 --- /dev/null +++ b/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/adapter_model.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:01fdbcbbf2edbb9aa8fef04a478d715b9e9e545bc872424d656678c3fcd77ccb +size 1417762896 diff --git a/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/global_step500/zero_pp_rank_0_mp_rank_00_model_states.pt b/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/global_step500/zero_pp_rank_0_mp_rank_00_model_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..ac29cf0cf9f5bf1ef167b5d40e9829b5dc1dde1d --- /dev/null +++ b/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/global_step500/zero_pp_rank_0_mp_rank_00_model_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:226fc9e905373774d8912bdb20c78509485e53529d90f992b6b6206046ce75a3 +size 632242 diff --git a/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/global_step500/zero_pp_rank_0_mp_rank_00_optim_states.pt b/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/global_step500/zero_pp_rank_0_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..a09c96de2137a53bbe876f666af8f7f10157ed86 --- /dev/null +++ b/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/global_step500/zero_pp_rank_0_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8bbc9332ac931af2f88625870a521e28cc0450e95c0a1599e4837a0696810681 +size 4504787266 diff --git a/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/latest b/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/latest new file mode 100644 index 0000000000000000000000000000000000000000..f0b47ce15fff9a01b2a416a473b2148085048a50 --- /dev/null +++ b/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/latest @@ -0,0 +1 @@ +global_step500 \ No newline at end of file diff --git a/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/rng_state.pth b/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/rng_state.pth new file mode 100644 index 0000000000000000000000000000000000000000..01582df0d776ac681b70983ebc573290db9da60a --- /dev/null +++ b/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/rng_state.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b39f5a82d2a2a1a7a3a30b0bf2d931224c4be95b6c1b51efcca4ecb335f633f0 +size 14244 diff --git a/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/scheduler.pt b/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/scheduler.pt new file mode 100644 index 0000000000000000000000000000000000000000..b01e1fb1ea70560e1480afa552e4d755c9fc00c8 --- /dev/null +++ b/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/scheduler.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:7e9b700d1b0ce8daefc78edb016ce7385644daea455f48cf6c5e4891f50fab41 +size 1064 diff --git a/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/special_tokens_map.json b/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/special_tokens_map.json new file mode 100644 index 0000000000000000000000000000000000000000..14761dcf1466dc232bd41de9c21d4c617b15755e --- /dev/null +++ b/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/special_tokens_map.json @@ -0,0 +1,24 @@ +{ + "bos_token": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "eos_token": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "pad_token": "", + "unk_token": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + } +} diff --git a/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/tokenizer.model b/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/tokenizer.model new file mode 100644 index 0000000000000000000000000000000000000000..8b443ef19c2a19acc3ac64fb9c3db4a72921dff6 --- /dev/null +++ b/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/tokenizer.model @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055 +size 493443 diff --git a/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/tokenizer_config.json b/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/tokenizer_config.json new file mode 100644 index 0000000000000000000000000000000000000000..d0ea5c3458cd84f0062b47fa0476bb328b3e208a --- /dev/null +++ b/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/tokenizer_config.json @@ -0,0 +1,44 @@ +{ + "add_bos_token": true, + "add_eos_token": false, + "added_tokens_decoder": { + "0": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "1": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "2": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + } + }, + "additional_special_tokens": [], + "bos_token": "", + "chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}", + "clean_up_tokenization_spaces": false, + "eos_token": "", + "legacy": true, + "model_max_length": 4096, + "pad_token": "", + "padding_side": "right", + "sp_model_kwargs": {}, + "spaces_between_special_tokens": false, + "tokenizer_class": "LlamaTokenizer", + "unk_token": "", + "use_default_system_prompt": false +} diff --git a/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/trainer_state.json b/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/trainer_state.json new file mode 100644 index 0000000000000000000000000000000000000000..7318989220461e8abd627b9a2bf5ed2a69cbf609 --- /dev/null +++ b/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/trainer_state.json @@ -0,0 +1,3021 @@ +{ + "best_metric": null, + "best_model_checkpoint": null, + "epoch": 0.8665511265164645, + "eval_steps": 500, + "global_step": 500, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "epoch": 0.0, + "learning_rate": 6.896551724137931e-07, + "loss": 0.22, + "step": 1 + }, + { + "epoch": 0.0, + "learning_rate": 1.3793103448275862e-06, + "loss": 0.3344, + "step": 2 + }, + { + "epoch": 0.01, + "learning_rate": 2.0689655172413796e-06, + "loss": 0.1757, + "step": 3 + }, + { + "epoch": 0.01, + "learning_rate": 2.7586206896551725e-06, + "loss": 0.1164, + "step": 4 + }, + { + "epoch": 0.01, + "learning_rate": 3.448275862068966e-06, + "loss": 0.0771, + "step": 5 + }, + { + "epoch": 0.01, + "learning_rate": 4.137931034482759e-06, + "loss": 0.0448, + "step": 6 + }, + { + "epoch": 0.01, + "learning_rate": 4.8275862068965525e-06, + "loss": 0.0181, + "step": 7 + }, + { + "epoch": 0.01, + "learning_rate": 5.517241379310345e-06, + "loss": 0.0101, + "step": 8 + }, + { + "epoch": 0.02, + "learning_rate": 6.206896551724138e-06, + "loss": 0.0879, + "step": 9 + }, + { + "epoch": 0.02, + "learning_rate": 6.896551724137932e-06, + "loss": 0.0985, + "step": 10 + }, + { + "epoch": 0.02, + "learning_rate": 7.586206896551724e-06, + "loss": 0.0134, + "step": 11 + }, + { + "epoch": 0.02, + "learning_rate": 8.275862068965518e-06, + "loss": 0.0125, + "step": 12 + }, + { + "epoch": 0.02, + "learning_rate": 8.965517241379312e-06, + "loss": 0.0061, + "step": 13 + }, + { + "epoch": 0.02, + "learning_rate": 9.655172413793105e-06, + "loss": 0.0632, + "step": 14 + }, + { + "epoch": 0.03, + "learning_rate": 1.0344827586206898e-05, + "loss": 0.1219, + "step": 15 + }, + { + "epoch": 0.03, + "learning_rate": 1.103448275862069e-05, + "loss": 0.0033, + "step": 16 + }, + { + "epoch": 0.03, + "learning_rate": 1.1724137931034483e-05, + "loss": 0.0014, + "step": 17 + }, + { + "epoch": 0.03, + "learning_rate": 1.2413793103448277e-05, + "loss": 0.0101, + "step": 18 + }, + { + "epoch": 0.03, + "learning_rate": 1.310344827586207e-05, + "loss": 0.0243, + "step": 19 + }, + { + "epoch": 0.03, + "learning_rate": 1.3793103448275863e-05, + "loss": 0.0489, + "step": 20 + }, + { + "epoch": 0.04, + "learning_rate": 1.4482758620689657e-05, + "loss": 0.0759, + "step": 21 + }, + { + "epoch": 0.04, + "learning_rate": 1.5172413793103448e-05, + "loss": 0.0398, + "step": 22 + }, + { + "epoch": 0.04, + "learning_rate": 1.586206896551724e-05, + "loss": 0.0177, + "step": 23 + }, + { + "epoch": 0.04, + "learning_rate": 1.6551724137931037e-05, + "loss": 0.003, + "step": 24 + }, + { + "epoch": 0.04, + "learning_rate": 1.7241379310344828e-05, + "loss": 0.101, + "step": 25 + }, + { + "epoch": 0.05, + "learning_rate": 1.7931034482758623e-05, + "loss": 0.0107, + "step": 26 + }, + { + "epoch": 0.05, + "learning_rate": 1.8620689655172415e-05, + "loss": 0.1171, + "step": 27 + }, + { + "epoch": 0.05, + "learning_rate": 1.931034482758621e-05, + "loss": 0.0034, + "step": 28 + }, + { + "epoch": 0.05, + "learning_rate": 2e-05, + "loss": 0.0876, + "step": 29 + }, + { + "epoch": 0.05, + "learning_rate": 1.9999835673561284e-05, + "loss": 0.076, + "step": 30 + }, + { + "epoch": 0.05, + "learning_rate": 1.9999342699645774e-05, + "loss": 0.0034, + "step": 31 + }, + { + "epoch": 0.06, + "learning_rate": 1.9998521094455198e-05, + "loss": 0.0078, + "step": 32 + }, + { + "epoch": 0.06, + "learning_rate": 1.9997370884991842e-05, + "loss": 0.1035, + "step": 33 + }, + { + "epoch": 0.06, + "learning_rate": 1.9995892109057675e-05, + "loss": 0.1977, + "step": 34 + }, + { + "epoch": 0.06, + "learning_rate": 1.99940848152531e-05, + "loss": 0.0091, + "step": 35 + }, + { + "epoch": 0.06, + "learning_rate": 1.99940848152531e-05, + "loss": 0.1202, + "step": 36 + }, + { + "epoch": 0.06, + "learning_rate": 1.9991949062975336e-05, + "loss": 0.2529, + "step": 37 + }, + { + "epoch": 0.07, + "learning_rate": 1.9989484922416503e-05, + "loss": 0.0083, + "step": 38 + }, + { + "epoch": 0.07, + "learning_rate": 1.9986692474561292e-05, + "loss": 0.0756, + "step": 39 + }, + { + "epoch": 0.07, + "learning_rate": 1.9983571811184297e-05, + "loss": 0.1869, + "step": 40 + }, + { + "epoch": 0.07, + "learning_rate": 1.9980123034847025e-05, + "loss": 0.0357, + "step": 41 + }, + { + "epoch": 0.07, + "learning_rate": 1.9976346258894502e-05, + "loss": 0.0935, + "step": 42 + }, + { + "epoch": 0.07, + "learning_rate": 1.9972241607451552e-05, + "loss": 0.0436, + "step": 43 + }, + { + "epoch": 0.08, + "learning_rate": 1.996780921541873e-05, + "loss": 0.0582, + "step": 44 + }, + { + "epoch": 0.08, + "learning_rate": 1.9963049228467875e-05, + "loss": 0.0388, + "step": 45 + }, + { + "epoch": 0.08, + "learning_rate": 1.9957961803037325e-05, + "loss": 0.0256, + "step": 46 + }, + { + "epoch": 0.08, + "learning_rate": 1.9952547106326787e-05, + "loss": 0.0561, + "step": 47 + }, + { + "epoch": 0.08, + "learning_rate": 1.9946805316291817e-05, + "loss": 0.0654, + "step": 48 + }, + { + "epoch": 0.08, + "learning_rate": 1.9940736621638e-05, + "loss": 0.0149, + "step": 49 + }, + { + "epoch": 0.09, + "learning_rate": 1.993434122181474e-05, + "loss": 0.1098, + "step": 50 + }, + { + "epoch": 0.09, + "learning_rate": 1.992761932700868e-05, + "loss": 0.0321, + "step": 51 + }, + { + "epoch": 0.09, + "learning_rate": 1.9920571158136837e-05, + "loss": 0.0154, + "step": 52 + }, + { + "epoch": 0.09, + "learning_rate": 1.9913196946839304e-05, + "loss": 0.0319, + "step": 53 + }, + { + "epoch": 0.09, + "learning_rate": 1.990549693547166e-05, + "loss": 0.0812, + "step": 54 + }, + { + "epoch": 0.1, + "learning_rate": 1.9897471377096992e-05, + "loss": 0.0021, + "step": 55 + }, + { + "epoch": 0.1, + "learning_rate": 1.9889120535477584e-05, + "loss": 0.0049, + "step": 56 + }, + { + "epoch": 0.1, + "learning_rate": 1.9880444685066252e-05, + "loss": 0.0076, + "step": 57 + }, + { + "epoch": 0.1, + "learning_rate": 1.987144411099731e-05, + "loss": 0.0344, + "step": 58 + }, + { + "epoch": 0.1, + "learning_rate": 1.9862119109077226e-05, + "loss": 0.0273, + "step": 59 + }, + { + "epoch": 0.1, + "learning_rate": 1.985246998577486e-05, + "loss": 0.128, + "step": 60 + }, + { + "epoch": 0.11, + "learning_rate": 1.985246998577486e-05, + "loss": 0.1083, + "step": 61 + }, + { + "epoch": 0.11, + "learning_rate": 1.984249705821143e-05, + "loss": 0.0264, + "step": 62 + }, + { + "epoch": 0.11, + "learning_rate": 1.9832200654150077e-05, + "loss": 0.0513, + "step": 63 + }, + { + "epoch": 0.11, + "learning_rate": 1.9821581111985072e-05, + "loss": 0.0494, + "step": 64 + }, + { + "epoch": 0.11, + "learning_rate": 1.981063878073073e-05, + "loss": 0.0866, + "step": 65 + }, + { + "epoch": 0.11, + "learning_rate": 1.979937402000991e-05, + "loss": 0.0027, + "step": 66 + }, + { + "epoch": 0.12, + "learning_rate": 1.9787787200042224e-05, + "loss": 0.0013, + "step": 67 + }, + { + "epoch": 0.12, + "learning_rate": 1.977587870163184e-05, + "loss": 0.0624, + "step": 68 + }, + { + "epoch": 0.12, + "learning_rate": 1.9763648916154982e-05, + "loss": 0.0617, + "step": 69 + }, + { + "epoch": 0.12, + "learning_rate": 1.975109824554707e-05, + "loss": 0.0131, + "step": 70 + }, + { + "epoch": 0.12, + "learning_rate": 1.973822710228951e-05, + "loss": 0.0499, + "step": 71 + }, + { + "epoch": 0.12, + "learning_rate": 1.972503590939612e-05, + "loss": 0.0263, + "step": 72 + }, + { + "epoch": 0.13, + "learning_rate": 1.971152510039926e-05, + "loss": 0.1537, + "step": 73 + }, + { + "epoch": 0.13, + "learning_rate": 1.9697695119335547e-05, + "loss": 0.0017, + "step": 74 + }, + { + "epoch": 0.13, + "learning_rate": 1.9683546420731292e-05, + "loss": 0.0376, + "step": 75 + }, + { + "epoch": 0.13, + "learning_rate": 1.9669079469587548e-05, + "loss": 0.0018, + "step": 76 + }, + { + "epoch": 0.13, + "learning_rate": 1.965429474136482e-05, + "loss": 0.0199, + "step": 77 + }, + { + "epoch": 0.14, + "learning_rate": 1.963919272196746e-05, + "loss": 0.0501, + "step": 78 + }, + { + "epoch": 0.14, + "learning_rate": 1.9623773907727682e-05, + "loss": 0.0005, + "step": 79 + }, + { + "epoch": 0.14, + "learning_rate": 1.9608038805389253e-05, + "loss": 0.1262, + "step": 80 + }, + { + "epoch": 0.14, + "learning_rate": 1.9591987932090836e-05, + "loss": 0.0047, + "step": 81 + }, + { + "epoch": 0.14, + "learning_rate": 1.9575621815349e-05, + "loss": 0.009, + "step": 82 + }, + { + "epoch": 0.14, + "learning_rate": 1.9558940993040885e-05, + "loss": 0.0154, + "step": 83 + }, + { + "epoch": 0.15, + "learning_rate": 1.954194601338651e-05, + "loss": 0.0011, + "step": 84 + }, + { + "epoch": 0.15, + "learning_rate": 1.952463743493078e-05, + "loss": 0.0052, + "step": 85 + }, + { + "epoch": 0.15, + "learning_rate": 1.9507015826525096e-05, + "loss": 0.0229, + "step": 86 + }, + { + "epoch": 0.15, + "learning_rate": 1.9489081767308696e-05, + "loss": 0.0018, + "step": 87 + }, + { + "epoch": 0.15, + "learning_rate": 1.9470835846689596e-05, + "loss": 0.0013, + "step": 88 + }, + { + "epoch": 0.15, + "learning_rate": 1.9452278664325227e-05, + "loss": 0.0074, + "step": 89 + }, + { + "epoch": 0.16, + "learning_rate": 1.9433410830102724e-05, + "loss": 0.0205, + "step": 90 + }, + { + "epoch": 0.16, + "learning_rate": 1.9414232964118893e-05, + "loss": 0.0026, + "step": 91 + }, + { + "epoch": 0.16, + "learning_rate": 1.939474569665981e-05, + "loss": 0.1344, + "step": 92 + }, + { + "epoch": 0.16, + "learning_rate": 1.937494966818014e-05, + "loss": 0.0314, + "step": 93 + }, + { + "epoch": 0.16, + "learning_rate": 1.9354845529282042e-05, + "loss": 0.022, + "step": 94 + }, + { + "epoch": 0.16, + "learning_rate": 1.933443394069383e-05, + "loss": 0.0051, + "step": 95 + }, + { + "epoch": 0.17, + "learning_rate": 1.9313715573248238e-05, + "loss": 0.0056, + "step": 96 + }, + { + "epoch": 0.17, + "learning_rate": 1.9292691107860374e-05, + "loss": 0.0133, + "step": 97 + }, + { + "epoch": 0.17, + "learning_rate": 1.927136123550534e-05, + "loss": 0.0109, + "step": 98 + }, + { + "epoch": 0.17, + "learning_rate": 1.9249726657195534e-05, + "loss": 0.0322, + "step": 99 + }, + { + "epoch": 0.17, + "learning_rate": 1.922778808395759e-05, + "loss": 0.0068, + "step": 100 + }, + { + "epoch": 0.18, + "learning_rate": 1.9205546236809037e-05, + "loss": 0.0015, + "step": 101 + }, + { + "epoch": 0.18, + "learning_rate": 1.9183001846734573e-05, + "loss": 0.0495, + "step": 102 + }, + { + "epoch": 0.18, + "learning_rate": 1.9160155654662075e-05, + "loss": 0.0935, + "step": 103 + }, + { + "epoch": 0.18, + "learning_rate": 1.9137008411438213e-05, + "loss": 0.0096, + "step": 104 + }, + { + "epoch": 0.18, + "learning_rate": 1.9113560877803798e-05, + "loss": 0.004, + "step": 105 + }, + { + "epoch": 0.18, + "learning_rate": 1.9089813824368765e-05, + "loss": 0.0376, + "step": 106 + }, + { + "epoch": 0.19, + "learning_rate": 1.9065768031586864e-05, + "loss": 0.0069, + "step": 107 + }, + { + "epoch": 0.19, + "learning_rate": 1.9041424289729994e-05, + "loss": 0.0008, + "step": 108 + }, + { + "epoch": 0.19, + "learning_rate": 1.901678339886223e-05, + "loss": 0.014, + "step": 109 + }, + { + "epoch": 0.19, + "learning_rate": 1.8991846168813547e-05, + "loss": 0.0046, + "step": 110 + }, + { + "epoch": 0.19, + "learning_rate": 1.896661341915318e-05, + "loss": 0.0013, + "step": 111 + }, + { + "epoch": 0.19, + "learning_rate": 1.8941085979162714e-05, + "loss": 0.1203, + "step": 112 + }, + { + "epoch": 0.2, + "learning_rate": 1.891526468780881e-05, + "loss": 0.0151, + "step": 113 + }, + { + "epoch": 0.2, + "learning_rate": 1.8889150393715627e-05, + "loss": 0.0246, + "step": 114 + }, + { + "epoch": 0.2, + "learning_rate": 1.8862743955136966e-05, + "loss": 0.0282, + "step": 115 + }, + { + "epoch": 0.2, + "learning_rate": 1.8836046239928025e-05, + "loss": 0.0033, + "step": 116 + }, + { + "epoch": 0.2, + "learning_rate": 1.8809058125516894e-05, + "loss": 0.0281, + "step": 117 + }, + { + "epoch": 0.2, + "learning_rate": 1.8781780498875727e-05, + "loss": 0.0508, + "step": 118 + }, + { + "epoch": 0.21, + "learning_rate": 1.8754214256491564e-05, + "loss": 0.0738, + "step": 119 + }, + { + "epoch": 0.21, + "learning_rate": 1.8726360304336896e-05, + "loss": 0.0048, + "step": 120 + }, + { + "epoch": 0.21, + "learning_rate": 1.8698219557839875e-05, + "loss": 0.0649, + "step": 121 + }, + { + "epoch": 0.21, + "learning_rate": 1.866979294185423e-05, + "loss": 0.0053, + "step": 122 + }, + { + "epoch": 0.21, + "learning_rate": 1.864108139062888e-05, + "loss": 0.0165, + "step": 123 + }, + { + "epoch": 0.21, + "learning_rate": 1.8612085847777215e-05, + "loss": 0.0066, + "step": 124 + }, + { + "epoch": 0.22, + "learning_rate": 1.858280726624609e-05, + "loss": 0.0023, + "step": 125 + }, + { + "epoch": 0.22, + "learning_rate": 1.855324660828452e-05, + "loss": 0.0308, + "step": 126 + }, + { + "epoch": 0.22, + "learning_rate": 1.8523404845412028e-05, + "loss": 0.224, + "step": 127 + }, + { + "epoch": 0.22, + "learning_rate": 1.849328295838674e-05, + "loss": 0.0128, + "step": 128 + }, + { + "epoch": 0.22, + "learning_rate": 1.8462881937173144e-05, + "loss": 0.0362, + "step": 129 + }, + { + "epoch": 0.23, + "learning_rate": 1.8432202780909542e-05, + "loss": 0.0699, + "step": 130 + }, + { + "epoch": 0.23, + "learning_rate": 1.8401246497875238e-05, + "loss": 0.0157, + "step": 131 + }, + { + "epoch": 0.23, + "learning_rate": 1.8370014105457378e-05, + "loss": 0.0355, + "step": 132 + }, + { + "epoch": 0.23, + "learning_rate": 1.8338506630117527e-05, + "loss": 0.0003, + "step": 133 + }, + { + "epoch": 0.23, + "learning_rate": 1.8306725107357933e-05, + "loss": 0.0747, + "step": 134 + }, + { + "epoch": 0.23, + "learning_rate": 1.827467058168748e-05, + "loss": 0.0029, + "step": 135 + }, + { + "epoch": 0.24, + "learning_rate": 1.824234410658738e-05, + "loss": 0.0355, + "step": 136 + }, + { + "epoch": 0.24, + "learning_rate": 1.8209746744476538e-05, + "loss": 0.0194, + "step": 137 + }, + { + "epoch": 0.24, + "learning_rate": 1.817687956667664e-05, + "loss": 0.0548, + "step": 138 + }, + { + "epoch": 0.24, + "learning_rate": 1.8143743653376944e-05, + "loss": 0.0087, + "step": 139 + }, + { + "epoch": 0.24, + "learning_rate": 1.811034009359877e-05, + "loss": 0.0089, + "step": 140 + }, + { + "epoch": 0.24, + "learning_rate": 1.8076669985159726e-05, + "loss": 0.0073, + "step": 141 + }, + { + "epoch": 0.25, + "learning_rate": 1.8042734434637615e-05, + "loss": 0.0252, + "step": 142 + }, + { + "epoch": 0.25, + "learning_rate": 1.8008534557334064e-05, + "loss": 0.1149, + "step": 143 + }, + { + "epoch": 0.25, + "learning_rate": 1.7974071477237887e-05, + "loss": 0.0008, + "step": 144 + }, + { + "epoch": 0.25, + "learning_rate": 1.7939346326988127e-05, + "loss": 0.0276, + "step": 145 + }, + { + "epoch": 0.25, + "learning_rate": 1.7904360247836838e-05, + "loss": 0.0032, + "step": 146 + }, + { + "epoch": 0.25, + "learning_rate": 1.7869114389611574e-05, + "loss": 0.013, + "step": 147 + }, + { + "epoch": 0.26, + "learning_rate": 1.7833609910677613e-05, + "loss": 0.0004, + "step": 148 + }, + { + "epoch": 0.26, + "learning_rate": 1.7797847977899873e-05, + "loss": 0.1131, + "step": 149 + }, + { + "epoch": 0.26, + "learning_rate": 1.7761829766604556e-05, + "loss": 0.0019, + "step": 150 + }, + { + "epoch": 0.26, + "learning_rate": 1.7725556460540553e-05, + "loss": 0.0099, + "step": 151 + }, + { + "epoch": 0.26, + "learning_rate": 1.7689029251840492e-05, + "loss": 0.0627, + "step": 152 + }, + { + "epoch": 0.27, + "learning_rate": 1.7652249340981608e-05, + "loss": 0.0626, + "step": 153 + }, + { + "epoch": 0.27, + "learning_rate": 1.7615217936746246e-05, + "loss": 0.0007, + "step": 154 + }, + { + "epoch": 0.27, + "learning_rate": 1.757793625618217e-05, + "loss": 0.1323, + "step": 155 + }, + { + "epoch": 0.27, + "learning_rate": 1.7540405524562533e-05, + "loss": 0.0348, + "step": 156 + }, + { + "epoch": 0.27, + "learning_rate": 1.750262697534563e-05, + "loss": 0.0024, + "step": 157 + }, + { + "epoch": 0.27, + "learning_rate": 1.7464601850134353e-05, + "loss": 0.0134, + "step": 158 + }, + { + "epoch": 0.28, + "learning_rate": 1.742633139863538e-05, + "loss": 0.0037, + "step": 159 + }, + { + "epoch": 0.28, + "learning_rate": 1.738781687861812e-05, + "loss": 0.0089, + "step": 160 + }, + { + "epoch": 0.28, + "learning_rate": 1.7349059555873348e-05, + "loss": 0.0082, + "step": 161 + }, + { + "epoch": 0.28, + "learning_rate": 1.731006070417163e-05, + "loss": 0.0082, + "step": 162 + }, + { + "epoch": 0.28, + "learning_rate": 1.7270821605221448e-05, + "loss": 0.003, + "step": 163 + }, + { + "epoch": 0.28, + "learning_rate": 1.7231343548627085e-05, + "loss": 0.0097, + "step": 164 + }, + { + "epoch": 0.29, + "learning_rate": 1.7191627831846226e-05, + "loss": 0.0123, + "step": 165 + }, + { + "epoch": 0.29, + "learning_rate": 1.7151675760147325e-05, + "loss": 0.0011, + "step": 166 + }, + { + "epoch": 0.29, + "learning_rate": 1.7111488646566728e-05, + "loss": 0.1161, + "step": 167 + }, + { + "epoch": 0.29, + "learning_rate": 1.7071067811865477e-05, + "loss": 0.0262, + "step": 168 + }, + { + "epoch": 0.29, + "learning_rate": 1.7030414584485938e-05, + "loss": 0.0992, + "step": 169 + }, + { + "epoch": 0.29, + "learning_rate": 1.6989530300508126e-05, + "loss": 0.0019, + "step": 170 + }, + { + "epoch": 0.3, + "learning_rate": 1.6948416303605796e-05, + "loss": 0.0056, + "step": 171 + }, + { + "epoch": 0.3, + "learning_rate": 1.690707394500229e-05, + "loss": 0.0053, + "step": 172 + }, + { + "epoch": 0.3, + "learning_rate": 1.6865504583426117e-05, + "loss": 0.0796, + "step": 173 + }, + { + "epoch": 0.3, + "learning_rate": 1.6823709585066308e-05, + "loss": 0.003, + "step": 174 + }, + { + "epoch": 0.3, + "learning_rate": 1.6781690323527512e-05, + "loss": 0.0228, + "step": 175 + }, + { + "epoch": 0.31, + "learning_rate": 1.6739448179784846e-05, + "loss": 0.0108, + "step": 176 + }, + { + "epoch": 0.31, + "learning_rate": 1.669698454213852e-05, + "loss": 0.0053, + "step": 177 + }, + { + "epoch": 0.31, + "learning_rate": 1.665430080616821e-05, + "loss": 0.0339, + "step": 178 + }, + { + "epoch": 0.31, + "learning_rate": 1.6611398374687172e-05, + "loss": 0.0375, + "step": 179 + }, + { + "epoch": 0.31, + "learning_rate": 1.6568278657696166e-05, + "loss": 0.0007, + "step": 180 + }, + { + "epoch": 0.31, + "learning_rate": 1.6524943072337094e-05, + "loss": 0.002, + "step": 181 + }, + { + "epoch": 0.32, + "learning_rate": 1.6481393042846442e-05, + "loss": 0.0152, + "step": 182 + }, + { + "epoch": 0.32, + "learning_rate": 1.6437630000508466e-05, + "loss": 0.0039, + "step": 183 + }, + { + "epoch": 0.32, + "learning_rate": 1.6393655383608132e-05, + "loss": 0.0065, + "step": 184 + }, + { + "epoch": 0.32, + "learning_rate": 1.634947063738389e-05, + "loss": 0.0028, + "step": 185 + }, + { + "epoch": 0.32, + "learning_rate": 1.630507721398013e-05, + "loss": 0.0037, + "step": 186 + }, + { + "epoch": 0.32, + "learning_rate": 1.6260476572399494e-05, + "loss": 0.013, + "step": 187 + }, + { + "epoch": 0.33, + "learning_rate": 1.6215670178454893e-05, + "loss": 0.0137, + "step": 188 + }, + { + "epoch": 0.33, + "learning_rate": 1.6170659504721365e-05, + "loss": 0.0516, + "step": 189 + }, + { + "epoch": 0.33, + "learning_rate": 1.6125446030487642e-05, + "loss": 0.0333, + "step": 190 + }, + { + "epoch": 0.33, + "learning_rate": 1.608003124170758e-05, + "loss": 0.0041, + "step": 191 + }, + { + "epoch": 0.33, + "learning_rate": 1.6034416630951265e-05, + "loss": 0.0053, + "step": 192 + }, + { + "epoch": 0.33, + "learning_rate": 1.598860369735601e-05, + "loss": 0.0003, + "step": 193 + }, + { + "epoch": 0.34, + "learning_rate": 1.594259394657707e-05, + "loss": 0.2021, + "step": 194 + }, + { + "epoch": 0.34, + "learning_rate": 1.589638889073813e-05, + "loss": 0.0217, + "step": 195 + }, + { + "epoch": 0.34, + "learning_rate": 1.584999004838165e-05, + "loss": 0.0141, + "step": 196 + }, + { + "epoch": 0.34, + "learning_rate": 1.5803398944418934e-05, + "loss": 0.0006, + "step": 197 + }, + { + "epoch": 0.34, + "learning_rate": 1.5756617110080023e-05, + "loss": 0.0186, + "step": 198 + }, + { + "epoch": 0.34, + "learning_rate": 1.570964608286336e-05, + "loss": 0.0073, + "step": 199 + }, + { + "epoch": 0.35, + "learning_rate": 1.5662487406485273e-05, + "loss": 0.0481, + "step": 200 + }, + { + "epoch": 0.35, + "learning_rate": 1.561514263082923e-05, + "loss": 0.0002, + "step": 201 + }, + { + "epoch": 0.35, + "learning_rate": 1.5567613311894908e-05, + "loss": 0.0093, + "step": 202 + }, + { + "epoch": 0.35, + "learning_rate": 1.5519901011747046e-05, + "loss": 0.0393, + "step": 203 + }, + { + "epoch": 0.35, + "learning_rate": 1.5472007298464117e-05, + "loss": 0.0019, + "step": 204 + }, + { + "epoch": 0.36, + "learning_rate": 1.5423933746086793e-05, + "loss": 0.0035, + "step": 205 + }, + { + "epoch": 0.36, + "learning_rate": 1.5375681934566203e-05, + "loss": 0.0926, + "step": 206 + }, + { + "epoch": 0.36, + "learning_rate": 1.532725344971202e-05, + "loss": 0.0379, + "step": 207 + }, + { + "epoch": 0.36, + "learning_rate": 1.527864988314033e-05, + "loss": 0.0011, + "step": 208 + }, + { + "epoch": 0.36, + "learning_rate": 1.5229872832221336e-05, + "loss": 0.0024, + "step": 209 + }, + { + "epoch": 0.36, + "learning_rate": 1.5180923900026847e-05, + "loss": 0.0005, + "step": 210 + }, + { + "epoch": 0.37, + "learning_rate": 1.5131804695277612e-05, + "loss": 0.002, + "step": 211 + }, + { + "epoch": 0.37, + "learning_rate": 1.5131804695277612e-05, + "loss": 0.195, + "step": 212 + }, + { + "epoch": 0.37, + "learning_rate": 1.5082516832290424e-05, + "loss": 0.0007, + "step": 213 + }, + { + "epoch": 0.37, + "learning_rate": 1.5082516832290424e-05, + "loss": 0.0333, + "step": 214 + }, + { + "epoch": 0.37, + "learning_rate": 1.5033061930925081e-05, + "loss": 0.0148, + "step": 215 + }, + { + "epoch": 0.37, + "learning_rate": 1.4983441616531152e-05, + "loss": 0.1092, + "step": 216 + }, + { + "epoch": 0.38, + "learning_rate": 1.4933657519894542e-05, + "loss": 0.0003, + "step": 217 + }, + { + "epoch": 0.38, + "learning_rate": 1.4883711277183917e-05, + "loss": 0.0008, + "step": 218 + }, + { + "epoch": 0.38, + "learning_rate": 1.483360452989691e-05, + "loss": 0.0761, + "step": 219 + }, + { + "epoch": 0.38, + "learning_rate": 1.4783338924806191e-05, + "loss": 0.0002, + "step": 220 + }, + { + "epoch": 0.38, + "learning_rate": 1.4732916113905336e-05, + "loss": 0.0023, + "step": 221 + }, + { + "epoch": 0.38, + "learning_rate": 1.4682337754354534e-05, + "loss": 0.0008, + "step": 222 + }, + { + "epoch": 0.39, + "learning_rate": 1.4631605508426124e-05, + "loss": 0.0004, + "step": 223 + }, + { + "epoch": 0.39, + "learning_rate": 1.4580721043449968e-05, + "loss": 0.0853, + "step": 224 + }, + { + "epoch": 0.39, + "learning_rate": 1.4529686031758642e-05, + "loss": 0.0958, + "step": 225 + }, + { + "epoch": 0.39, + "learning_rate": 1.4478502150632503e-05, + "loss": 0.0142, + "step": 226 + }, + { + "epoch": 0.39, + "learning_rate": 1.4427171082244523e-05, + "loss": 0.038, + "step": 227 + }, + { + "epoch": 0.4, + "learning_rate": 1.4375694513605037e-05, + "loss": 0.004, + "step": 228 + }, + { + "epoch": 0.4, + "learning_rate": 1.4324074136506283e-05, + "loss": 0.0091, + "step": 229 + }, + { + "epoch": 0.4, + "learning_rate": 1.427231164746681e-05, + "loss": 0.0714, + "step": 230 + }, + { + "epoch": 0.4, + "learning_rate": 1.4220408747675714e-05, + "loss": 0.0618, + "step": 231 + }, + { + "epoch": 0.4, + "learning_rate": 1.4168367142936736e-05, + "loss": 0.031, + "step": 232 + }, + { + "epoch": 0.4, + "learning_rate": 1.4116188543612182e-05, + "loss": 0.0235, + "step": 233 + }, + { + "epoch": 0.41, + "learning_rate": 1.4063874664566734e-05, + "loss": 0.0027, + "step": 234 + }, + { + "epoch": 0.41, + "learning_rate": 1.4011427225111091e-05, + "loss": 0.1164, + "step": 235 + }, + { + "epoch": 0.41, + "learning_rate": 1.3958847948945428e-05, + "loss": 0.0296, + "step": 236 + }, + { + "epoch": 0.41, + "learning_rate": 1.3906138564102794e-05, + "loss": 0.0319, + "step": 237 + }, + { + "epoch": 0.41, + "learning_rate": 1.3853300802892285e-05, + "loss": 0.0744, + "step": 238 + }, + { + "epoch": 0.41, + "learning_rate": 1.380033640184213e-05, + "loss": 0.0016, + "step": 239 + }, + { + "epoch": 0.42, + "learning_rate": 1.3747247101642605e-05, + "loss": 0.0307, + "step": 240 + }, + { + "epoch": 0.42, + "learning_rate": 1.369403464708884e-05, + "loss": 0.0102, + "step": 241 + }, + { + "epoch": 0.42, + "learning_rate": 1.3640700787023465e-05, + "loss": 0.0709, + "step": 242 + }, + { + "epoch": 0.42, + "learning_rate": 1.358724727427914e-05, + "loss": 0.0292, + "step": 243 + }, + { + "epoch": 0.42, + "learning_rate": 1.3533675865620937e-05, + "loss": 0.0308, + "step": 244 + }, + { + "epoch": 0.42, + "learning_rate": 1.3479988321688619e-05, + "loss": 0.0331, + "step": 245 + }, + { + "epoch": 0.43, + "learning_rate": 1.3426186406938769e-05, + "loss": 0.0022, + "step": 246 + }, + { + "epoch": 0.43, + "learning_rate": 1.337227188958679e-05, + "loss": 0.0527, + "step": 247 + }, + { + "epoch": 0.43, + "learning_rate": 1.3318246541548812e-05, + "loss": 0.0625, + "step": 248 + }, + { + "epoch": 0.43, + "learning_rate": 1.3264112138383445e-05, + "loss": 0.121, + "step": 249 + }, + { + "epoch": 0.43, + "learning_rate": 1.3209870459233422e-05, + "loss": 0.1122, + "step": 250 + }, + { + "epoch": 0.44, + "learning_rate": 1.315552328676714e-05, + "loss": 0.0018, + "step": 251 + }, + { + "epoch": 0.44, + "learning_rate": 1.3101072407120056e-05, + "loss": 0.1122, + "step": 252 + }, + { + "epoch": 0.44, + "learning_rate": 1.3046519609836002e-05, + "loss": 0.028, + "step": 253 + }, + { + "epoch": 0.44, + "learning_rate": 1.2991866687808355e-05, + "loss": 0.004, + "step": 254 + }, + { + "epoch": 0.44, + "learning_rate": 1.2937115437221119e-05, + "loss": 0.1273, + "step": 255 + }, + { + "epoch": 0.44, + "learning_rate": 1.2882267657489908e-05, + "loss": 0.0723, + "step": 256 + }, + { + "epoch": 0.45, + "learning_rate": 1.2827325151202783e-05, + "loss": 0.0252, + "step": 257 + }, + { + "epoch": 0.45, + "learning_rate": 1.2772289724061015e-05, + "loss": 0.0202, + "step": 258 + }, + { + "epoch": 0.45, + "learning_rate": 1.2717163184819761e-05, + "loss": 0.005, + "step": 259 + }, + { + "epoch": 0.45, + "learning_rate": 1.2661947345228593e-05, + "loss": 0.0346, + "step": 260 + }, + { + "epoch": 0.45, + "learning_rate": 1.2606644019971967e-05, + "loss": 0.0018, + "step": 261 + }, + { + "epoch": 0.45, + "learning_rate": 1.255125502660958e-05, + "loss": 0.001, + "step": 262 + }, + { + "epoch": 0.46, + "learning_rate": 1.2495782185516638e-05, + "loss": 0.0267, + "step": 263 + }, + { + "epoch": 0.46, + "learning_rate": 1.2440227319824024e-05, + "loss": 0.0369, + "step": 264 + }, + { + "epoch": 0.46, + "learning_rate": 1.2384592255358385e-05, + "loss": 0.085, + "step": 265 + }, + { + "epoch": 0.46, + "learning_rate": 1.2328878820582122e-05, + "loss": 0.0776, + "step": 266 + }, + { + "epoch": 0.46, + "learning_rate": 1.2273088846533303e-05, + "loss": 0.0086, + "step": 267 + }, + { + "epoch": 0.46, + "learning_rate": 1.2217224166765478e-05, + "loss": 0.1672, + "step": 268 + }, + { + "epoch": 0.47, + "learning_rate": 1.216128661728742e-05, + "loss": 0.0571, + "step": 269 + }, + { + "epoch": 0.47, + "learning_rate": 1.2105278036502787e-05, + "loss": 0.0663, + "step": 270 + }, + { + "epoch": 0.47, + "learning_rate": 1.204920026514971e-05, + "loss": 0.0057, + "step": 271 + }, + { + "epoch": 0.47, + "learning_rate": 1.1993055146240273e-05, + "loss": 0.018, + "step": 272 + }, + { + "epoch": 0.47, + "learning_rate": 1.1936844524999966e-05, + "loss": 0.0013, + "step": 273 + }, + { + "epoch": 0.47, + "learning_rate": 1.1880570248807033e-05, + "loss": 0.0021, + "step": 274 + }, + { + "epoch": 0.48, + "learning_rate": 1.1824234167131748e-05, + "loss": 0.0732, + "step": 275 + }, + { + "epoch": 0.48, + "learning_rate": 1.1767838131475654e-05, + "loss": 0.0053, + "step": 276 + }, + { + "epoch": 0.48, + "learning_rate": 1.171138399531068e-05, + "loss": 0.0258, + "step": 277 + }, + { + "epoch": 0.48, + "learning_rate": 1.1654873614018266e-05, + "loss": 0.0943, + "step": 278 + }, + { + "epoch": 0.48, + "learning_rate": 1.1598308844828348e-05, + "loss": 0.0011, + "step": 279 + }, + { + "epoch": 0.49, + "learning_rate": 1.1541691546758343e-05, + "loss": 0.0781, + "step": 280 + }, + { + "epoch": 0.49, + "learning_rate": 1.1485023580552039e-05, + "loss": 0.0078, + "step": 281 + }, + { + "epoch": 0.49, + "learning_rate": 1.1428306808618456e-05, + "loss": 0.067, + "step": 282 + }, + { + "epoch": 0.49, + "learning_rate": 1.1371543094970624e-05, + "loss": 0.0188, + "step": 283 + }, + { + "epoch": 0.49, + "learning_rate": 1.131473430516432e-05, + "loss": 0.0005, + "step": 284 + }, + { + "epoch": 0.49, + "learning_rate": 1.1257882306236776e-05, + "loss": 0.0017, + "step": 285 + }, + { + "epoch": 0.5, + "learning_rate": 1.1200988966645286e-05, + "loss": 0.0009, + "step": 286 + }, + { + "epoch": 0.5, + "learning_rate": 1.1144056156205834e-05, + "loss": 0.0087, + "step": 287 + }, + { + "epoch": 0.5, + "learning_rate": 1.1087085746031612e-05, + "loss": 0.0678, + "step": 288 + }, + { + "epoch": 0.5, + "learning_rate": 1.1030079608471544e-05, + "loss": 0.002, + "step": 289 + }, + { + "epoch": 0.5, + "learning_rate": 1.0973039617048748e-05, + "loss": 0.0742, + "step": 290 + }, + { + "epoch": 0.5, + "learning_rate": 1.091596764639895e-05, + "loss": 0.001, + "step": 291 + }, + { + "epoch": 0.51, + "learning_rate": 1.0858865572208892e-05, + "loss": 0.0016, + "step": 292 + }, + { + "epoch": 0.51, + "learning_rate": 1.080173527115467e-05, + "loss": 0.0317, + "step": 293 + }, + { + "epoch": 0.51, + "learning_rate": 1.0744578620840065e-05, + "loss": 0.0461, + "step": 294 + }, + { + "epoch": 0.51, + "learning_rate": 1.0687397499734842e-05, + "loss": 0.002, + "step": 295 + }, + { + "epoch": 0.51, + "learning_rate": 1.0630193787112994e-05, + "loss": 0.0008, + "step": 296 + }, + { + "epoch": 0.51, + "learning_rate": 1.0572969362991e-05, + "loss": 0.0604, + "step": 297 + }, + { + "epoch": 0.52, + "learning_rate": 1.0515726108066025e-05, + "loss": 0.0513, + "step": 298 + }, + { + "epoch": 0.52, + "learning_rate": 1.0458465903654107e-05, + "loss": 0.0007, + "step": 299 + }, + { + "epoch": 0.52, + "learning_rate": 1.0401190631628348e-05, + "loss": 0.0144, + "step": 300 + }, + { + "epoch": 0.52, + "learning_rate": 1.034390217435704e-05, + "loss": 0.0002, + "step": 301 + }, + { + "epoch": 0.52, + "learning_rate": 1.0286602414641818e-05, + "loss": 0.007, + "step": 302 + }, + { + "epoch": 0.53, + "learning_rate": 1.0229293235655768e-05, + "loss": 0.0012, + "step": 303 + }, + { + "epoch": 0.53, + "learning_rate": 1.0171976520881552e-05, + "loss": 0.0118, + "step": 304 + }, + { + "epoch": 0.53, + "learning_rate": 1.011465415404949e-05, + "loss": 0.0163, + "step": 305 + }, + { + "epoch": 0.53, + "learning_rate": 1.005732801907567e-05, + "loss": 0.0012, + "step": 306 + }, + { + "epoch": 0.53, + "learning_rate": 1e-05, + "loss": 0.0206, + "step": 307 + }, + { + "epoch": 0.53, + "learning_rate": 9.942671980924336e-06, + "loss": 0.0014, + "step": 308 + }, + { + "epoch": 0.54, + "learning_rate": 9.88534584595051e-06, + "loss": 0.008, + "step": 309 + }, + { + "epoch": 0.54, + "learning_rate": 9.82802347911845e-06, + "loss": 0.0016, + "step": 310 + }, + { + "epoch": 0.54, + "learning_rate": 9.770706764344235e-06, + "loss": 0.0019, + "step": 311 + }, + { + "epoch": 0.54, + "learning_rate": 9.713397585358189e-06, + "loss": 0.0082, + "step": 312 + }, + { + "epoch": 0.54, + "learning_rate": 9.65609782564296e-06, + "loss": 0.1033, + "step": 313 + }, + { + "epoch": 0.54, + "learning_rate": 9.598809368371656e-06, + "loss": 0.06, + "step": 314 + }, + { + "epoch": 0.55, + "learning_rate": 9.541534096345896e-06, + "loss": 0.0028, + "step": 315 + }, + { + "epoch": 0.55, + "learning_rate": 9.484273891933982e-06, + "loss": 0.0309, + "step": 316 + }, + { + "epoch": 0.55, + "learning_rate": 9.427030637009002e-06, + "loss": 0.0243, + "step": 317 + }, + { + "epoch": 0.55, + "learning_rate": 9.369806212887008e-06, + "loss": 0.0116, + "step": 318 + }, + { + "epoch": 0.55, + "learning_rate": 9.312602500265162e-06, + "loss": 0.0049, + "step": 319 + }, + { + "epoch": 0.55, + "learning_rate": 9.255421379159935e-06, + "loss": 0.0005, + "step": 320 + }, + { + "epoch": 0.56, + "learning_rate": 9.198264728845332e-06, + "loss": 0.1163, + "step": 321 + }, + { + "epoch": 0.56, + "learning_rate": 9.14113442779111e-06, + "loss": 0.007, + "step": 322 + }, + { + "epoch": 0.56, + "learning_rate": 9.084032353601053e-06, + "loss": 0.0624, + "step": 323 + }, + { + "epoch": 0.56, + "learning_rate": 9.026960382951253e-06, + "loss": 0.0014, + "step": 324 + }, + { + "epoch": 0.56, + "learning_rate": 8.969920391528459e-06, + "loss": 0.0039, + "step": 325 + }, + { + "epoch": 0.56, + "learning_rate": 8.912914253968391e-06, + "loss": 0.0032, + "step": 326 + }, + { + "epoch": 0.57, + "learning_rate": 8.855943843794171e-06, + "loss": 0.0022, + "step": 327 + }, + { + "epoch": 0.57, + "learning_rate": 8.799011033354716e-06, + "loss": 0.036, + "step": 328 + }, + { + "epoch": 0.57, + "learning_rate": 8.742117693763229e-06, + "loss": 0.0109, + "step": 329 + }, + { + "epoch": 0.57, + "learning_rate": 8.685265694835681e-06, + "loss": 0.1677, + "step": 330 + }, + { + "epoch": 0.57, + "learning_rate": 8.628456905029383e-06, + "loss": 0.0719, + "step": 331 + }, + { + "epoch": 0.58, + "learning_rate": 8.571693191381545e-06, + "loss": 0.0012, + "step": 332 + }, + { + "epoch": 0.58, + "learning_rate": 8.514976419447963e-06, + "loss": 0.0172, + "step": 333 + }, + { + "epoch": 0.58, + "learning_rate": 8.458308453241664e-06, + "loss": 0.0033, + "step": 334 + }, + { + "epoch": 0.58, + "learning_rate": 8.401691155171654e-06, + "loss": 0.0215, + "step": 335 + }, + { + "epoch": 0.58, + "learning_rate": 8.345126385981737e-06, + "loss": 0.0965, + "step": 336 + }, + { + "epoch": 0.58, + "learning_rate": 8.288616004689321e-06, + "loss": 0.0044, + "step": 337 + }, + { + "epoch": 0.59, + "learning_rate": 8.23216186852435e-06, + "loss": 0.0018, + "step": 338 + }, + { + "epoch": 0.59, + "learning_rate": 8.175765832868252e-06, + "loss": 0.0035, + "step": 339 + }, + { + "epoch": 0.59, + "learning_rate": 8.119429751192972e-06, + "loss": 0.0413, + "step": 340 + }, + { + "epoch": 0.59, + "learning_rate": 8.063155475000037e-06, + "loss": 0.0011, + "step": 341 + }, + { + "epoch": 0.59, + "learning_rate": 8.006944853759732e-06, + "loss": 0.0175, + "step": 342 + }, + { + "epoch": 0.59, + "learning_rate": 7.950799734850292e-06, + "loss": 0.0034, + "step": 343 + }, + { + "epoch": 0.6, + "learning_rate": 7.894721963497214e-06, + "loss": 0.0622, + "step": 344 + }, + { + "epoch": 0.6, + "learning_rate": 7.838713382712583e-06, + "loss": 0.085, + "step": 345 + }, + { + "epoch": 0.6, + "learning_rate": 7.782775833234522e-06, + "loss": 0.0018, + "step": 346 + }, + { + "epoch": 0.6, + "learning_rate": 7.726911153466699e-06, + "loss": 0.0569, + "step": 347 + }, + { + "epoch": 0.6, + "learning_rate": 7.67112117941788e-06, + "loss": 0.0022, + "step": 348 + }, + { + "epoch": 0.6, + "learning_rate": 7.615407744641618e-06, + "loss": 0.0948, + "step": 349 + }, + { + "epoch": 0.61, + "learning_rate": 7.559772680175979e-06, + "loss": 0.0015, + "step": 350 + }, + { + "epoch": 0.61, + "learning_rate": 7.504217814483364e-06, + "loss": 0.0014, + "step": 351 + }, + { + "epoch": 0.61, + "learning_rate": 7.448744973390423e-06, + "loss": 0.0025, + "step": 352 + }, + { + "epoch": 0.61, + "learning_rate": 7.393355980028039e-06, + "loss": 0.095, + "step": 353 + }, + { + "epoch": 0.61, + "learning_rate": 7.338052654771407e-06, + "loss": 0.019, + "step": 354 + }, + { + "epoch": 0.62, + "learning_rate": 7.282836815180241e-06, + "loss": 0.001, + "step": 355 + }, + { + "epoch": 0.62, + "learning_rate": 7.227710275938987e-06, + "loss": 0.0035, + "step": 356 + }, + { + "epoch": 0.62, + "learning_rate": 7.172674848797218e-06, + "loss": 0.0793, + "step": 357 + }, + { + "epoch": 0.62, + "learning_rate": 7.117732342510093e-06, + "loss": 0.0008, + "step": 358 + }, + { + "epoch": 0.62, + "learning_rate": 7.062884562778883e-06, + "loss": 0.0129, + "step": 359 + }, + { + "epoch": 0.62, + "learning_rate": 7.008133312191649e-06, + "loss": 0.0234, + "step": 360 + }, + { + "epoch": 0.63, + "learning_rate": 6.953480390164001e-06, + "loss": 0.0049, + "step": 361 + }, + { + "epoch": 0.63, + "learning_rate": 6.898927592879945e-06, + "loss": 0.0133, + "step": 362 + }, + { + "epoch": 0.63, + "learning_rate": 6.844476713232863e-06, + "loss": 0.0024, + "step": 363 + }, + { + "epoch": 0.63, + "learning_rate": 6.790129540766581e-06, + "loss": 0.0112, + "step": 364 + }, + { + "epoch": 0.63, + "learning_rate": 6.735887861616555e-06, + "loss": 0.0018, + "step": 365 + }, + { + "epoch": 0.63, + "learning_rate": 6.68175345845119e-06, + "loss": 0.0021, + "step": 366 + }, + { + "epoch": 0.64, + "learning_rate": 6.627728110413214e-06, + "loss": 0.0347, + "step": 367 + }, + { + "epoch": 0.64, + "learning_rate": 6.5738135930612355e-06, + "loss": 0.0193, + "step": 368 + }, + { + "epoch": 0.64, + "learning_rate": 6.520011678311382e-06, + "loss": 0.001, + "step": 369 + }, + { + "epoch": 0.64, + "learning_rate": 6.466324134379066e-06, + "loss": 0.0499, + "step": 370 + }, + { + "epoch": 0.64, + "learning_rate": 6.412752725720864e-06, + "loss": 0.0011, + "step": 371 + }, + { + "epoch": 0.64, + "learning_rate": 6.359299212976535e-06, + "loss": 0.0006, + "step": 372 + }, + { + "epoch": 0.65, + "learning_rate": 6.305965352911162e-06, + "loss": 0.0025, + "step": 373 + }, + { + "epoch": 0.65, + "learning_rate": 6.252752898357397e-06, + "loss": 0.0015, + "step": 374 + }, + { + "epoch": 0.65, + "learning_rate": 6.1996635981578755e-06, + "loss": 0.0019, + "step": 375 + }, + { + "epoch": 0.65, + "learning_rate": 6.146699197107715e-06, + "loss": 0.0344, + "step": 376 + }, + { + "epoch": 0.65, + "learning_rate": 6.093861435897208e-06, + "loss": 0.001, + "step": 377 + }, + { + "epoch": 0.66, + "learning_rate": 6.041152051054575e-06, + "loss": 0.0007, + "step": 378 + }, + { + "epoch": 0.66, + "learning_rate": 5.988572774888913e-06, + "loss": 0.0031, + "step": 379 + }, + { + "epoch": 0.66, + "learning_rate": 5.936125335433265e-06, + "loss": 0.0145, + "step": 380 + }, + { + "epoch": 0.66, + "learning_rate": 5.883811456387821e-06, + "loss": 0.0021, + "step": 381 + }, + { + "epoch": 0.66, + "learning_rate": 5.831632857063271e-06, + "loss": 0.0145, + "step": 382 + }, + { + "epoch": 0.66, + "learning_rate": 5.779591252324286e-06, + "loss": 0.0127, + "step": 383 + }, + { + "epoch": 0.67, + "learning_rate": 5.7276883525331915e-06, + "loss": 0.0031, + "step": 384 + }, + { + "epoch": 0.67, + "learning_rate": 5.675925863493721e-06, + "loss": 0.0029, + "step": 385 + }, + { + "epoch": 0.67, + "learning_rate": 5.6243054863949675e-06, + "loss": 0.0011, + "step": 386 + }, + { + "epoch": 0.67, + "learning_rate": 5.5728289177554805e-06, + "loss": 0.0057, + "step": 387 + }, + { + "epoch": 0.67, + "learning_rate": 5.521497849367501e-06, + "loss": 0.0019, + "step": 388 + }, + { + "epoch": 0.67, + "learning_rate": 5.4703139682413585e-06, + "loss": 0.0126, + "step": 389 + }, + { + "epoch": 0.68, + "learning_rate": 5.419278956550037e-06, + "loss": 0.0415, + "step": 390 + }, + { + "epoch": 0.68, + "learning_rate": 5.368394491573876e-06, + "loss": 0.0075, + "step": 391 + }, + { + "epoch": 0.68, + "learning_rate": 5.31766224564547e-06, + "loss": 0.0004, + "step": 392 + }, + { + "epoch": 0.68, + "learning_rate": 5.267083886094668e-06, + "loss": 0.0172, + "step": 393 + }, + { + "epoch": 0.68, + "learning_rate": 5.216661075193814e-06, + "loss": 0.0011, + "step": 394 + }, + { + "epoch": 0.68, + "learning_rate": 5.166395470103092e-06, + "loss": 0.0028, + "step": 395 + }, + { + "epoch": 0.69, + "learning_rate": 5.116288722816087e-06, + "loss": 0.0013, + "step": 396 + }, + { + "epoch": 0.69, + "learning_rate": 5.06634248010546e-06, + "loss": 0.072, + "step": 397 + }, + { + "epoch": 0.69, + "learning_rate": 5.016558383468851e-06, + "loss": 0.0028, + "step": 398 + }, + { + "epoch": 0.69, + "learning_rate": 4.9669380690749215e-06, + "loss": 0.0076, + "step": 399 + }, + { + "epoch": 0.69, + "learning_rate": 4.91748316770958e-06, + "loss": 0.0003, + "step": 400 + }, + { + "epoch": 0.69, + "learning_rate": 4.868195304722391e-06, + "loss": 0.0006, + "step": 401 + }, + { + "epoch": 0.7, + "learning_rate": 4.819076099973152e-06, + "loss": 0.0058, + "step": 402 + }, + { + "epoch": 0.7, + "learning_rate": 4.77012716777867e-06, + "loss": 0.0224, + "step": 403 + }, + { + "epoch": 0.7, + "learning_rate": 4.721350116859675e-06, + "loss": 0.0062, + "step": 404 + }, + { + "epoch": 0.7, + "learning_rate": 4.672746550287985e-06, + "loss": 0.0003, + "step": 405 + }, + { + "epoch": 0.7, + "learning_rate": 4.6243180654337975e-06, + "loss": 0.0108, + "step": 406 + }, + { + "epoch": 0.71, + "learning_rate": 4.576066253913209e-06, + "loss": 0.0757, + "step": 407 + }, + { + "epoch": 0.71, + "learning_rate": 4.527992701535884e-06, + "loss": 0.0041, + "step": 408 + }, + { + "epoch": 0.71, + "learning_rate": 4.480098988252958e-06, + "loss": 0.0003, + "step": 409 + }, + { + "epoch": 0.71, + "learning_rate": 4.432386688105095e-06, + "loss": 0.0002, + "step": 410 + }, + { + "epoch": 0.71, + "learning_rate": 4.384857369170772e-06, + "loss": 0.0172, + "step": 411 + }, + { + "epoch": 0.71, + "learning_rate": 4.337512593514729e-06, + "loss": 0.0877, + "step": 412 + }, + { + "epoch": 0.72, + "learning_rate": 4.290353917136639e-06, + "loss": 0.0002, + "step": 413 + }, + { + "epoch": 0.72, + "learning_rate": 4.243382889919981e-06, + "loss": 0.0003, + "step": 414 + }, + { + "epoch": 0.72, + "learning_rate": 4.1966010555810696e-06, + "loss": 0.0683, + "step": 415 + }, + { + "epoch": 0.72, + "learning_rate": 4.1500099516183555e-06, + "loss": 0.072, + "step": 416 + }, + { + "epoch": 0.72, + "learning_rate": 4.1036111092618725e-06, + "loss": 0.0009, + "step": 417 + }, + { + "epoch": 0.72, + "learning_rate": 4.057406053422933e-06, + "loss": 0.0029, + "step": 418 + }, + { + "epoch": 0.73, + "learning_rate": 4.011396302643989e-06, + "loss": 0.0039, + "step": 419 + }, + { + "epoch": 0.73, + "learning_rate": 3.965583369048737e-06, + "loss": 0.0005, + "step": 420 + }, + { + "epoch": 0.73, + "learning_rate": 3.919968758292425e-06, + "loss": 0.0412, + "step": 421 + }, + { + "epoch": 0.73, + "learning_rate": 3.874553969512358e-06, + "loss": 0.0023, + "step": 422 + }, + { + "epoch": 0.73, + "learning_rate": 3.82934049527864e-06, + "loss": 0.0233, + "step": 423 + }, + { + "epoch": 0.73, + "learning_rate": 3.784329821545105e-06, + "loss": 0.0006, + "step": 424 + }, + { + "epoch": 0.74, + "learning_rate": 3.739523427600509e-06, + "loss": 0.0702, + "step": 425 + }, + { + "epoch": 0.74, + "learning_rate": 3.6949227860198712e-06, + "loss": 0.0131, + "step": 426 + }, + { + "epoch": 0.74, + "learning_rate": 3.650529362616113e-06, + "loss": 0.0916, + "step": 427 + }, + { + "epoch": 0.74, + "learning_rate": 3.606344616391867e-06, + "loss": 0.0005, + "step": 428 + }, + { + "epoch": 0.74, + "learning_rate": 3.5623699994915363e-06, + "loss": 0.0059, + "step": 429 + }, + { + "epoch": 0.75, + "learning_rate": 3.5186069571535575e-06, + "loss": 0.0003, + "step": 430 + }, + { + "epoch": 0.75, + "learning_rate": 3.475056927662912e-06, + "loss": 0.0022, + "step": 431 + }, + { + "epoch": 0.75, + "learning_rate": 3.4317213423038386e-06, + "loss": 0.1156, + "step": 432 + }, + { + "epoch": 0.75, + "learning_rate": 3.388601625312833e-06, + "loss": 0.0024, + "step": 433 + }, + { + "epoch": 0.75, + "learning_rate": 3.345699193831795e-06, + "loss": 0.0005, + "step": 434 + }, + { + "epoch": 0.75, + "learning_rate": 3.3030154578614783e-06, + "loss": 0.0683, + "step": 435 + }, + { + "epoch": 0.76, + "learning_rate": 3.2605518202151577e-06, + "loss": 0.0005, + "step": 436 + }, + { + "epoch": 0.76, + "learning_rate": 3.218309676472492e-06, + "loss": 0.0051, + "step": 437 + }, + { + "epoch": 0.76, + "learning_rate": 3.1762904149336947e-06, + "loss": 0.051, + "step": 438 + }, + { + "epoch": 0.76, + "learning_rate": 3.134495416573884e-06, + "loss": 0.0281, + "step": 439 + }, + { + "epoch": 0.76, + "learning_rate": 3.0929260549977116e-06, + "loss": 0.2115, + "step": 440 + }, + { + "epoch": 0.76, + "learning_rate": 3.0515836963942056e-06, + "loss": 0.0008, + "step": 441 + }, + { + "epoch": 0.77, + "learning_rate": 3.01046969949188e-06, + "loss": 0.0005, + "step": 442 + }, + { + "epoch": 0.77, + "learning_rate": 2.9695854155140648e-06, + "loss": 0.1599, + "step": 443 + }, + { + "epoch": 0.77, + "learning_rate": 2.9289321881345257e-06, + "loss": 0.0008, + "step": 444 + }, + { + "epoch": 0.77, + "learning_rate": 2.8885113534332742e-06, + "loss": 0.1016, + "step": 445 + }, + { + "epoch": 0.77, + "learning_rate": 2.8483242398526723e-06, + "loss": 0.1585, + "step": 446 + }, + { + "epoch": 0.77, + "learning_rate": 2.80837216815378e-06, + "loss": 0.1403, + "step": 447 + }, + { + "epoch": 0.78, + "learning_rate": 2.7686564513729198e-06, + "loss": 0.0157, + "step": 448 + }, + { + "epoch": 0.78, + "learning_rate": 2.7291783947785544e-06, + "loss": 0.0033, + "step": 449 + }, + { + "epoch": 0.78, + "learning_rate": 2.689939295828371e-06, + "loss": 0.0015, + "step": 450 + }, + { + "epoch": 0.78, + "learning_rate": 2.650940444126654e-06, + "loss": 0.0435, + "step": 451 + }, + { + "epoch": 0.78, + "learning_rate": 2.6121831213818825e-06, + "loss": 0.0008, + "step": 452 + }, + { + "epoch": 0.79, + "learning_rate": 2.5736686013646226e-06, + "loss": 0.0009, + "step": 453 + }, + { + "epoch": 0.79, + "learning_rate": 2.535398149865651e-06, + "loss": 0.1289, + "step": 454 + }, + { + "epoch": 0.79, + "learning_rate": 2.4973730246543736e-06, + "loss": 0.0088, + "step": 455 + }, + { + "epoch": 0.79, + "learning_rate": 2.4595944754374723e-06, + "loss": 0.0111, + "step": 456 + }, + { + "epoch": 0.79, + "learning_rate": 2.422063743817832e-06, + "loss": 0.0183, + "step": 457 + }, + { + "epoch": 0.79, + "learning_rate": 2.3847820632537565e-06, + "loss": 0.0222, + "step": 458 + }, + { + "epoch": 0.8, + "learning_rate": 2.347750659018397e-06, + "loss": 0.0018, + "step": 459 + }, + { + "epoch": 0.8, + "learning_rate": 2.3109707481595113e-06, + "loss": 0.0021, + "step": 460 + }, + { + "epoch": 0.8, + "learning_rate": 2.27444353945945e-06, + "loss": 0.0016, + "step": 461 + }, + { + "epoch": 0.8, + "learning_rate": 2.2381702333954436e-06, + "loss": 0.0016, + "step": 462 + }, + { + "epoch": 0.8, + "learning_rate": 2.2021520221001304e-06, + "loss": 0.001, + "step": 463 + }, + { + "epoch": 0.8, + "learning_rate": 2.16639008932239e-06, + "loss": 0.0011, + "step": 464 + }, + { + "epoch": 0.81, + "learning_rate": 2.130885610388428e-06, + "loss": 0.0224, + "step": 465 + }, + { + "epoch": 0.81, + "learning_rate": 2.0956397521631666e-06, + "loss": 0.0141, + "step": 466 + }, + { + "epoch": 0.81, + "learning_rate": 2.0606536730118767e-06, + "loss": 0.0007, + "step": 467 + }, + { + "epoch": 0.81, + "learning_rate": 2.0259285227621152e-06, + "loss": 0.0025, + "step": 468 + }, + { + "epoch": 0.81, + "learning_rate": 1.9914654426659374e-06, + "loss": 0.0591, + "step": 469 + }, + { + "epoch": 0.81, + "learning_rate": 1.9572655653623884e-06, + "loss": 0.0012, + "step": 470 + }, + { + "epoch": 0.82, + "learning_rate": 1.9233300148402767e-06, + "loss": 0.0732, + "step": 471 + }, + { + "epoch": 0.82, + "learning_rate": 1.88965990640123e-06, + "loss": 0.005, + "step": 472 + }, + { + "epoch": 0.82, + "learning_rate": 1.8562563466230577e-06, + "loss": 0.0015, + "step": 473 + }, + { + "epoch": 0.82, + "learning_rate": 1.823120433323361e-06, + "loss": 0.1624, + "step": 474 + }, + { + "epoch": 0.82, + "learning_rate": 1.7902532555234653e-06, + "loss": 0.0064, + "step": 475 + }, + { + "epoch": 0.82, + "learning_rate": 1.757655893412622e-06, + "loss": 0.152, + "step": 476 + }, + { + "epoch": 0.83, + "learning_rate": 1.7253294183125223e-06, + "loss": 0.0008, + "step": 477 + }, + { + "epoch": 0.83, + "learning_rate": 1.6932748926420695e-06, + "loss": 0.0414, + "step": 478 + }, + { + "epoch": 0.83, + "learning_rate": 1.661493369882473e-06, + "loss": 0.0009, + "step": 479 + }, + { + "epoch": 0.83, + "learning_rate": 1.6299858945426251e-06, + "loss": 0.0938, + "step": 480 + }, + { + "epoch": 0.83, + "learning_rate": 1.5987535021247668e-06, + "loss": 0.001, + "step": 481 + }, + { + "epoch": 0.84, + "learning_rate": 1.5677972190904623e-06, + "loss": 0.0014, + "step": 482 + }, + { + "epoch": 0.84, + "learning_rate": 1.537118062826859e-06, + "loss": 0.0023, + "step": 483 + }, + { + "epoch": 0.84, + "learning_rate": 1.5067170416132603e-06, + "loss": 0.0012, + "step": 484 + }, + { + "epoch": 0.84, + "learning_rate": 1.4765951545879732e-06, + "loss": 0.0014, + "step": 485 + }, + { + "epoch": 0.84, + "learning_rate": 1.4467533917154842e-06, + "loss": 0.0102, + "step": 486 + }, + { + "epoch": 0.84, + "learning_rate": 1.4171927337539103e-06, + "loss": 0.0033, + "step": 487 + }, + { + "epoch": 0.85, + "learning_rate": 1.3879141522227878e-06, + "loss": 0.0009, + "step": 488 + }, + { + "epoch": 0.85, + "learning_rate": 1.3589186093711227e-06, + "loss": 0.088, + "step": 489 + }, + { + "epoch": 0.85, + "learning_rate": 1.3302070581457716e-06, + "loss": 0.0011, + "step": 490 + }, + { + "epoch": 0.85, + "learning_rate": 1.3017804421601298e-06, + "loss": 0.001, + "step": 491 + }, + { + "epoch": 0.85, + "learning_rate": 1.273639695663108e-06, + "loss": 0.0536, + "step": 492 + }, + { + "epoch": 0.85, + "learning_rate": 1.245785743508441e-06, + "loss": 0.0178, + "step": 493 + }, + { + "epoch": 0.86, + "learning_rate": 1.2182195011242747e-06, + "loss": 0.0127, + "step": 494 + }, + { + "epoch": 0.86, + "learning_rate": 1.1909418744831048e-06, + "loss": 0.0008, + "step": 495 + }, + { + "epoch": 0.86, + "learning_rate": 1.1639537600719764e-06, + "loss": 0.0329, + "step": 496 + }, + { + "epoch": 0.86, + "learning_rate": 1.1372560448630377e-06, + "loss": 0.001, + "step": 497 + }, + { + "epoch": 0.86, + "learning_rate": 1.1108496062843743e-06, + "loss": 0.0007, + "step": 498 + }, + { + "epoch": 0.86, + "learning_rate": 1.0847353121911952e-06, + "loss": 0.0008, + "step": 499 + }, + { + "epoch": 0.87, + "learning_rate": 1.0589140208372872e-06, + "loss": 0.1002, + "step": 500 + } + ], + "logging_steps": 1.0, + "max_steps": 577, + "num_input_tokens_seen": 0, + "num_train_epochs": 1, + "save_steps": 500, + "total_flos": 1001833021440.0, + "train_batch_size": 10, + "trial_name": null, + "trial_params": null +} diff --git a/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/training_args.bin b/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/training_args.bin new file mode 100644 index 0000000000000000000000000000000000000000..1a8d9d69f956643ffcb110e550428f53966a2ab7 --- /dev/null +++ b/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/training_args.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6322ce7627903be868d98b9cd110189814e4c85078c9b4b56c507228fa29b95b +size 6968 diff --git a/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/zero_to_fp32.py b/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/zero_to_fp32.py new file mode 100644 index 0000000000000000000000000000000000000000..c98caae31534368be22b67fc4ae906836c992a8d --- /dev/null +++ b/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/zero_to_fp32.py @@ -0,0 +1,587 @@ +#!/usr/bin/env python + +# Copyright (c) Microsoft Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team + +# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets +# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in +# the future. Once extracted, the weights don't require DeepSpeed and can be used in any +# application. +# +# example: python zero_to_fp32.py . pytorch_model.bin + +import argparse +import torch +import glob +import math +import os +import re +from collections import OrderedDict +from dataclasses import dataclass + +# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with +# DeepSpeed data structures it has to be available in the current python environment. +from deepspeed.utils import logger +from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS, + FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES, + FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS) + + +@dataclass +class zero_model_state: + buffers: dict() + param_shapes: dict() + shared_params: list + ds_version: int + frozen_param_shapes: dict() + frozen_param_fragments: dict() + + +debug = 0 + +# load to cpu +device = torch.device('cpu') + + +def atoi(text): + return int(text) if text.isdigit() else text + + +def natural_keys(text): + ''' + alist.sort(key=natural_keys) sorts in human order + http://nedbatchelder.com/blog/200712/human_sorting.html + (See Toothy's implementation in the comments) + ''' + return [atoi(c) for c in re.split(r'(\d+)', text)] + + +def get_model_state_file(checkpoint_dir, zero_stage): + if not os.path.isdir(checkpoint_dir): + raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist") + + # there should be only one file + if zero_stage <= 2: + file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt") + elif zero_stage == 3: + file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt") + + if not os.path.exists(file): + raise FileNotFoundError(f"can't find model states file at '{file}'") + + return file + + +def get_checkpoint_files(checkpoint_dir, glob_pattern): + # XXX: need to test that this simple glob rule works for multi-node setup too + ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys) + + if len(ckpt_files) == 0: + raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'") + + return ckpt_files + + +def get_optim_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt") + + +def get_model_state_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_model_states.pt") + + +def parse_model_states(files): + zero_model_states = [] + for file in files: + state_dict = torch.load(file, map_location=device) + + if BUFFER_NAMES not in state_dict: + raise ValueError(f"{file} is not a model state checkpoint") + buffer_names = state_dict[BUFFER_NAMES] + if debug: + print("Found buffers:", buffer_names) + + # recover just the buffers while restoring them to fp32 if they were saved in fp16 + buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names} + param_shapes = state_dict[PARAM_SHAPES] + + # collect parameters that are included in param_shapes + param_names = [] + for s in param_shapes: + for name in s.keys(): + param_names.append(name) + + # update with frozen parameters + frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None) + if frozen_param_shapes is not None: + if debug: + print(f"Found frozen_param_shapes: {frozen_param_shapes}") + param_names += list(frozen_param_shapes.keys()) + + # handle shared params + shared_params = [[k, v] for k, v in state_dict["shared_params"].items()] + + ds_version = state_dict.get(DS_VERSION, None) + + frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None) + + z_model_state = zero_model_state(buffers=buffers, + param_shapes=param_shapes, + shared_params=shared_params, + ds_version=ds_version, + frozen_param_shapes=frozen_param_shapes, + frozen_param_fragments=frozen_param_fragments) + zero_model_states.append(z_model_state) + + return zero_model_states + + +def parse_optim_states(files, ds_checkpoint_dir): + + total_files = len(files) + state_dicts = [] + for f in files: + state_dict = torch.load(f, map_location=device) + # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights + # and also handle the case where it was already removed by another helper script + state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None) + state_dicts.append(state_dict) + + if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]: + raise ValueError(f"{files[0]} is not a zero checkpoint") + zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE] + world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT] + + # For ZeRO-2 each param group can have different partition_count as data parallelism for expert + # parameters can be different from data parallelism for non-expert parameters. So we can just + # use the max of the partition_count to get the dp world_size. + + if type(world_size) is list: + world_size = max(world_size) + + if world_size != total_files: + raise ValueError( + f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. " + "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes." + ) + + # the groups are named differently in each stage + if zero_stage <= 2: + fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS + elif zero_stage == 3: + fp32_groups_key = FP32_FLAT_GROUPS + else: + raise ValueError(f"unknown zero stage {zero_stage}") + + if zero_stage <= 2: + fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))] + elif zero_stage == 3: + # if there is more than one param group, there will be multiple flattened tensors - one + # flattened tensor per group - for simplicity merge them into a single tensor + # + # XXX: could make the script more memory efficient for when there are multiple groups - it + # will require matching the sub-lists of param_shapes for each param group flattened tensor + + fp32_flat_groups = [ + torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts)) + ] + + return zero_stage, world_size, fp32_flat_groups + + +def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir): + """ + Returns fp32 state_dict reconstructed from ds checkpoint + + Args: + - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are) + + """ + print(f"Processing zero checkpoint '{ds_checkpoint_dir}'") + + optim_files = get_optim_files(ds_checkpoint_dir) + zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir) + print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}") + + model_files = get_model_state_files(ds_checkpoint_dir) + + zero_model_states = parse_model_states(model_files) + print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}') + + if zero_stage <= 2: + return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states) + elif zero_stage == 3: + return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states) + + +def _zero2_merge_frozen_params(state_dict, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + frozen_param_fragments = zero_model_states[0].frozen_param_fragments + + if debug: + num_elem = sum(s.numel() for s in frozen_param_shapes.values()) + print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in frozen_param_fragments.values()]) + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + state_dict[name] = frozen_param_fragments[name] + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + + # Reconstruction protocol: + # + # XXX: document this + + if debug: + for i in range(world_size): + for j in range(len(fp32_flat_groups[0])): + print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}") + + # XXX: memory usage doubles here (zero2) + num_param_groups = len(fp32_flat_groups[0]) + merged_single_partition_of_fp32_groups = [] + for i in range(num_param_groups): + merged_partitions = [sd[i] for sd in fp32_flat_groups] + full_single_fp32_vector = torch.cat(merged_partitions, 0) + merged_single_partition_of_fp32_groups.append(full_single_fp32_vector) + avail_numel = sum( + [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups]) + + if debug: + wanted_params = sum([len(shapes) for shapes in param_shapes]) + wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes]) + # not asserting if there is a mismatch due to possible padding + print(f"Have {avail_numel} numels to process.") + print(f"Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + total_numel = 0 + total_params = 0 + for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups): + offset = 0 + avail_numel = full_single_fp32_vector.numel() + for name, shape in shapes.items(): + + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + total_params += 1 + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape) + offset += unpartitioned_numel + + # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and + # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex + # paddings performed in the code it's almost impossible to predict the exact numbers w/o the + # live optimizer object, so we are checking that the numbers are within the right range + align_to = 2 * world_size + + def zero2_align(x): + return align_to * math.ceil(x / align_to) + + if debug: + print(f"original offset={offset}, avail_numel={avail_numel}") + + offset = zero2_align(offset) + avail_numel = zero2_align(avail_numel) + + if debug: + print(f"aligned offset={offset}, avail_numel={avail_numel}") + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + _zero2_merge_frozen_params(state_dict, zero_model_states) + + _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def zero3_partitioned_param_info(unpartitioned_numel, world_size): + remainder = unpartitioned_numel % world_size + padding_numel = (world_size - remainder) if remainder else 0 + partitioned_numel = math.ceil(unpartitioned_numel / world_size) + return partitioned_numel, padding_numel + + +def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + if debug: + for i in range(world_size): + num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values()) + print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in zero_model_states[0].frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states) + state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape) + + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + avail_numel = fp32_flat_groups[0].numel() * world_size + # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each + # param, re-consolidating each param, while dealing with padding if any + + # merge list of dicts, preserving order + param_shapes = {k: v for d in param_shapes for k, v in d.items()} + + if debug: + for i in range(world_size): + print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}") + + wanted_params = len(param_shapes) + wanted_numel = sum(shape.numel() for shape in param_shapes.values()) + # not asserting if there is a mismatch due to possible padding + avail_numel = fp32_flat_groups[0].numel() * world_size + print(f"Trainable params: Have {avail_numel} numels to process.") + print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + offset = 0 + total_numel = 0 + total_params = 0 + for name, shape in param_shapes.items(): + + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + total_params += 1 + + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + # XXX: memory usage doubles here + state_dict[name] = torch.cat( + tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)), + 0).narrow(0, 0, unpartitioned_numel).view(shape) + offset += partitioned_numel + + offset *= world_size + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + _zero3_merge_frozen_params(state_dict, world_size, zero_model_states) + + _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with + ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example + via a model hub. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14`` + + Returns: + - pytorch ``state_dict`` + + Note: this approach may not work if your application doesn't have sufficient free CPU memory and + you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with + the checkpoint. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + # do the training and checkpoint saving + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu + model = model.cpu() # move to cpu + model.load_state_dict(state_dict) + # submit to model hub or save the model to share with others + + In this example the ``model`` will no longer be usable in the deepspeed context of the same + application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead. + + """ + if tag is None: + latest_path = os.path.join(checkpoint_dir, 'latest') + if os.path.isfile(latest_path): + with open(latest_path, 'r') as fd: + tag = fd.read().strip() + else: + raise ValueError(f"Unable to find 'latest' file at {latest_path}") + + ds_checkpoint_dir = os.path.join(checkpoint_dir, tag) + + if not os.path.isdir(ds_checkpoint_dir): + raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist") + + return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir) + + +def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be + loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin) + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + """ + + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) + print(f"Saving fp32 state dict to {output_file}") + torch.save(state_dict, output_file) + + +def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None): + """ + 1. Put the provided model to cpu + 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` + 3. Load it into the provided model + + Args: + - ``model``: the model object to update + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + + Returns: + - ``model`: modified model + + Make sure you have plenty of CPU memory available before you call this function. If you don't + have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it + conveniently placed for you in the checkpoint folder. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint + model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) + # submit to model hub or save the model to share with others + + Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context + of the same application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + """ + logger.info(f"Extracting fp32 weights") + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) + + logger.info(f"Overwriting model with fp32 weights") + model = model.cpu() + model.load_state_dict(state_dict, strict=False) + + return model + + +if __name__ == "__main__": + + parser = argparse.ArgumentParser() + parser.add_argument("checkpoint_dir", + type=str, + help="path to the desired checkpoint folder, e.g., path/checkpoint-12") + parser.add_argument( + "output_file", + type=str, + help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)") + parser.add_argument("-t", + "--tag", + type=str, + default=None, + help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1") + parser.add_argument("-d", "--debug", action='store_true', help="enable debug") + args = parser.parse_args() + + debug = args.debug + + convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag) diff --git a/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/config.json b/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/config.json new file mode 100644 index 0000000000000000000000000000000000000000..93e133af45036a778791b5679a8953a4f6a35a33 --- /dev/null +++ b/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/config.json @@ -0,0 +1,70 @@ +{ + "_name_or_path": "liuhaotian/llava-v1.6-mistral-7b", + "architectures": [ + "LlavaMistralForCausalLM" + ], + "attention_dropout": 0.0, + "bos_token_id": 1, + "eos_token_id": 2, + "freeze_mm_mlp_adapter": false, + "freeze_mm_vision_resampler": false, + "hidden_act": "silu", + "hidden_size": 4096, + "image_aspect_ratio": "anyres", + "image_crop_resolution": 224, + "image_grid_pinpoints": [ + [ + 336, + 672 + ], + [ + 672, + 336 + ], + [ + 672, + 672 + ], + [ + 1008, + 336 + ], + [ + 336, + 1008 + ] + ], + "image_split_resolution": 224, + "initializer_range": 0.02, + "intermediate_size": 14336, + "max_position_embeddings": 32768, + "mm_hidden_size": 1024, + "mm_patch_merge_type": "spatial_unpad", + "mm_projector_lr": 2e-05, + "mm_projector_type": "mlp2x_gelu", + "mm_resampler_type": null, + "mm_use_im_patch_token": false, + "mm_use_im_start_end": false, + "mm_vision_select_feature": "patch", + "mm_vision_select_layer": -2, + "mm_vision_tower": "openai/clip-vit-large-patch14-336", + "mm_vision_tower_lr": 2e-06, + "model_type": "llava_mistral", + "num_attention_heads": 32, + "num_hidden_layers": 32, + "num_key_value_heads": 8, + "rms_norm_eps": 1e-05, + "rope_theta": 1000000.0, + "sliding_window": null, + "tie_word_embeddings": false, + "tokenizer_model_max_length": 4096, + "tokenizer_padding_side": "right", + "torch_dtype": "bfloat16", + "transformers_version": "4.37.2", + "tune_mm_mlp_adapter": false, + "tune_mm_vision_resampler": false, + "unfreeze_mm_vision_tower": true, + "use_cache": true, + "use_mm_proj": true, + "vocab_size": 32000 +} diff --git a/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/non_lora_trainables.bin b/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/non_lora_trainables.bin new file mode 100644 index 0000000000000000000000000000000000000000..a078832f8b614e52aa214a4cd8bf3fa19e896476 --- /dev/null +++ b/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/non_lora_trainables.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ee9f345bc360c7d0d0577b86bb5be9ab7afda7df19aa0456f3946cc9bc4f90a7 +size 41961648 diff --git a/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/trainer_state.json b/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/trainer_state.json new file mode 100644 index 0000000000000000000000000000000000000000..3d5fef17742ba11728748f11ddd8e1095ddf0d33 --- /dev/null +++ b/CheckGuard Models/wholeimage/check_no/llava-lora-mistral-r128a256-10BS-model/trainer_state.json @@ -0,0 +1,3492 @@ +{ + "best_metric": null, + "best_model_checkpoint": null, + "epoch": 1.0, + "eval_steps": 500, + "global_step": 577, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "epoch": 0.0, + "learning_rate": 6.896551724137931e-07, + "loss": 0.22, + "step": 1 + }, + { + "epoch": 0.0, + "learning_rate": 1.3793103448275862e-06, + "loss": 0.3344, + "step": 2 + }, + { + "epoch": 0.01, + "learning_rate": 2.0689655172413796e-06, + "loss": 0.1757, + "step": 3 + }, + { + "epoch": 0.01, + "learning_rate": 2.7586206896551725e-06, + "loss": 0.1164, + "step": 4 + }, + { + "epoch": 0.01, + "learning_rate": 3.448275862068966e-06, + "loss": 0.0771, + "step": 5 + }, + { + "epoch": 0.01, + "learning_rate": 4.137931034482759e-06, + "loss": 0.0448, + "step": 6 + }, + { + "epoch": 0.01, + "learning_rate": 4.8275862068965525e-06, + "loss": 0.0181, + "step": 7 + }, + { + "epoch": 0.01, + "learning_rate": 5.517241379310345e-06, + "loss": 0.0101, + "step": 8 + }, + { + "epoch": 0.02, + "learning_rate": 6.206896551724138e-06, + "loss": 0.0879, + "step": 9 + }, + { + "epoch": 0.02, + "learning_rate": 6.896551724137932e-06, + "loss": 0.0985, + "step": 10 + }, + { + "epoch": 0.02, + "learning_rate": 7.586206896551724e-06, + "loss": 0.0134, + "step": 11 + }, + { + "epoch": 0.02, + "learning_rate": 8.275862068965518e-06, + "loss": 0.0125, + "step": 12 + }, + { + "epoch": 0.02, + "learning_rate": 8.965517241379312e-06, + "loss": 0.0061, + "step": 13 + }, + { + "epoch": 0.02, + "learning_rate": 9.655172413793105e-06, + "loss": 0.0632, + "step": 14 + }, + { + "epoch": 0.03, + "learning_rate": 1.0344827586206898e-05, + "loss": 0.1219, + "step": 15 + }, + { + "epoch": 0.03, + "learning_rate": 1.103448275862069e-05, + "loss": 0.0033, + "step": 16 + }, + { + "epoch": 0.03, + "learning_rate": 1.1724137931034483e-05, + "loss": 0.0014, + "step": 17 + }, + { + "epoch": 0.03, + "learning_rate": 1.2413793103448277e-05, + "loss": 0.0101, + "step": 18 + }, + { + "epoch": 0.03, + "learning_rate": 1.310344827586207e-05, + "loss": 0.0243, + "step": 19 + }, + { + "epoch": 0.03, + "learning_rate": 1.3793103448275863e-05, + "loss": 0.0489, + "step": 20 + }, + { + "epoch": 0.04, + "learning_rate": 1.4482758620689657e-05, + "loss": 0.0759, + "step": 21 + }, + { + "epoch": 0.04, + "learning_rate": 1.5172413793103448e-05, + "loss": 0.0398, + "step": 22 + }, + { + "epoch": 0.04, + "learning_rate": 1.586206896551724e-05, + "loss": 0.0177, + "step": 23 + }, + { + "epoch": 0.04, + "learning_rate": 1.6551724137931037e-05, + "loss": 0.003, + "step": 24 + }, + { + "epoch": 0.04, + "learning_rate": 1.7241379310344828e-05, + "loss": 0.101, + "step": 25 + }, + { + "epoch": 0.05, + "learning_rate": 1.7931034482758623e-05, + "loss": 0.0107, + "step": 26 + }, + { + "epoch": 0.05, + "learning_rate": 1.8620689655172415e-05, + "loss": 0.1171, + "step": 27 + }, + { + "epoch": 0.05, + "learning_rate": 1.931034482758621e-05, + "loss": 0.0034, + "step": 28 + }, + { + "epoch": 0.05, + "learning_rate": 2e-05, + "loss": 0.0876, + "step": 29 + }, + { + "epoch": 0.05, + "learning_rate": 1.9999835673561284e-05, + "loss": 0.076, + "step": 30 + }, + { + "epoch": 0.05, + "learning_rate": 1.9999342699645774e-05, + "loss": 0.0034, + "step": 31 + }, + { + "epoch": 0.06, + "learning_rate": 1.9998521094455198e-05, + "loss": 0.0078, + "step": 32 + }, + { + "epoch": 0.06, + "learning_rate": 1.9997370884991842e-05, + "loss": 0.1035, + "step": 33 + }, + { + "epoch": 0.06, + "learning_rate": 1.9995892109057675e-05, + "loss": 0.1977, + "step": 34 + }, + { + "epoch": 0.06, + "learning_rate": 1.99940848152531e-05, + "loss": 0.0091, + "step": 35 + }, + { + "epoch": 0.06, + "learning_rate": 1.99940848152531e-05, + "loss": 0.1202, + "step": 36 + }, + { + "epoch": 0.06, + "learning_rate": 1.9991949062975336e-05, + "loss": 0.2529, + "step": 37 + }, + { + "epoch": 0.07, + "learning_rate": 1.9989484922416503e-05, + "loss": 0.0083, + "step": 38 + }, + { + "epoch": 0.07, + "learning_rate": 1.9986692474561292e-05, + "loss": 0.0756, + "step": 39 + }, + { + "epoch": 0.07, + "learning_rate": 1.9983571811184297e-05, + "loss": 0.1869, + "step": 40 + }, + { + "epoch": 0.07, + "learning_rate": 1.9980123034847025e-05, + "loss": 0.0357, + "step": 41 + }, + { + "epoch": 0.07, + "learning_rate": 1.9976346258894502e-05, + "loss": 0.0935, + "step": 42 + }, + { + "epoch": 0.07, + "learning_rate": 1.9972241607451552e-05, + "loss": 0.0436, + "step": 43 + }, + { + "epoch": 0.08, + "learning_rate": 1.996780921541873e-05, + "loss": 0.0582, + "step": 44 + }, + { + "epoch": 0.08, + "learning_rate": 1.9963049228467875e-05, + "loss": 0.0388, + "step": 45 + }, + { + "epoch": 0.08, + "learning_rate": 1.9957961803037325e-05, + "loss": 0.0256, + "step": 46 + }, + { + "epoch": 0.08, + "learning_rate": 1.9952547106326787e-05, + "loss": 0.0561, + "step": 47 + }, + { + "epoch": 0.08, + "learning_rate": 1.9946805316291817e-05, + "loss": 0.0654, + "step": 48 + }, + { + "epoch": 0.08, + "learning_rate": 1.9940736621638e-05, + "loss": 0.0149, + "step": 49 + }, + { + "epoch": 0.09, + "learning_rate": 1.993434122181474e-05, + "loss": 0.1098, + "step": 50 + }, + { + "epoch": 0.09, + "learning_rate": 1.992761932700868e-05, + "loss": 0.0321, + "step": 51 + }, + { + "epoch": 0.09, + "learning_rate": 1.9920571158136837e-05, + "loss": 0.0154, + "step": 52 + }, + { + "epoch": 0.09, + "learning_rate": 1.9913196946839304e-05, + "loss": 0.0319, + "step": 53 + }, + { + "epoch": 0.09, + "learning_rate": 1.990549693547166e-05, + "loss": 0.0812, + "step": 54 + }, + { + "epoch": 0.1, + "learning_rate": 1.9897471377096992e-05, + "loss": 0.0021, + "step": 55 + }, + { + "epoch": 0.1, + "learning_rate": 1.9889120535477584e-05, + "loss": 0.0049, + "step": 56 + }, + { + "epoch": 0.1, + "learning_rate": 1.9880444685066252e-05, + "loss": 0.0076, + "step": 57 + }, + { + "epoch": 0.1, + "learning_rate": 1.987144411099731e-05, + "loss": 0.0344, + "step": 58 + }, + { + "epoch": 0.1, + "learning_rate": 1.9862119109077226e-05, + "loss": 0.0273, + "step": 59 + }, + { + "epoch": 0.1, + "learning_rate": 1.985246998577486e-05, + "loss": 0.128, + "step": 60 + }, + { + "epoch": 0.11, + "learning_rate": 1.985246998577486e-05, + "loss": 0.1083, + "step": 61 + }, + { + "epoch": 0.11, + "learning_rate": 1.984249705821143e-05, + "loss": 0.0264, + "step": 62 + }, + { + "epoch": 0.11, + "learning_rate": 1.9832200654150077e-05, + "loss": 0.0513, + "step": 63 + }, + { + "epoch": 0.11, + "learning_rate": 1.9821581111985072e-05, + "loss": 0.0494, + "step": 64 + }, + { + "epoch": 0.11, + "learning_rate": 1.981063878073073e-05, + "loss": 0.0866, + "step": 65 + }, + { + "epoch": 0.11, + "learning_rate": 1.979937402000991e-05, + "loss": 0.0027, + "step": 66 + }, + { + "epoch": 0.12, + "learning_rate": 1.9787787200042224e-05, + "loss": 0.0013, + "step": 67 + }, + { + "epoch": 0.12, + "learning_rate": 1.977587870163184e-05, + "loss": 0.0624, + "step": 68 + }, + { + "epoch": 0.12, + "learning_rate": 1.9763648916154982e-05, + "loss": 0.0617, + "step": 69 + }, + { + "epoch": 0.12, + "learning_rate": 1.975109824554707e-05, + "loss": 0.0131, + "step": 70 + }, + { + "epoch": 0.12, + "learning_rate": 1.973822710228951e-05, + "loss": 0.0499, + "step": 71 + }, + { + "epoch": 0.12, + "learning_rate": 1.972503590939612e-05, + "loss": 0.0263, + "step": 72 + }, + { + "epoch": 0.13, + "learning_rate": 1.971152510039926e-05, + "loss": 0.1537, + "step": 73 + }, + { + "epoch": 0.13, + "learning_rate": 1.9697695119335547e-05, + "loss": 0.0017, + "step": 74 + }, + { + "epoch": 0.13, + "learning_rate": 1.9683546420731292e-05, + "loss": 0.0376, + "step": 75 + }, + { + "epoch": 0.13, + "learning_rate": 1.9669079469587548e-05, + "loss": 0.0018, + "step": 76 + }, + { + "epoch": 0.13, + "learning_rate": 1.965429474136482e-05, + "loss": 0.0199, + "step": 77 + }, + { + "epoch": 0.14, + "learning_rate": 1.963919272196746e-05, + "loss": 0.0501, + "step": 78 + }, + { + "epoch": 0.14, + "learning_rate": 1.9623773907727682e-05, + "loss": 0.0005, + "step": 79 + }, + { + "epoch": 0.14, + "learning_rate": 1.9608038805389253e-05, + "loss": 0.1262, + "step": 80 + }, + { + "epoch": 0.14, + "learning_rate": 1.9591987932090836e-05, + "loss": 0.0047, + "step": 81 + }, + { + "epoch": 0.14, + "learning_rate": 1.9575621815349e-05, + "loss": 0.009, + "step": 82 + }, + { + "epoch": 0.14, + "learning_rate": 1.9558940993040885e-05, + "loss": 0.0154, + "step": 83 + }, + { + "epoch": 0.15, + "learning_rate": 1.954194601338651e-05, + "loss": 0.0011, + "step": 84 + }, + { + "epoch": 0.15, + "learning_rate": 1.952463743493078e-05, + "loss": 0.0052, + "step": 85 + }, + { + "epoch": 0.15, + "learning_rate": 1.9507015826525096e-05, + "loss": 0.0229, + "step": 86 + }, + { + "epoch": 0.15, + "learning_rate": 1.9489081767308696e-05, + "loss": 0.0018, + "step": 87 + }, + { + "epoch": 0.15, + "learning_rate": 1.9470835846689596e-05, + "loss": 0.0013, + "step": 88 + }, + { + "epoch": 0.15, + "learning_rate": 1.9452278664325227e-05, + "loss": 0.0074, + "step": 89 + }, + { + "epoch": 0.16, + "learning_rate": 1.9433410830102724e-05, + "loss": 0.0205, + "step": 90 + }, + { + "epoch": 0.16, + "learning_rate": 1.9414232964118893e-05, + "loss": 0.0026, + "step": 91 + }, + { + "epoch": 0.16, + "learning_rate": 1.939474569665981e-05, + "loss": 0.1344, + "step": 92 + }, + { + "epoch": 0.16, + "learning_rate": 1.937494966818014e-05, + "loss": 0.0314, + "step": 93 + }, + { + "epoch": 0.16, + "learning_rate": 1.9354845529282042e-05, + "loss": 0.022, + "step": 94 + }, + { + "epoch": 0.16, + "learning_rate": 1.933443394069383e-05, + "loss": 0.0051, + "step": 95 + }, + { + "epoch": 0.17, + "learning_rate": 1.9313715573248238e-05, + "loss": 0.0056, + "step": 96 + }, + { + "epoch": 0.17, + "learning_rate": 1.9292691107860374e-05, + "loss": 0.0133, + "step": 97 + }, + { + "epoch": 0.17, + "learning_rate": 1.927136123550534e-05, + "loss": 0.0109, + "step": 98 + }, + { + "epoch": 0.17, + "learning_rate": 1.9249726657195534e-05, + "loss": 0.0322, + "step": 99 + }, + { + "epoch": 0.17, + "learning_rate": 1.922778808395759e-05, + "loss": 0.0068, + "step": 100 + }, + { + "epoch": 0.18, + "learning_rate": 1.9205546236809037e-05, + "loss": 0.0015, + "step": 101 + }, + { + "epoch": 0.18, + "learning_rate": 1.9183001846734573e-05, + "loss": 0.0495, + "step": 102 + }, + { + "epoch": 0.18, + "learning_rate": 1.9160155654662075e-05, + "loss": 0.0935, + "step": 103 + }, + { + "epoch": 0.18, + "learning_rate": 1.9137008411438213e-05, + "loss": 0.0096, + "step": 104 + }, + { + "epoch": 0.18, + "learning_rate": 1.9113560877803798e-05, + "loss": 0.004, + "step": 105 + }, + { + "epoch": 0.18, + "learning_rate": 1.9089813824368765e-05, + "loss": 0.0376, + "step": 106 + }, + { + "epoch": 0.19, + "learning_rate": 1.9065768031586864e-05, + "loss": 0.0069, + "step": 107 + }, + { + "epoch": 0.19, + "learning_rate": 1.9041424289729994e-05, + "loss": 0.0008, + "step": 108 + }, + { + "epoch": 0.19, + "learning_rate": 1.901678339886223e-05, + "loss": 0.014, + "step": 109 + }, + { + "epoch": 0.19, + "learning_rate": 1.8991846168813547e-05, + "loss": 0.0046, + "step": 110 + }, + { + "epoch": 0.19, + "learning_rate": 1.896661341915318e-05, + "loss": 0.0013, + "step": 111 + }, + { + "epoch": 0.19, + "learning_rate": 1.8941085979162714e-05, + "loss": 0.1203, + "step": 112 + }, + { + "epoch": 0.2, + "learning_rate": 1.891526468780881e-05, + "loss": 0.0151, + "step": 113 + }, + { + "epoch": 0.2, + "learning_rate": 1.8889150393715627e-05, + "loss": 0.0246, + "step": 114 + }, + { + "epoch": 0.2, + "learning_rate": 1.8862743955136966e-05, + "loss": 0.0282, + "step": 115 + }, + { + "epoch": 0.2, + "learning_rate": 1.8836046239928025e-05, + "loss": 0.0033, + "step": 116 + }, + { + "epoch": 0.2, + "learning_rate": 1.8809058125516894e-05, + "loss": 0.0281, + "step": 117 + }, + { + "epoch": 0.2, + "learning_rate": 1.8781780498875727e-05, + "loss": 0.0508, + "step": 118 + }, + { + "epoch": 0.21, + "learning_rate": 1.8754214256491564e-05, + "loss": 0.0738, + "step": 119 + }, + { + "epoch": 0.21, + "learning_rate": 1.8726360304336896e-05, + "loss": 0.0048, + "step": 120 + }, + { + "epoch": 0.21, + "learning_rate": 1.8698219557839875e-05, + "loss": 0.0649, + "step": 121 + }, + { + "epoch": 0.21, + "learning_rate": 1.866979294185423e-05, + "loss": 0.0053, + "step": 122 + }, + { + "epoch": 0.21, + "learning_rate": 1.864108139062888e-05, + "loss": 0.0165, + "step": 123 + }, + { + "epoch": 0.21, + "learning_rate": 1.8612085847777215e-05, + "loss": 0.0066, + "step": 124 + }, + { + "epoch": 0.22, + "learning_rate": 1.858280726624609e-05, + "loss": 0.0023, + "step": 125 + }, + { + "epoch": 0.22, + "learning_rate": 1.855324660828452e-05, + "loss": 0.0308, + "step": 126 + }, + { + "epoch": 0.22, + "learning_rate": 1.8523404845412028e-05, + "loss": 0.224, + "step": 127 + }, + { + "epoch": 0.22, + "learning_rate": 1.849328295838674e-05, + "loss": 0.0128, + "step": 128 + }, + { + "epoch": 0.22, + "learning_rate": 1.8462881937173144e-05, + "loss": 0.0362, + "step": 129 + }, + { + "epoch": 0.23, + "learning_rate": 1.8432202780909542e-05, + "loss": 0.0699, + "step": 130 + }, + { + "epoch": 0.23, + "learning_rate": 1.8401246497875238e-05, + "loss": 0.0157, + "step": 131 + }, + { + "epoch": 0.23, + "learning_rate": 1.8370014105457378e-05, + "loss": 0.0355, + "step": 132 + }, + { + "epoch": 0.23, + "learning_rate": 1.8338506630117527e-05, + "loss": 0.0003, + "step": 133 + }, + { + "epoch": 0.23, + "learning_rate": 1.8306725107357933e-05, + "loss": 0.0747, + "step": 134 + }, + { + "epoch": 0.23, + "learning_rate": 1.827467058168748e-05, + "loss": 0.0029, + "step": 135 + }, + { + "epoch": 0.24, + "learning_rate": 1.824234410658738e-05, + "loss": 0.0355, + "step": 136 + }, + { + "epoch": 0.24, + "learning_rate": 1.8209746744476538e-05, + "loss": 0.0194, + "step": 137 + }, + { + "epoch": 0.24, + "learning_rate": 1.817687956667664e-05, + "loss": 0.0548, + "step": 138 + }, + { + "epoch": 0.24, + "learning_rate": 1.8143743653376944e-05, + "loss": 0.0087, + "step": 139 + }, + { + "epoch": 0.24, + "learning_rate": 1.811034009359877e-05, + "loss": 0.0089, + "step": 140 + }, + { + "epoch": 0.24, + "learning_rate": 1.8076669985159726e-05, + "loss": 0.0073, + "step": 141 + }, + { + "epoch": 0.25, + "learning_rate": 1.8042734434637615e-05, + "loss": 0.0252, + "step": 142 + }, + { + "epoch": 0.25, + "learning_rate": 1.8008534557334064e-05, + "loss": 0.1149, + "step": 143 + }, + { + "epoch": 0.25, + "learning_rate": 1.7974071477237887e-05, + "loss": 0.0008, + "step": 144 + }, + { + "epoch": 0.25, + "learning_rate": 1.7939346326988127e-05, + "loss": 0.0276, + "step": 145 + }, + { + "epoch": 0.25, + "learning_rate": 1.7904360247836838e-05, + "loss": 0.0032, + "step": 146 + }, + { + "epoch": 0.25, + "learning_rate": 1.7869114389611574e-05, + "loss": 0.013, + "step": 147 + }, + { + "epoch": 0.26, + "learning_rate": 1.7833609910677613e-05, + "loss": 0.0004, + "step": 148 + }, + { + "epoch": 0.26, + "learning_rate": 1.7797847977899873e-05, + "loss": 0.1131, + "step": 149 + }, + { + "epoch": 0.26, + "learning_rate": 1.7761829766604556e-05, + "loss": 0.0019, + "step": 150 + }, + { + "epoch": 0.26, + "learning_rate": 1.7725556460540553e-05, + "loss": 0.0099, + "step": 151 + }, + { + "epoch": 0.26, + "learning_rate": 1.7689029251840492e-05, + "loss": 0.0627, + "step": 152 + }, + { + "epoch": 0.27, + "learning_rate": 1.7652249340981608e-05, + "loss": 0.0626, + "step": 153 + }, + { + "epoch": 0.27, + "learning_rate": 1.7615217936746246e-05, + "loss": 0.0007, + "step": 154 + }, + { + "epoch": 0.27, + "learning_rate": 1.757793625618217e-05, + "loss": 0.1323, + "step": 155 + }, + { + "epoch": 0.27, + "learning_rate": 1.7540405524562533e-05, + "loss": 0.0348, + "step": 156 + }, + { + "epoch": 0.27, + "learning_rate": 1.750262697534563e-05, + "loss": 0.0024, + "step": 157 + }, + { + "epoch": 0.27, + "learning_rate": 1.7464601850134353e-05, + "loss": 0.0134, + "step": 158 + }, + { + "epoch": 0.28, + "learning_rate": 1.742633139863538e-05, + "loss": 0.0037, + "step": 159 + }, + { + "epoch": 0.28, + "learning_rate": 1.738781687861812e-05, + "loss": 0.0089, + "step": 160 + }, + { + "epoch": 0.28, + "learning_rate": 1.7349059555873348e-05, + "loss": 0.0082, + "step": 161 + }, + { + "epoch": 0.28, + "learning_rate": 1.731006070417163e-05, + "loss": 0.0082, + "step": 162 + }, + { + "epoch": 0.28, + "learning_rate": 1.7270821605221448e-05, + "loss": 0.003, + "step": 163 + }, + { + "epoch": 0.28, + "learning_rate": 1.7231343548627085e-05, + "loss": 0.0097, + "step": 164 + }, + { + "epoch": 0.29, + "learning_rate": 1.7191627831846226e-05, + "loss": 0.0123, + "step": 165 + }, + { + "epoch": 0.29, + "learning_rate": 1.7151675760147325e-05, + "loss": 0.0011, + "step": 166 + }, + { + "epoch": 0.29, + "learning_rate": 1.7111488646566728e-05, + "loss": 0.1161, + "step": 167 + }, + { + "epoch": 0.29, + "learning_rate": 1.7071067811865477e-05, + "loss": 0.0262, + "step": 168 + }, + { + "epoch": 0.29, + "learning_rate": 1.7030414584485938e-05, + "loss": 0.0992, + "step": 169 + }, + { + "epoch": 0.29, + "learning_rate": 1.6989530300508126e-05, + "loss": 0.0019, + "step": 170 + }, + { + "epoch": 0.3, + "learning_rate": 1.6948416303605796e-05, + "loss": 0.0056, + "step": 171 + }, + { + "epoch": 0.3, + "learning_rate": 1.690707394500229e-05, + "loss": 0.0053, + "step": 172 + }, + { + "epoch": 0.3, + "learning_rate": 1.6865504583426117e-05, + "loss": 0.0796, + "step": 173 + }, + { + "epoch": 0.3, + "learning_rate": 1.6823709585066308e-05, + "loss": 0.003, + "step": 174 + }, + { + "epoch": 0.3, + "learning_rate": 1.6781690323527512e-05, + "loss": 0.0228, + "step": 175 + }, + { + "epoch": 0.31, + "learning_rate": 1.6739448179784846e-05, + "loss": 0.0108, + "step": 176 + }, + { + "epoch": 0.31, + "learning_rate": 1.669698454213852e-05, + "loss": 0.0053, + "step": 177 + }, + { + "epoch": 0.31, + "learning_rate": 1.665430080616821e-05, + "loss": 0.0339, + "step": 178 + }, + { + "epoch": 0.31, + "learning_rate": 1.6611398374687172e-05, + "loss": 0.0375, + "step": 179 + }, + { + "epoch": 0.31, + "learning_rate": 1.6568278657696166e-05, + "loss": 0.0007, + "step": 180 + }, + { + "epoch": 0.31, + "learning_rate": 1.6524943072337094e-05, + "loss": 0.002, + "step": 181 + }, + { + "epoch": 0.32, + "learning_rate": 1.6481393042846442e-05, + "loss": 0.0152, + "step": 182 + }, + { + "epoch": 0.32, + "learning_rate": 1.6437630000508466e-05, + "loss": 0.0039, + "step": 183 + }, + { + "epoch": 0.32, + "learning_rate": 1.6393655383608132e-05, + "loss": 0.0065, + "step": 184 + }, + { + "epoch": 0.32, + "learning_rate": 1.634947063738389e-05, + "loss": 0.0028, + "step": 185 + }, + { + "epoch": 0.32, + "learning_rate": 1.630507721398013e-05, + "loss": 0.0037, + "step": 186 + }, + { + "epoch": 0.32, + "learning_rate": 1.6260476572399494e-05, + "loss": 0.013, + "step": 187 + }, + { + "epoch": 0.33, + "learning_rate": 1.6215670178454893e-05, + "loss": 0.0137, + "step": 188 + }, + { + "epoch": 0.33, + "learning_rate": 1.6170659504721365e-05, + "loss": 0.0516, + "step": 189 + }, + { + "epoch": 0.33, + "learning_rate": 1.6125446030487642e-05, + "loss": 0.0333, + "step": 190 + }, + { + "epoch": 0.33, + "learning_rate": 1.608003124170758e-05, + "loss": 0.0041, + "step": 191 + }, + { + "epoch": 0.33, + "learning_rate": 1.6034416630951265e-05, + "loss": 0.0053, + "step": 192 + }, + { + "epoch": 0.33, + "learning_rate": 1.598860369735601e-05, + "loss": 0.0003, + "step": 193 + }, + { + "epoch": 0.34, + "learning_rate": 1.594259394657707e-05, + "loss": 0.2021, + "step": 194 + }, + { + "epoch": 0.34, + "learning_rate": 1.589638889073813e-05, + "loss": 0.0217, + "step": 195 + }, + { + "epoch": 0.34, + "learning_rate": 1.584999004838165e-05, + "loss": 0.0141, + "step": 196 + }, + { + "epoch": 0.34, + "learning_rate": 1.5803398944418934e-05, + "loss": 0.0006, + "step": 197 + }, + { + "epoch": 0.34, + "learning_rate": 1.5756617110080023e-05, + "loss": 0.0186, + "step": 198 + }, + { + "epoch": 0.34, + "learning_rate": 1.570964608286336e-05, + "loss": 0.0073, + "step": 199 + }, + { + "epoch": 0.35, + "learning_rate": 1.5662487406485273e-05, + "loss": 0.0481, + "step": 200 + }, + { + "epoch": 0.35, + "learning_rate": 1.561514263082923e-05, + "loss": 0.0002, + "step": 201 + }, + { + "epoch": 0.35, + "learning_rate": 1.5567613311894908e-05, + "loss": 0.0093, + "step": 202 + }, + { + "epoch": 0.35, + "learning_rate": 1.5519901011747046e-05, + "loss": 0.0393, + "step": 203 + }, + { + "epoch": 0.35, + "learning_rate": 1.5472007298464117e-05, + "loss": 0.0019, + "step": 204 + }, + { + "epoch": 0.36, + "learning_rate": 1.5423933746086793e-05, + "loss": 0.0035, + "step": 205 + }, + { + "epoch": 0.36, + "learning_rate": 1.5375681934566203e-05, + "loss": 0.0926, + "step": 206 + }, + { + "epoch": 0.36, + "learning_rate": 1.532725344971202e-05, + "loss": 0.0379, + "step": 207 + }, + { + "epoch": 0.36, + "learning_rate": 1.527864988314033e-05, + "loss": 0.0011, + "step": 208 + }, + { + "epoch": 0.36, + "learning_rate": 1.5229872832221336e-05, + "loss": 0.0024, + "step": 209 + }, + { + "epoch": 0.36, + "learning_rate": 1.5180923900026847e-05, + "loss": 0.0005, + "step": 210 + }, + { + "epoch": 0.37, + "learning_rate": 1.5131804695277612e-05, + "loss": 0.002, + "step": 211 + }, + { + "epoch": 0.37, + "learning_rate": 1.5131804695277612e-05, + "loss": 0.195, + "step": 212 + }, + { + "epoch": 0.37, + "learning_rate": 1.5082516832290424e-05, + "loss": 0.0007, + "step": 213 + }, + { + "epoch": 0.37, + "learning_rate": 1.5082516832290424e-05, + "loss": 0.0333, + "step": 214 + }, + { + "epoch": 0.37, + "learning_rate": 1.5033061930925081e-05, + "loss": 0.0148, + "step": 215 + }, + { + "epoch": 0.37, + "learning_rate": 1.4983441616531152e-05, + "loss": 0.1092, + "step": 216 + }, + { + "epoch": 0.38, + "learning_rate": 1.4933657519894542e-05, + "loss": 0.0003, + "step": 217 + }, + { + "epoch": 0.38, + "learning_rate": 1.4883711277183917e-05, + "loss": 0.0008, + "step": 218 + }, + { + "epoch": 0.38, + "learning_rate": 1.483360452989691e-05, + "loss": 0.0761, + "step": 219 + }, + { + "epoch": 0.38, + "learning_rate": 1.4783338924806191e-05, + "loss": 0.0002, + "step": 220 + }, + { + "epoch": 0.38, + "learning_rate": 1.4732916113905336e-05, + "loss": 0.0023, + "step": 221 + }, + { + "epoch": 0.38, + "learning_rate": 1.4682337754354534e-05, + "loss": 0.0008, + "step": 222 + }, + { + "epoch": 0.39, + "learning_rate": 1.4631605508426124e-05, + "loss": 0.0004, + "step": 223 + }, + { + "epoch": 0.39, + "learning_rate": 1.4580721043449968e-05, + "loss": 0.0853, + "step": 224 + }, + { + "epoch": 0.39, + "learning_rate": 1.4529686031758642e-05, + "loss": 0.0958, + "step": 225 + }, + { + "epoch": 0.39, + "learning_rate": 1.4478502150632503e-05, + "loss": 0.0142, + "step": 226 + }, + { + "epoch": 0.39, + "learning_rate": 1.4427171082244523e-05, + "loss": 0.038, + "step": 227 + }, + { + "epoch": 0.4, + "learning_rate": 1.4375694513605037e-05, + "loss": 0.004, + "step": 228 + }, + { + "epoch": 0.4, + "learning_rate": 1.4324074136506283e-05, + "loss": 0.0091, + "step": 229 + }, + { + "epoch": 0.4, + "learning_rate": 1.427231164746681e-05, + "loss": 0.0714, + "step": 230 + }, + { + "epoch": 0.4, + "learning_rate": 1.4220408747675714e-05, + "loss": 0.0618, + "step": 231 + }, + { + "epoch": 0.4, + "learning_rate": 1.4168367142936736e-05, + "loss": 0.031, + "step": 232 + }, + { + "epoch": 0.4, + "learning_rate": 1.4116188543612182e-05, + "loss": 0.0235, + "step": 233 + }, + { + "epoch": 0.41, + "learning_rate": 1.4063874664566734e-05, + "loss": 0.0027, + "step": 234 + }, + { + "epoch": 0.41, + "learning_rate": 1.4011427225111091e-05, + "loss": 0.1164, + "step": 235 + }, + { + "epoch": 0.41, + "learning_rate": 1.3958847948945428e-05, + "loss": 0.0296, + "step": 236 + }, + { + "epoch": 0.41, + "learning_rate": 1.3906138564102794e-05, + "loss": 0.0319, + "step": 237 + }, + { + "epoch": 0.41, + "learning_rate": 1.3853300802892285e-05, + "loss": 0.0744, + "step": 238 + }, + { + "epoch": 0.41, + "learning_rate": 1.380033640184213e-05, + "loss": 0.0016, + "step": 239 + }, + { + "epoch": 0.42, + "learning_rate": 1.3747247101642605e-05, + "loss": 0.0307, + "step": 240 + }, + { + "epoch": 0.42, + "learning_rate": 1.369403464708884e-05, + "loss": 0.0102, + "step": 241 + }, + { + "epoch": 0.42, + "learning_rate": 1.3640700787023465e-05, + "loss": 0.0709, + "step": 242 + }, + { + "epoch": 0.42, + "learning_rate": 1.358724727427914e-05, + "loss": 0.0292, + "step": 243 + }, + { + "epoch": 0.42, + "learning_rate": 1.3533675865620937e-05, + "loss": 0.0308, + "step": 244 + }, + { + "epoch": 0.42, + "learning_rate": 1.3479988321688619e-05, + "loss": 0.0331, + "step": 245 + }, + { + "epoch": 0.43, + "learning_rate": 1.3426186406938769e-05, + "loss": 0.0022, + "step": 246 + }, + { + "epoch": 0.43, + "learning_rate": 1.337227188958679e-05, + "loss": 0.0527, + "step": 247 + }, + { + "epoch": 0.43, + "learning_rate": 1.3318246541548812e-05, + "loss": 0.0625, + "step": 248 + }, + { + "epoch": 0.43, + "learning_rate": 1.3264112138383445e-05, + "loss": 0.121, + "step": 249 + }, + { + "epoch": 0.43, + "learning_rate": 1.3209870459233422e-05, + "loss": 0.1122, + "step": 250 + }, + { + "epoch": 0.44, + "learning_rate": 1.315552328676714e-05, + "loss": 0.0018, + "step": 251 + }, + { + "epoch": 0.44, + "learning_rate": 1.3101072407120056e-05, + "loss": 0.1122, + "step": 252 + }, + { + "epoch": 0.44, + "learning_rate": 1.3046519609836002e-05, + "loss": 0.028, + "step": 253 + }, + { + "epoch": 0.44, + "learning_rate": 1.2991866687808355e-05, + "loss": 0.004, + "step": 254 + }, + { + "epoch": 0.44, + "learning_rate": 1.2937115437221119e-05, + "loss": 0.1273, + "step": 255 + }, + { + "epoch": 0.44, + "learning_rate": 1.2882267657489908e-05, + "loss": 0.0723, + "step": 256 + }, + { + "epoch": 0.45, + "learning_rate": 1.2827325151202783e-05, + "loss": 0.0252, + "step": 257 + }, + { + "epoch": 0.45, + "learning_rate": 1.2772289724061015e-05, + "loss": 0.0202, + "step": 258 + }, + { + "epoch": 0.45, + "learning_rate": 1.2717163184819761e-05, + "loss": 0.005, + "step": 259 + }, + { + "epoch": 0.45, + "learning_rate": 1.2661947345228593e-05, + "loss": 0.0346, + "step": 260 + }, + { + "epoch": 0.45, + "learning_rate": 1.2606644019971967e-05, + "loss": 0.0018, + "step": 261 + }, + { + "epoch": 0.45, + "learning_rate": 1.255125502660958e-05, + "loss": 0.001, + "step": 262 + }, + { + "epoch": 0.46, + "learning_rate": 1.2495782185516638e-05, + "loss": 0.0267, + "step": 263 + }, + { + "epoch": 0.46, + "learning_rate": 1.2440227319824024e-05, + "loss": 0.0369, + "step": 264 + }, + { + "epoch": 0.46, + "learning_rate": 1.2384592255358385e-05, + "loss": 0.085, + "step": 265 + }, + { + "epoch": 0.46, + "learning_rate": 1.2328878820582122e-05, + "loss": 0.0776, + "step": 266 + }, + { + "epoch": 0.46, + "learning_rate": 1.2273088846533303e-05, + "loss": 0.0086, + "step": 267 + }, + { + "epoch": 0.46, + "learning_rate": 1.2217224166765478e-05, + "loss": 0.1672, + "step": 268 + }, + { + "epoch": 0.47, + "learning_rate": 1.216128661728742e-05, + "loss": 0.0571, + "step": 269 + }, + { + "epoch": 0.47, + "learning_rate": 1.2105278036502787e-05, + "loss": 0.0663, + "step": 270 + }, + { + "epoch": 0.47, + "learning_rate": 1.204920026514971e-05, + "loss": 0.0057, + "step": 271 + }, + { + "epoch": 0.47, + "learning_rate": 1.1993055146240273e-05, + "loss": 0.018, + "step": 272 + }, + { + "epoch": 0.47, + "learning_rate": 1.1936844524999966e-05, + "loss": 0.0013, + "step": 273 + }, + { + "epoch": 0.47, + "learning_rate": 1.1880570248807033e-05, + "loss": 0.0021, + "step": 274 + }, + { + "epoch": 0.48, + "learning_rate": 1.1824234167131748e-05, + "loss": 0.0732, + "step": 275 + }, + { + "epoch": 0.48, + "learning_rate": 1.1767838131475654e-05, + "loss": 0.0053, + "step": 276 + }, + { + "epoch": 0.48, + "learning_rate": 1.171138399531068e-05, + "loss": 0.0258, + "step": 277 + }, + { + "epoch": 0.48, + "learning_rate": 1.1654873614018266e-05, + "loss": 0.0943, + "step": 278 + }, + { + "epoch": 0.48, + "learning_rate": 1.1598308844828348e-05, + "loss": 0.0011, + "step": 279 + }, + { + "epoch": 0.49, + "learning_rate": 1.1541691546758343e-05, + "loss": 0.0781, + "step": 280 + }, + { + "epoch": 0.49, + "learning_rate": 1.1485023580552039e-05, + "loss": 0.0078, + "step": 281 + }, + { + "epoch": 0.49, + "learning_rate": 1.1428306808618456e-05, + "loss": 0.067, + "step": 282 + }, + { + "epoch": 0.49, + "learning_rate": 1.1371543094970624e-05, + "loss": 0.0188, + "step": 283 + }, + { + "epoch": 0.49, + "learning_rate": 1.131473430516432e-05, + "loss": 0.0005, + "step": 284 + }, + { + "epoch": 0.49, + "learning_rate": 1.1257882306236776e-05, + "loss": 0.0017, + "step": 285 + }, + { + "epoch": 0.5, + "learning_rate": 1.1200988966645286e-05, + "loss": 0.0009, + "step": 286 + }, + { + "epoch": 0.5, + "learning_rate": 1.1144056156205834e-05, + "loss": 0.0087, + "step": 287 + }, + { + "epoch": 0.5, + "learning_rate": 1.1087085746031612e-05, + "loss": 0.0678, + "step": 288 + }, + { + "epoch": 0.5, + "learning_rate": 1.1030079608471544e-05, + "loss": 0.002, + "step": 289 + }, + { + "epoch": 0.5, + "learning_rate": 1.0973039617048748e-05, + "loss": 0.0742, + "step": 290 + }, + { + "epoch": 0.5, + "learning_rate": 1.091596764639895e-05, + "loss": 0.001, + "step": 291 + }, + { + "epoch": 0.51, + "learning_rate": 1.0858865572208892e-05, + "loss": 0.0016, + "step": 292 + }, + { + "epoch": 0.51, + "learning_rate": 1.080173527115467e-05, + "loss": 0.0317, + "step": 293 + }, + { + "epoch": 0.51, + "learning_rate": 1.0744578620840065e-05, + "loss": 0.0461, + "step": 294 + }, + { + "epoch": 0.51, + "learning_rate": 1.0687397499734842e-05, + "loss": 0.002, + "step": 295 + }, + { + "epoch": 0.51, + "learning_rate": 1.0630193787112994e-05, + "loss": 0.0008, + "step": 296 + }, + { + "epoch": 0.51, + "learning_rate": 1.0572969362991e-05, + "loss": 0.0604, + "step": 297 + }, + { + "epoch": 0.52, + "learning_rate": 1.0515726108066025e-05, + "loss": 0.0513, + "step": 298 + }, + { + "epoch": 0.52, + "learning_rate": 1.0458465903654107e-05, + "loss": 0.0007, + "step": 299 + }, + { + "epoch": 0.52, + "learning_rate": 1.0401190631628348e-05, + "loss": 0.0144, + "step": 300 + }, + { + "epoch": 0.52, + "learning_rate": 1.034390217435704e-05, + "loss": 0.0002, + "step": 301 + }, + { + "epoch": 0.52, + "learning_rate": 1.0286602414641818e-05, + "loss": 0.007, + "step": 302 + }, + { + "epoch": 0.53, + "learning_rate": 1.0229293235655768e-05, + "loss": 0.0012, + "step": 303 + }, + { + "epoch": 0.53, + "learning_rate": 1.0171976520881552e-05, + "loss": 0.0118, + "step": 304 + }, + { + "epoch": 0.53, + "learning_rate": 1.011465415404949e-05, + "loss": 0.0163, + "step": 305 + }, + { + "epoch": 0.53, + "learning_rate": 1.005732801907567e-05, + "loss": 0.0012, + "step": 306 + }, + { + "epoch": 0.53, + "learning_rate": 1e-05, + "loss": 0.0206, + "step": 307 + }, + { + "epoch": 0.53, + "learning_rate": 9.942671980924336e-06, + "loss": 0.0014, + "step": 308 + }, + { + "epoch": 0.54, + "learning_rate": 9.88534584595051e-06, + "loss": 0.008, + "step": 309 + }, + { + "epoch": 0.54, + "learning_rate": 9.82802347911845e-06, + "loss": 0.0016, + "step": 310 + }, + { + "epoch": 0.54, + "learning_rate": 9.770706764344235e-06, + "loss": 0.0019, + "step": 311 + }, + { + "epoch": 0.54, + "learning_rate": 9.713397585358189e-06, + "loss": 0.0082, + "step": 312 + }, + { + "epoch": 0.54, + "learning_rate": 9.65609782564296e-06, + "loss": 0.1033, + "step": 313 + }, + { + "epoch": 0.54, + "learning_rate": 9.598809368371656e-06, + "loss": 0.06, + "step": 314 + }, + { + "epoch": 0.55, + "learning_rate": 9.541534096345896e-06, + "loss": 0.0028, + "step": 315 + }, + { + "epoch": 0.55, + "learning_rate": 9.484273891933982e-06, + "loss": 0.0309, + "step": 316 + }, + { + "epoch": 0.55, + "learning_rate": 9.427030637009002e-06, + "loss": 0.0243, + "step": 317 + }, + { + "epoch": 0.55, + "learning_rate": 9.369806212887008e-06, + "loss": 0.0116, + "step": 318 + }, + { + "epoch": 0.55, + "learning_rate": 9.312602500265162e-06, + "loss": 0.0049, + "step": 319 + }, + { + "epoch": 0.55, + "learning_rate": 9.255421379159935e-06, + "loss": 0.0005, + "step": 320 + }, + { + "epoch": 0.56, + "learning_rate": 9.198264728845332e-06, + "loss": 0.1163, + "step": 321 + }, + { + "epoch": 0.56, + "learning_rate": 9.14113442779111e-06, + "loss": 0.007, + "step": 322 + }, + { + "epoch": 0.56, + "learning_rate": 9.084032353601053e-06, + "loss": 0.0624, + "step": 323 + }, + { + "epoch": 0.56, + "learning_rate": 9.026960382951253e-06, + "loss": 0.0014, + "step": 324 + }, + { + "epoch": 0.56, + "learning_rate": 8.969920391528459e-06, + "loss": 0.0039, + "step": 325 + }, + { + "epoch": 0.56, + "learning_rate": 8.912914253968391e-06, + "loss": 0.0032, + "step": 326 + }, + { + "epoch": 0.57, + "learning_rate": 8.855943843794171e-06, + "loss": 0.0022, + "step": 327 + }, + { + "epoch": 0.57, + "learning_rate": 8.799011033354716e-06, + "loss": 0.036, + "step": 328 + }, + { + "epoch": 0.57, + "learning_rate": 8.742117693763229e-06, + "loss": 0.0109, + "step": 329 + }, + { + "epoch": 0.57, + "learning_rate": 8.685265694835681e-06, + "loss": 0.1677, + "step": 330 + }, + { + "epoch": 0.57, + "learning_rate": 8.628456905029383e-06, + "loss": 0.0719, + "step": 331 + }, + { + "epoch": 0.58, + "learning_rate": 8.571693191381545e-06, + "loss": 0.0012, + "step": 332 + }, + { + "epoch": 0.58, + "learning_rate": 8.514976419447963e-06, + "loss": 0.0172, + "step": 333 + }, + { + "epoch": 0.58, + "learning_rate": 8.458308453241664e-06, + "loss": 0.0033, + "step": 334 + }, + { + "epoch": 0.58, + "learning_rate": 8.401691155171654e-06, + "loss": 0.0215, + "step": 335 + }, + { + "epoch": 0.58, + "learning_rate": 8.345126385981737e-06, + "loss": 0.0965, + "step": 336 + }, + { + "epoch": 0.58, + "learning_rate": 8.288616004689321e-06, + "loss": 0.0044, + "step": 337 + }, + { + "epoch": 0.59, + "learning_rate": 8.23216186852435e-06, + "loss": 0.0018, + "step": 338 + }, + { + "epoch": 0.59, + "learning_rate": 8.175765832868252e-06, + "loss": 0.0035, + "step": 339 + }, + { + "epoch": 0.59, + "learning_rate": 8.119429751192972e-06, + "loss": 0.0413, + "step": 340 + }, + { + "epoch": 0.59, + "learning_rate": 8.063155475000037e-06, + "loss": 0.0011, + "step": 341 + }, + { + "epoch": 0.59, + "learning_rate": 8.006944853759732e-06, + "loss": 0.0175, + "step": 342 + }, + { + "epoch": 0.59, + "learning_rate": 7.950799734850292e-06, + "loss": 0.0034, + "step": 343 + }, + { + "epoch": 0.6, + "learning_rate": 7.894721963497214e-06, + "loss": 0.0622, + "step": 344 + }, + { + "epoch": 0.6, + "learning_rate": 7.838713382712583e-06, + "loss": 0.085, + "step": 345 + }, + { + "epoch": 0.6, + "learning_rate": 7.782775833234522e-06, + "loss": 0.0018, + "step": 346 + }, + { + "epoch": 0.6, + "learning_rate": 7.726911153466699e-06, + "loss": 0.0569, + "step": 347 + }, + { + "epoch": 0.6, + "learning_rate": 7.67112117941788e-06, + "loss": 0.0022, + "step": 348 + }, + { + "epoch": 0.6, + "learning_rate": 7.615407744641618e-06, + "loss": 0.0948, + "step": 349 + }, + { + "epoch": 0.61, + "learning_rate": 7.559772680175979e-06, + "loss": 0.0015, + "step": 350 + }, + { + "epoch": 0.61, + "learning_rate": 7.504217814483364e-06, + "loss": 0.0014, + "step": 351 + }, + { + "epoch": 0.61, + "learning_rate": 7.448744973390423e-06, + "loss": 0.0025, + "step": 352 + }, + { + "epoch": 0.61, + "learning_rate": 7.393355980028039e-06, + "loss": 0.095, + "step": 353 + }, + { + "epoch": 0.61, + "learning_rate": 7.338052654771407e-06, + "loss": 0.019, + "step": 354 + }, + { + "epoch": 0.62, + "learning_rate": 7.282836815180241e-06, + "loss": 0.001, + "step": 355 + }, + { + "epoch": 0.62, + "learning_rate": 7.227710275938987e-06, + "loss": 0.0035, + "step": 356 + }, + { + "epoch": 0.62, + "learning_rate": 7.172674848797218e-06, + "loss": 0.0793, + "step": 357 + }, + { + "epoch": 0.62, + "learning_rate": 7.117732342510093e-06, + "loss": 0.0008, + "step": 358 + }, + { + "epoch": 0.62, + "learning_rate": 7.062884562778883e-06, + "loss": 0.0129, + "step": 359 + }, + { + "epoch": 0.62, + "learning_rate": 7.008133312191649e-06, + "loss": 0.0234, + "step": 360 + }, + { + "epoch": 0.63, + "learning_rate": 6.953480390164001e-06, + "loss": 0.0049, + "step": 361 + }, + { + "epoch": 0.63, + "learning_rate": 6.898927592879945e-06, + "loss": 0.0133, + "step": 362 + }, + { + "epoch": 0.63, + "learning_rate": 6.844476713232863e-06, + "loss": 0.0024, + "step": 363 + }, + { + "epoch": 0.63, + "learning_rate": 6.790129540766581e-06, + "loss": 0.0112, + "step": 364 + }, + { + "epoch": 0.63, + "learning_rate": 6.735887861616555e-06, + "loss": 0.0018, + "step": 365 + }, + { + "epoch": 0.63, + "learning_rate": 6.68175345845119e-06, + "loss": 0.0021, + "step": 366 + }, + { + "epoch": 0.64, + "learning_rate": 6.627728110413214e-06, + "loss": 0.0347, + "step": 367 + }, + { + "epoch": 0.64, + "learning_rate": 6.5738135930612355e-06, + "loss": 0.0193, + "step": 368 + }, + { + "epoch": 0.64, + "learning_rate": 6.520011678311382e-06, + "loss": 0.001, + "step": 369 + }, + { + "epoch": 0.64, + "learning_rate": 6.466324134379066e-06, + "loss": 0.0499, + "step": 370 + }, + { + "epoch": 0.64, + "learning_rate": 6.412752725720864e-06, + "loss": 0.0011, + "step": 371 + }, + { + "epoch": 0.64, + "learning_rate": 6.359299212976535e-06, + "loss": 0.0006, + "step": 372 + }, + { + "epoch": 0.65, + "learning_rate": 6.305965352911162e-06, + "loss": 0.0025, + "step": 373 + }, + { + "epoch": 0.65, + "learning_rate": 6.252752898357397e-06, + "loss": 0.0015, + "step": 374 + }, + { + "epoch": 0.65, + "learning_rate": 6.1996635981578755e-06, + "loss": 0.0019, + "step": 375 + }, + { + "epoch": 0.65, + "learning_rate": 6.146699197107715e-06, + "loss": 0.0344, + "step": 376 + }, + { + "epoch": 0.65, + "learning_rate": 6.093861435897208e-06, + "loss": 0.001, + "step": 377 + }, + { + "epoch": 0.66, + "learning_rate": 6.041152051054575e-06, + "loss": 0.0007, + "step": 378 + }, + { + "epoch": 0.66, + "learning_rate": 5.988572774888913e-06, + "loss": 0.0031, + "step": 379 + }, + { + "epoch": 0.66, + "learning_rate": 5.936125335433265e-06, + "loss": 0.0145, + "step": 380 + }, + { + "epoch": 0.66, + "learning_rate": 5.883811456387821e-06, + "loss": 0.0021, + "step": 381 + }, + { + "epoch": 0.66, + "learning_rate": 5.831632857063271e-06, + "loss": 0.0145, + "step": 382 + }, + { + "epoch": 0.66, + "learning_rate": 5.779591252324286e-06, + "loss": 0.0127, + "step": 383 + }, + { + "epoch": 0.67, + "learning_rate": 5.7276883525331915e-06, + "loss": 0.0031, + "step": 384 + }, + { + "epoch": 0.67, + "learning_rate": 5.675925863493721e-06, + "loss": 0.0029, + "step": 385 + }, + { + "epoch": 0.67, + "learning_rate": 5.6243054863949675e-06, + "loss": 0.0011, + "step": 386 + }, + { + "epoch": 0.67, + "learning_rate": 5.5728289177554805e-06, + "loss": 0.0057, + "step": 387 + }, + { + "epoch": 0.67, + "learning_rate": 5.521497849367501e-06, + "loss": 0.0019, + "step": 388 + }, + { + "epoch": 0.67, + "learning_rate": 5.4703139682413585e-06, + "loss": 0.0126, + "step": 389 + }, + { + "epoch": 0.68, + "learning_rate": 5.419278956550037e-06, + "loss": 0.0415, + "step": 390 + }, + { + "epoch": 0.68, + "learning_rate": 5.368394491573876e-06, + "loss": 0.0075, + "step": 391 + }, + { + "epoch": 0.68, + "learning_rate": 5.31766224564547e-06, + "loss": 0.0004, + "step": 392 + }, + { + "epoch": 0.68, + "learning_rate": 5.267083886094668e-06, + "loss": 0.0172, + "step": 393 + }, + { + "epoch": 0.68, + "learning_rate": 5.216661075193814e-06, + "loss": 0.0011, + "step": 394 + }, + { + "epoch": 0.68, + "learning_rate": 5.166395470103092e-06, + "loss": 0.0028, + "step": 395 + }, + { + "epoch": 0.69, + "learning_rate": 5.116288722816087e-06, + "loss": 0.0013, + "step": 396 + }, + { + "epoch": 0.69, + "learning_rate": 5.06634248010546e-06, + "loss": 0.072, + "step": 397 + }, + { + "epoch": 0.69, + "learning_rate": 5.016558383468851e-06, + "loss": 0.0028, + "step": 398 + }, + { + "epoch": 0.69, + "learning_rate": 4.9669380690749215e-06, + "loss": 0.0076, + "step": 399 + }, + { + "epoch": 0.69, + "learning_rate": 4.91748316770958e-06, + "loss": 0.0003, + "step": 400 + }, + { + "epoch": 0.69, + "learning_rate": 4.868195304722391e-06, + "loss": 0.0006, + "step": 401 + }, + { + "epoch": 0.7, + "learning_rate": 4.819076099973152e-06, + "loss": 0.0058, + "step": 402 + }, + { + "epoch": 0.7, + "learning_rate": 4.77012716777867e-06, + "loss": 0.0224, + "step": 403 + }, + { + "epoch": 0.7, + "learning_rate": 4.721350116859675e-06, + "loss": 0.0062, + "step": 404 + }, + { + "epoch": 0.7, + "learning_rate": 4.672746550287985e-06, + "loss": 0.0003, + "step": 405 + }, + { + "epoch": 0.7, + "learning_rate": 4.6243180654337975e-06, + "loss": 0.0108, + "step": 406 + }, + { + "epoch": 0.71, + "learning_rate": 4.576066253913209e-06, + "loss": 0.0757, + "step": 407 + }, + { + "epoch": 0.71, + "learning_rate": 4.527992701535884e-06, + "loss": 0.0041, + "step": 408 + }, + { + "epoch": 0.71, + "learning_rate": 4.480098988252958e-06, + "loss": 0.0003, + "step": 409 + }, + { + "epoch": 0.71, + "learning_rate": 4.432386688105095e-06, + "loss": 0.0002, + "step": 410 + }, + { + "epoch": 0.71, + "learning_rate": 4.384857369170772e-06, + "loss": 0.0172, + "step": 411 + }, + { + "epoch": 0.71, + "learning_rate": 4.337512593514729e-06, + "loss": 0.0877, + "step": 412 + }, + { + "epoch": 0.72, + "learning_rate": 4.290353917136639e-06, + "loss": 0.0002, + "step": 413 + }, + { + "epoch": 0.72, + "learning_rate": 4.243382889919981e-06, + "loss": 0.0003, + "step": 414 + }, + { + "epoch": 0.72, + "learning_rate": 4.1966010555810696e-06, + "loss": 0.0683, + "step": 415 + }, + { + "epoch": 0.72, + "learning_rate": 4.1500099516183555e-06, + "loss": 0.072, + "step": 416 + }, + { + "epoch": 0.72, + "learning_rate": 4.1036111092618725e-06, + "loss": 0.0009, + "step": 417 + }, + { + "epoch": 0.72, + "learning_rate": 4.057406053422933e-06, + "loss": 0.0029, + "step": 418 + }, + { + "epoch": 0.73, + "learning_rate": 4.011396302643989e-06, + "loss": 0.0039, + "step": 419 + }, + { + "epoch": 0.73, + "learning_rate": 3.965583369048737e-06, + "loss": 0.0005, + "step": 420 + }, + { + "epoch": 0.73, + "learning_rate": 3.919968758292425e-06, + "loss": 0.0412, + "step": 421 + }, + { + "epoch": 0.73, + "learning_rate": 3.874553969512358e-06, + "loss": 0.0023, + "step": 422 + }, + { + "epoch": 0.73, + "learning_rate": 3.82934049527864e-06, + "loss": 0.0233, + "step": 423 + }, + { + "epoch": 0.73, + "learning_rate": 3.784329821545105e-06, + "loss": 0.0006, + "step": 424 + }, + { + "epoch": 0.74, + "learning_rate": 3.739523427600509e-06, + "loss": 0.0702, + "step": 425 + }, + { + "epoch": 0.74, + "learning_rate": 3.6949227860198712e-06, + "loss": 0.0131, + "step": 426 + }, + { + "epoch": 0.74, + "learning_rate": 3.650529362616113e-06, + "loss": 0.0916, + "step": 427 + }, + { + "epoch": 0.74, + "learning_rate": 3.606344616391867e-06, + "loss": 0.0005, + "step": 428 + }, + { + "epoch": 0.74, + "learning_rate": 3.5623699994915363e-06, + "loss": 0.0059, + "step": 429 + }, + { + "epoch": 0.75, + "learning_rate": 3.5186069571535575e-06, + "loss": 0.0003, + "step": 430 + }, + { + "epoch": 0.75, + "learning_rate": 3.475056927662912e-06, + "loss": 0.0022, + "step": 431 + }, + { + "epoch": 0.75, + "learning_rate": 3.4317213423038386e-06, + "loss": 0.1156, + "step": 432 + }, + { + "epoch": 0.75, + "learning_rate": 3.388601625312833e-06, + "loss": 0.0024, + "step": 433 + }, + { + "epoch": 0.75, + "learning_rate": 3.345699193831795e-06, + "loss": 0.0005, + "step": 434 + }, + { + "epoch": 0.75, + "learning_rate": 3.3030154578614783e-06, + "loss": 0.0683, + "step": 435 + }, + { + "epoch": 0.76, + "learning_rate": 3.2605518202151577e-06, + "loss": 0.0005, + "step": 436 + }, + { + "epoch": 0.76, + "learning_rate": 3.218309676472492e-06, + "loss": 0.0051, + "step": 437 + }, + { + "epoch": 0.76, + "learning_rate": 3.1762904149336947e-06, + "loss": 0.051, + "step": 438 + }, + { + "epoch": 0.76, + "learning_rate": 3.134495416573884e-06, + "loss": 0.0281, + "step": 439 + }, + { + "epoch": 0.76, + "learning_rate": 3.0929260549977116e-06, + "loss": 0.2115, + "step": 440 + }, + { + "epoch": 0.76, + "learning_rate": 3.0515836963942056e-06, + "loss": 0.0008, + "step": 441 + }, + { + "epoch": 0.77, + "learning_rate": 3.01046969949188e-06, + "loss": 0.0005, + "step": 442 + }, + { + "epoch": 0.77, + "learning_rate": 2.9695854155140648e-06, + "loss": 0.1599, + "step": 443 + }, + { + "epoch": 0.77, + "learning_rate": 2.9289321881345257e-06, + "loss": 0.0008, + "step": 444 + }, + { + "epoch": 0.77, + "learning_rate": 2.8885113534332742e-06, + "loss": 0.1016, + "step": 445 + }, + { + "epoch": 0.77, + "learning_rate": 2.8483242398526723e-06, + "loss": 0.1585, + "step": 446 + }, + { + "epoch": 0.77, + "learning_rate": 2.80837216815378e-06, + "loss": 0.1403, + "step": 447 + }, + { + "epoch": 0.78, + "learning_rate": 2.7686564513729198e-06, + "loss": 0.0157, + "step": 448 + }, + { + "epoch": 0.78, + "learning_rate": 2.7291783947785544e-06, + "loss": 0.0033, + "step": 449 + }, + { + "epoch": 0.78, + "learning_rate": 2.689939295828371e-06, + "loss": 0.0015, + "step": 450 + }, + { + "epoch": 0.78, + "learning_rate": 2.650940444126654e-06, + "loss": 0.0435, + "step": 451 + }, + { + "epoch": 0.78, + "learning_rate": 2.6121831213818825e-06, + "loss": 0.0008, + "step": 452 + }, + { + "epoch": 0.79, + "learning_rate": 2.5736686013646226e-06, + "loss": 0.0009, + "step": 453 + }, + { + "epoch": 0.79, + "learning_rate": 2.535398149865651e-06, + "loss": 0.1289, + "step": 454 + }, + { + "epoch": 0.79, + "learning_rate": 2.4973730246543736e-06, + "loss": 0.0088, + "step": 455 + }, + { + "epoch": 0.79, + "learning_rate": 2.4595944754374723e-06, + "loss": 0.0111, + "step": 456 + }, + { + "epoch": 0.79, + "learning_rate": 2.422063743817832e-06, + "loss": 0.0183, + "step": 457 + }, + { + "epoch": 0.79, + "learning_rate": 2.3847820632537565e-06, + "loss": 0.0222, + "step": 458 + }, + { + "epoch": 0.8, + "learning_rate": 2.347750659018397e-06, + "loss": 0.0018, + "step": 459 + }, + { + "epoch": 0.8, + "learning_rate": 2.3109707481595113e-06, + "loss": 0.0021, + "step": 460 + }, + { + "epoch": 0.8, + "learning_rate": 2.27444353945945e-06, + "loss": 0.0016, + "step": 461 + }, + { + "epoch": 0.8, + "learning_rate": 2.2381702333954436e-06, + "loss": 0.0016, + "step": 462 + }, + { + "epoch": 0.8, + "learning_rate": 2.2021520221001304e-06, + "loss": 0.001, + "step": 463 + }, + { + "epoch": 0.8, + "learning_rate": 2.16639008932239e-06, + "loss": 0.0011, + "step": 464 + }, + { + "epoch": 0.81, + "learning_rate": 2.130885610388428e-06, + "loss": 0.0224, + "step": 465 + }, + { + "epoch": 0.81, + "learning_rate": 2.0956397521631666e-06, + "loss": 0.0141, + "step": 466 + }, + { + "epoch": 0.81, + "learning_rate": 2.0606536730118767e-06, + "loss": 0.0007, + "step": 467 + }, + { + "epoch": 0.81, + "learning_rate": 2.0259285227621152e-06, + "loss": 0.0025, + "step": 468 + }, + { + "epoch": 0.81, + "learning_rate": 1.9914654426659374e-06, + "loss": 0.0591, + "step": 469 + }, + { + "epoch": 0.81, + "learning_rate": 1.9572655653623884e-06, + "loss": 0.0012, + "step": 470 + }, + { + "epoch": 0.82, + "learning_rate": 1.9233300148402767e-06, + "loss": 0.0732, + "step": 471 + }, + { + "epoch": 0.82, + "learning_rate": 1.88965990640123e-06, + "loss": 0.005, + "step": 472 + }, + { + "epoch": 0.82, + "learning_rate": 1.8562563466230577e-06, + "loss": 0.0015, + "step": 473 + }, + { + "epoch": 0.82, + "learning_rate": 1.823120433323361e-06, + "loss": 0.1624, + "step": 474 + }, + { + "epoch": 0.82, + "learning_rate": 1.7902532555234653e-06, + "loss": 0.0064, + "step": 475 + }, + { + "epoch": 0.82, + "learning_rate": 1.757655893412622e-06, + "loss": 0.152, + "step": 476 + }, + { + "epoch": 0.83, + "learning_rate": 1.7253294183125223e-06, + "loss": 0.0008, + "step": 477 + }, + { + "epoch": 0.83, + "learning_rate": 1.6932748926420695e-06, + "loss": 0.0414, + "step": 478 + }, + { + "epoch": 0.83, + "learning_rate": 1.661493369882473e-06, + "loss": 0.0009, + "step": 479 + }, + { + "epoch": 0.83, + "learning_rate": 1.6299858945426251e-06, + "loss": 0.0938, + "step": 480 + }, + { + "epoch": 0.83, + "learning_rate": 1.5987535021247668e-06, + "loss": 0.001, + "step": 481 + }, + { + "epoch": 0.84, + "learning_rate": 1.5677972190904623e-06, + "loss": 0.0014, + "step": 482 + }, + { + "epoch": 0.84, + "learning_rate": 1.537118062826859e-06, + "loss": 0.0023, + "step": 483 + }, + { + "epoch": 0.84, + "learning_rate": 1.5067170416132603e-06, + "loss": 0.0012, + "step": 484 + }, + { + "epoch": 0.84, + "learning_rate": 1.4765951545879732e-06, + "loss": 0.0014, + "step": 485 + }, + { + "epoch": 0.84, + "learning_rate": 1.4467533917154842e-06, + "loss": 0.0102, + "step": 486 + }, + { + "epoch": 0.84, + "learning_rate": 1.4171927337539103e-06, + "loss": 0.0033, + "step": 487 + }, + { + "epoch": 0.85, + "learning_rate": 1.3879141522227878e-06, + "loss": 0.0009, + "step": 488 + }, + { + "epoch": 0.85, + "learning_rate": 1.3589186093711227e-06, + "loss": 0.088, + "step": 489 + }, + { + "epoch": 0.85, + "learning_rate": 1.3302070581457716e-06, + "loss": 0.0011, + "step": 490 + }, + { + "epoch": 0.85, + "learning_rate": 1.3017804421601298e-06, + "loss": 0.001, + "step": 491 + }, + { + "epoch": 0.85, + "learning_rate": 1.273639695663108e-06, + "loss": 0.0536, + "step": 492 + }, + { + "epoch": 0.85, + "learning_rate": 1.245785743508441e-06, + "loss": 0.0178, + "step": 493 + }, + { + "epoch": 0.86, + "learning_rate": 1.2182195011242747e-06, + "loss": 0.0127, + "step": 494 + }, + { + "epoch": 0.86, + "learning_rate": 1.1909418744831048e-06, + "loss": 0.0008, + "step": 495 + }, + { + "epoch": 0.86, + "learning_rate": 1.1639537600719764e-06, + "loss": 0.0329, + "step": 496 + }, + { + "epoch": 0.86, + "learning_rate": 1.1372560448630377e-06, + "loss": 0.001, + "step": 497 + }, + { + "epoch": 0.86, + "learning_rate": 1.1108496062843743e-06, + "loss": 0.0007, + "step": 498 + }, + { + "epoch": 0.86, + "learning_rate": 1.0847353121911952e-06, + "loss": 0.0008, + "step": 499 + }, + { + "epoch": 0.87, + "learning_rate": 1.0589140208372872e-06, + "loss": 0.1002, + "step": 500 + }, + { + "epoch": 0.87, + "learning_rate": 1.0333865808468203e-06, + "loss": 0.0013, + "step": 501 + }, + { + "epoch": 0.87, + "learning_rate": 1.008153831186457e-06, + "loss": 0.0359, + "step": 502 + }, + { + "epoch": 0.87, + "learning_rate": 9.83216601137773e-07, + "loss": 0.0183, + "step": 503 + }, + { + "epoch": 0.87, + "learning_rate": 9.58575710270011e-07, + "loss": 0.0189, + "step": 504 + }, + { + "epoch": 0.88, + "learning_rate": 9.342319684131396e-07, + "loss": 0.0205, + "step": 505 + }, + { + "epoch": 0.88, + "learning_rate": 9.101861756312369e-07, + "loss": 0.1422, + "step": 506 + }, + { + "epoch": 0.88, + "learning_rate": 8.864391221962065e-07, + "loss": 0.1253, + "step": 507 + }, + { + "epoch": 0.88, + "learning_rate": 8.629915885617912e-07, + "loss": 0.001, + "step": 508 + }, + { + "epoch": 0.88, + "learning_rate": 8.398443453379268e-07, + "loss": 0.0326, + "step": 509 + }, + { + "epoch": 0.88, + "learning_rate": 8.169981532654269e-07, + "loss": 0.0362, + "step": 510 + }, + { + "epoch": 0.89, + "learning_rate": 7.944537631909666e-07, + "loss": 0.0025, + "step": 511 + }, + { + "epoch": 0.89, + "learning_rate": 7.722119160424113e-07, + "loss": 0.2316, + "step": 512 + }, + { + "epoch": 0.89, + "learning_rate": 7.502733428044684e-07, + "loss": 0.0009, + "step": 513 + }, + { + "epoch": 0.89, + "learning_rate": 7.286387644946602e-07, + "loss": 0.0008, + "step": 514 + }, + { + "epoch": 0.89, + "learning_rate": 7.073088921396287e-07, + "loss": 0.0009, + "step": 515 + }, + { + "epoch": 0.89, + "learning_rate": 6.862844267517643e-07, + "loss": 0.0099, + "step": 516 + }, + { + "epoch": 0.9, + "learning_rate": 6.655660593061719e-07, + "loss": 0.0008, + "step": 517 + }, + { + "epoch": 0.9, + "learning_rate": 6.451544707179635e-07, + "loss": 0.0011, + "step": 518 + }, + { + "epoch": 0.9, + "learning_rate": 6.250503318198664e-07, + "loss": 0.0414, + "step": 519 + }, + { + "epoch": 0.9, + "learning_rate": 6.052543033401892e-07, + "loss": 0.0056, + "step": 520 + }, + { + "epoch": 0.9, + "learning_rate": 5.857670358811096e-07, + "loss": 0.0592, + "step": 521 + }, + { + "epoch": 0.9, + "learning_rate": 5.665891698972769e-07, + "loss": 0.0139, + "step": 522 + }, + { + "epoch": 0.91, + "learning_rate": 5.477213356747746e-07, + "loss": 0.0274, + "step": 523 + }, + { + "epoch": 0.91, + "learning_rate": 5.291641533104053e-07, + "loss": 0.004, + "step": 524 + }, + { + "epoch": 0.91, + "learning_rate": 5.109182326913053e-07, + "loss": 0.0359, + "step": 525 + }, + { + "epoch": 0.91, + "learning_rate": 4.929841734749063e-07, + "loss": 0.0168, + "step": 526 + }, + { + "epoch": 0.91, + "learning_rate": 4.7536256506922507e-07, + "loss": 0.001, + "step": 527 + }, + { + "epoch": 0.92, + "learning_rate": 4.580539866134914e-07, + "loss": 0.105, + "step": 528 + }, + { + "epoch": 0.92, + "learning_rate": 4.410590069591192e-07, + "loss": 0.0006, + "step": 529 + }, + { + "epoch": 0.92, + "learning_rate": 4.2437818465100313e-07, + "loss": 0.0707, + "step": 530 + }, + { + "epoch": 0.92, + "learning_rate": 4.0801206790916815e-07, + "loss": 0.0013, + "step": 531 + }, + { + "epoch": 0.92, + "learning_rate": 3.919611946107493e-07, + "loss": 0.0008, + "step": 532 + }, + { + "epoch": 0.92, + "learning_rate": 3.762260922723182e-07, + "loss": 0.0008, + "step": 533 + }, + { + "epoch": 0.93, + "learning_rate": 3.6080727803254003e-07, + "loss": 0.001, + "step": 534 + }, + { + "epoch": 0.93, + "learning_rate": 3.457052586351817e-07, + "loss": 0.0042, + "step": 535 + }, + { + "epoch": 0.93, + "learning_rate": 3.309205304124552e-07, + "loss": 0.0155, + "step": 536 + }, + { + "epoch": 0.93, + "learning_rate": 3.1645357926870957e-07, + "loss": 0.0029, + "step": 537 + }, + { + "epoch": 0.93, + "learning_rate": 3.0230488066445465e-07, + "loss": 0.0401, + "step": 538 + }, + { + "epoch": 0.93, + "learning_rate": 2.8847489960074136e-07, + "loss": 0.0315, + "step": 539 + }, + { + "epoch": 0.94, + "learning_rate": 2.7496409060387973e-07, + "loss": 0.0436, + "step": 540 + }, + { + "epoch": 0.94, + "learning_rate": 2.6177289771049274e-07, + "loss": 0.0036, + "step": 541 + }, + { + "epoch": 0.94, + "learning_rate": 2.489017544529315e-07, + "loss": 0.0231, + "step": 542 + }, + { + "epoch": 0.94, + "learning_rate": 2.3635108384502003e-07, + "loss": 0.0116, + "step": 543 + }, + { + "epoch": 0.94, + "learning_rate": 2.2412129836816287e-07, + "loss": 0.0011, + "step": 544 + }, + { + "epoch": 0.94, + "learning_rate": 2.1221279995777833e-07, + "loss": 0.0011, + "step": 545 + }, + { + "epoch": 0.95, + "learning_rate": 2.0062597999009114e-07, + "loss": 0.001, + "step": 546 + }, + { + "epoch": 0.95, + "learning_rate": 1.8936121926927508e-07, + "loss": 0.0072, + "step": 547 + }, + { + "epoch": 0.95, + "learning_rate": 1.7841888801493178e-07, + "loss": 0.0031, + "step": 548 + }, + { + "epoch": 0.95, + "learning_rate": 1.677993458499272e-07, + "loss": 0.0314, + "step": 549 + }, + { + "epoch": 0.95, + "learning_rate": 1.5750294178856872e-07, + "loss": 0.002, + "step": 550 + }, + { + "epoch": 0.95, + "learning_rate": 1.4753001422514125e-07, + "loss": 0.0012, + "step": 551 + }, + { + "epoch": 0.96, + "learning_rate": 1.378808909227769e-07, + "loss": 0.1963, + "step": 552 + }, + { + "epoch": 0.96, + "learning_rate": 1.2855588900269057e-07, + "loss": 0.0804, + "step": 553 + }, + { + "epoch": 0.96, + "learning_rate": 1.1955531493375137e-07, + "loss": 0.0057, + "step": 554 + }, + { + "epoch": 0.96, + "learning_rate": 1.1087946452241871e-07, + "loss": 0.0025, + "step": 555 + }, + { + "epoch": 0.96, + "learning_rate": 1.0252862290301092e-07, + "loss": 0.0244, + "step": 556 + }, + { + "epoch": 0.97, + "learning_rate": 9.45030645283418e-08, + "loss": 0.0488, + "step": 557 + }, + { + "epoch": 0.97, + "learning_rate": 8.68030531606967e-08, + "loss": 0.0262, + "step": 558 + }, + { + "epoch": 0.97, + "learning_rate": 7.94288418631639e-08, + "loss": 0.0212, + "step": 559 + }, + { + "epoch": 0.97, + "learning_rate": 7.238067299131901e-08, + "loss": 0.0257, + "step": 560 + }, + { + "epoch": 0.97, + "learning_rate": 6.565877818526245e-08, + "loss": 0.001, + "step": 561 + }, + { + "epoch": 0.97, + "learning_rate": 5.926337836199891e-08, + "loss": 0.0038, + "step": 562 + }, + { + "epoch": 0.98, + "learning_rate": 5.319468370818537e-08, + "loss": 0.0277, + "step": 563 + }, + { + "epoch": 0.98, + "learning_rate": 4.7452893673216596e-08, + "loss": 0.0009, + "step": 564 + }, + { + "epoch": 0.98, + "learning_rate": 4.203819696267486e-08, + "loss": 0.007, + "step": 565 + }, + { + "epoch": 0.98, + "learning_rate": 3.6950771532126004e-08, + "loss": 0.0007, + "step": 566 + }, + { + "epoch": 0.98, + "learning_rate": 3.2190784581270786e-08, + "loss": 0.001, + "step": 567 + }, + { + "epoch": 0.98, + "learning_rate": 2.7758392548449253e-08, + "loss": 0.0172, + "step": 568 + }, + { + "epoch": 0.99, + "learning_rate": 2.3653741105499338e-08, + "loss": 0.0019, + "step": 569 + }, + { + "epoch": 0.99, + "learning_rate": 1.9876965152975102e-08, + "loss": 0.0148, + "step": 570 + }, + { + "epoch": 0.99, + "learning_rate": 1.6428188815703627e-08, + "loss": 0.0614, + "step": 571 + }, + { + "epoch": 0.99, + "learning_rate": 1.3307525438711611e-08, + "loss": 0.0032, + "step": 572 + }, + { + "epoch": 0.99, + "learning_rate": 1.0515077583498346e-08, + "loss": 0.0093, + "step": 573 + }, + { + "epoch": 0.99, + "learning_rate": 8.050937024666195e-09, + "loss": 0.0009, + "step": 574 + }, + { + "epoch": 1.0, + "learning_rate": 5.9151847469041125e-09, + "loss": 0.0212, + "step": 575 + }, + { + "epoch": 1.0, + "learning_rate": 4.1078909423253325e-09, + "loss": 0.0008, + "step": 576 + }, + { + "epoch": 1.0, + "learning_rate": 2.629115008160321e-09, + "loss": 0.0273, + "step": 577 + }, + { + "epoch": 1.0, + "step": 577, + "total_flos": 1156027152384.0, + "train_loss": 0.03200564120091745, + "train_runtime": 4242.8648, + "train_samples_per_second": 1.358, + "train_steps_per_second": 0.136 + } + ], + "logging_steps": 1.0, + "max_steps": 577, + "num_input_tokens_seen": 0, + "num_train_epochs": 1, + "save_steps": 500, + "total_flos": 1156027152384.0, + "train_batch_size": 10, + "trial_name": null, + "trial_params": null +} diff --git a/CheckGuard Models/wholeimage/date/finetune_lora_llava_mistral.sh b/CheckGuard Models/wholeimage/date/finetune_lora_llava_mistral.sh new file mode 100644 index 0000000000000000000000000000000000000000..d5e581ee3cdf75b2579fb103b167f02d0d9351b4 --- /dev/null +++ b/CheckGuard Models/wholeimage/date/finetune_lora_llava_mistral.sh @@ -0,0 +1,39 @@ +#!/bin/bash + +deepspeed llava/train/train_mem.py \ + --lora_enable True --lora_r 128 --lora_alpha 256 --mm_projector_lr 2e-5 \ + --deepspeed ./scripts/zero3.json \ + --model_name_or_path liuhaotian/llava-v1.6-mistral-7b \ + --version mistral_instruct \ + --data_path /home/larry5/project/LLaVA-1.6-ft/data/peft/date/csv_gt/date_modified_path_to_train_val_human-gpt-whole-check.json \ + --image_folder /home/larry5/project/LLaVA-1.6-ft/data/data/ \ + --vision_tower openai/clip-vit-large-patch14-336 \ + --mm_projector_type mlp2x_gelu \ + --mm_vision_select_layer -2 \ + --mm_use_im_start_end False \ + --mm_use_im_patch_token False \ + --mm_patch_merge_type spatial_unpad \ + --image_aspect_ratio anyres \ + --group_by_modality_length False \ + --bf16 False \ + --fp16 True \ + --output_dir /home/larry5/project/LLaVA-1.6-ft/scripts_peft/mistral/lora/llava-lora-mistral-r128a256/wholeimage/date/llava-lora-mistral-r128a256-10BS-model \ + --num_train_epochs 1 \ + --per_device_train_batch_size 10 \ + --per_device_eval_batch_size 1 \ + --gradient_accumulation_steps 1 \ + --evaluation_strategy "no" \ + --save_strategy "steps" \ + --save_steps 500 \ + --save_total_limit 5 \ + --learning_rate 2e-5 \ + --weight_decay 0. \ + --warmup_ratio 0.05 \ + --lr_scheduler_type "cosine" \ + --logging_steps 1 \ + --tf32 True \ + --model_max_length 4096 \ + --gradient_checkpointing True \ + --dataloader_num_workers 4 \ + --lazy_preprocess True \ + --report_to wandb \ \ No newline at end of file diff --git a/CheckGuard Models/wholeimage/date/llava-lora-mistral-r128a256-10BS-model/README.md b/CheckGuard Models/wholeimage/date/llava-lora-mistral-r128a256-10BS-model/README.md new file mode 100644 index 0000000000000000000000000000000000000000..bdb138eee6972419f6d60676388b52fd99ec478e --- /dev/null +++ b/CheckGuard Models/wholeimage/date/llava-lora-mistral-r128a256-10BS-model/README.md @@ -0,0 +1,202 @@ +--- +library_name: peft +base_model: liuhaotian/llava-v1.6-mistral-7b +--- + +# Model Card for Model ID + + + + + +## Model Details + +### Model Description + + + + + +- **Developed by:** [More Information Needed] +- **Funded by [optional]:** [More Information Needed] +- **Shared by [optional]:** [More Information Needed] +- **Model type:** [More Information Needed] +- **Language(s) (NLP):** [More Information Needed] +- **License:** [More Information Needed] +- **Finetuned from model [optional]:** [More Information Needed] + +### Model Sources [optional] + + + +- **Repository:** [More Information Needed] +- **Paper [optional]:** [More Information Needed] +- **Demo [optional]:** [More Information Needed] + +## Uses + + + +### Direct Use + + + +[More Information Needed] + +### Downstream Use [optional] + + + +[More Information Needed] + +### Out-of-Scope Use + + + +[More Information Needed] + +## Bias, Risks, and Limitations + + + +[More Information Needed] + +### Recommendations + + + +Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. + +## How to Get Started with the Model + +Use the code below to get started with the model. + +[More Information Needed] + +## Training Details + +### Training Data + + + +[More Information Needed] + +### Training Procedure + + + +#### Preprocessing [optional] + +[More Information Needed] + + +#### Training Hyperparameters + +- **Training regime:** [More Information Needed] + +#### Speeds, Sizes, Times [optional] + + + +[More Information Needed] + +## Evaluation + + + +### Testing Data, Factors & Metrics + +#### Testing Data + + + +[More Information Needed] + +#### Factors + + + +[More Information Needed] + +#### Metrics + + + +[More Information Needed] + +### Results + +[More Information Needed] + +#### Summary + + + +## Model Examination [optional] + + + +[More Information Needed] + +## Environmental Impact + + + +Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). + +- **Hardware Type:** [More Information Needed] +- **Hours used:** [More Information Needed] +- **Cloud Provider:** [More Information Needed] +- **Compute Region:** [More Information Needed] +- **Carbon Emitted:** [More Information Needed] + +## Technical Specifications [optional] + +### Model Architecture and Objective + +[More Information Needed] + +### Compute Infrastructure + +[More Information Needed] + +#### Hardware + +[More Information Needed] + +#### Software + +[More Information Needed] + +## Citation [optional] + + + +**BibTeX:** + +[More Information Needed] + +**APA:** + +[More Information Needed] + +## Glossary [optional] + + + +[More Information Needed] + +## More Information [optional] + +[More Information Needed] + +## Model Card Authors [optional] + +[More Information Needed] + +## Model Card Contact + +[More Information Needed] +### Framework versions + +- PEFT 0.10.0 \ No newline at end of file diff --git a/CheckGuard Models/wholeimage/date/llava-lora-mistral-r128a256-10BS-model/adapter_config.json b/CheckGuard Models/wholeimage/date/llava-lora-mistral-r128a256-10BS-model/adapter_config.json new file mode 100644 index 0000000000000000000000000000000000000000..832a63b9a74cc1cea90552535b9699c9b402fec8 --- /dev/null +++ b/CheckGuard Models/wholeimage/date/llava-lora-mistral-r128a256-10BS-model/adapter_config.json @@ -0,0 +1,34 @@ +{ + "alpha_pattern": {}, + "auto_mapping": null, + "base_model_name_or_path": "liuhaotian/llava-v1.6-mistral-7b", + "bias": "none", + "fan_in_fan_out": false, + "inference_mode": true, + "init_lora_weights": true, + "layer_replication": null, + "layers_pattern": null, + "layers_to_transform": null, + "loftq_config": {}, + "lora_alpha": 256, + "lora_dropout": 0.05, + "megatron_config": null, + "megatron_core": "megatron.core", + "modules_to_save": null, + "peft_type": "LORA", + "r": 128, + "rank_pattern": {}, + "revision": null, + "target_modules": [ + "up_proj", + "gate_proj", + "q_proj", + "v_proj", + "down_proj", + "o_proj", + "k_proj" + ], + "task_type": "CAUSAL_LM", + "use_dora": false, + "use_rslora": false +} \ No newline at end of file diff --git a/CheckGuard Models/wholeimage/date/llava-lora-mistral-r128a256-10BS-model/adapter_model.safetensors b/CheckGuard Models/wholeimage/date/llava-lora-mistral-r128a256-10BS-model/adapter_model.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..7d2fe23932ce99dd3bd04992942268785a7f6b4a --- /dev/null +++ b/CheckGuard Models/wholeimage/date/llava-lora-mistral-r128a256-10BS-model/adapter_model.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e79997695f8f7928e94b7798ff1c85f84ad9cdab989c52c8827cab35990915ad +size 708924928 diff --git a/CheckGuard Models/wholeimage/date/llava-lora-mistral-r128a256-10BS-model/config.json b/CheckGuard Models/wholeimage/date/llava-lora-mistral-r128a256-10BS-model/config.json new file mode 100644 index 0000000000000000000000000000000000000000..93e133af45036a778791b5679a8953a4f6a35a33 --- /dev/null +++ b/CheckGuard Models/wholeimage/date/llava-lora-mistral-r128a256-10BS-model/config.json @@ -0,0 +1,70 @@ +{ + "_name_or_path": "liuhaotian/llava-v1.6-mistral-7b", + "architectures": [ + "LlavaMistralForCausalLM" + ], + "attention_dropout": 0.0, + "bos_token_id": 1, + "eos_token_id": 2, + "freeze_mm_mlp_adapter": false, + "freeze_mm_vision_resampler": false, + "hidden_act": "silu", + "hidden_size": 4096, + "image_aspect_ratio": "anyres", + "image_crop_resolution": 224, + "image_grid_pinpoints": [ + [ + 336, + 672 + ], + [ + 672, + 336 + ], + [ + 672, + 672 + ], + [ + 1008, + 336 + ], + [ + 336, + 1008 + ] + ], + "image_split_resolution": 224, + "initializer_range": 0.02, + "intermediate_size": 14336, + "max_position_embeddings": 32768, + "mm_hidden_size": 1024, + "mm_patch_merge_type": "spatial_unpad", + "mm_projector_lr": 2e-05, + "mm_projector_type": "mlp2x_gelu", + "mm_resampler_type": null, + "mm_use_im_patch_token": false, + "mm_use_im_start_end": false, + "mm_vision_select_feature": "patch", + "mm_vision_select_layer": -2, + "mm_vision_tower": "openai/clip-vit-large-patch14-336", + "mm_vision_tower_lr": 2e-06, + "model_type": "llava_mistral", + "num_attention_heads": 32, + "num_hidden_layers": 32, + "num_key_value_heads": 8, + "rms_norm_eps": 1e-05, + "rope_theta": 1000000.0, + "sliding_window": null, + "tie_word_embeddings": false, + "tokenizer_model_max_length": 4096, + "tokenizer_padding_side": "right", + "torch_dtype": "bfloat16", + "transformers_version": "4.37.2", + "tune_mm_mlp_adapter": false, + "tune_mm_vision_resampler": false, + "unfreeze_mm_vision_tower": true, + "use_cache": true, + "use_mm_proj": true, + "vocab_size": 32000 +} diff --git a/CheckGuard Models/wholeimage/date/llava-lora-mistral-r128a256-10BS-model/non_lora_trainables.bin b/CheckGuard Models/wholeimage/date/llava-lora-mistral-r128a256-10BS-model/non_lora_trainables.bin new file mode 100644 index 0000000000000000000000000000000000000000..a9b1ac414d504eea0f57a4a74d09c9d7cdf03330 --- /dev/null +++ b/CheckGuard Models/wholeimage/date/llava-lora-mistral-r128a256-10BS-model/non_lora_trainables.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1bdcf0c8f51abd2364a9061cb31a1b79f7ce70a5726220e46518bd17984af4b3 +size 41961648 diff --git a/CheckGuard Models/wholeimage/date/llava-lora-mistral-r128a256-10BS-model/trainer_state.json b/CheckGuard Models/wholeimage/date/llava-lora-mistral-r128a256-10BS-model/trainer_state.json new file mode 100644 index 0000000000000000000000000000000000000000..1b036b21fd448ed907e68fa48c7bb62fb992486a --- /dev/null +++ b/CheckGuard Models/wholeimage/date/llava-lora-mistral-r128a256-10BS-model/trainer_state.json @@ -0,0 +1,1938 @@ +{ + "best_metric": null, + "best_model_checkpoint": null, + "epoch": 1.0, + "eval_steps": 500, + "global_step": 318, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "epoch": 0.0, + "learning_rate": 1.25e-06, + "loss": 0.1459, + "step": 1 + }, + { + "epoch": 0.01, + "learning_rate": 2.5e-06, + "loss": 0.2617, + "step": 2 + }, + { + "epoch": 0.01, + "learning_rate": 3.7500000000000005e-06, + "loss": 0.1687, + "step": 3 + }, + { + "epoch": 0.01, + "learning_rate": 5e-06, + "loss": 0.1222, + "step": 4 + }, + { + "epoch": 0.02, + "learning_rate": 6.25e-06, + "loss": 0.0698, + "step": 5 + }, + { + "epoch": 0.02, + "learning_rate": 7.500000000000001e-06, + "loss": 0.0603, + "step": 6 + }, + { + "epoch": 0.02, + "learning_rate": 8.750000000000001e-06, + "loss": 0.0467, + "step": 7 + }, + { + "epoch": 0.03, + "learning_rate": 1e-05, + "loss": 0.0846, + "step": 8 + }, + { + "epoch": 0.03, + "learning_rate": 1.125e-05, + "loss": 0.0627, + "step": 9 + }, + { + "epoch": 0.03, + "learning_rate": 1.25e-05, + "loss": 0.089, + "step": 10 + }, + { + "epoch": 0.03, + "learning_rate": 1.375e-05, + "loss": 0.0668, + "step": 11 + }, + { + "epoch": 0.04, + "learning_rate": 1.5000000000000002e-05, + "loss": 0.0456, + "step": 12 + }, + { + "epoch": 0.04, + "learning_rate": 1.6250000000000002e-05, + "loss": 0.0442, + "step": 13 + }, + { + "epoch": 0.04, + "learning_rate": 1.7500000000000002e-05, + "loss": 0.0451, + "step": 14 + }, + { + "epoch": 0.05, + "learning_rate": 1.8750000000000002e-05, + "loss": 0.0421, + "step": 15 + }, + { + "epoch": 0.05, + "learning_rate": 1.8750000000000002e-05, + "loss": 0.1125, + "step": 16 + }, + { + "epoch": 0.05, + "learning_rate": 2e-05, + "loss": 0.0672, + "step": 17 + }, + { + "epoch": 0.06, + "learning_rate": 1.999945893187807e-05, + "loss": 0.0274, + "step": 18 + }, + { + "epoch": 0.06, + "learning_rate": 1.999783578606323e-05, + "loss": 0.0691, + "step": 19 + }, + { + "epoch": 0.06, + "learning_rate": 1.9995130738201966e-05, + "loss": 0.0485, + "step": 20 + }, + { + "epoch": 0.07, + "learning_rate": 1.9991344081017312e-05, + "loss": 0.1008, + "step": 21 + }, + { + "epoch": 0.07, + "learning_rate": 1.9986476224277167e-05, + "loss": 0.0323, + "step": 22 + }, + { + "epoch": 0.07, + "learning_rate": 1.9980527694749952e-05, + "loss": 0.0585, + "step": 23 + }, + { + "epoch": 0.08, + "learning_rate": 1.997349913614761e-05, + "loss": 0.091, + "step": 24 + }, + { + "epoch": 0.08, + "learning_rate": 1.996539130905593e-05, + "loss": 0.0351, + "step": 25 + }, + { + "epoch": 0.08, + "learning_rate": 1.995620509085228e-05, + "loss": 0.0776, + "step": 26 + }, + { + "epoch": 0.08, + "learning_rate": 1.9945941475610623e-05, + "loss": 0.0447, + "step": 27 + }, + { + "epoch": 0.09, + "learning_rate": 1.993460157399396e-05, + "loss": 0.0317, + "step": 28 + }, + { + "epoch": 0.09, + "learning_rate": 1.9922186613134152e-05, + "loss": 0.0532, + "step": 29 + }, + { + "epoch": 0.09, + "learning_rate": 1.9908697936499105e-05, + "loss": 0.0589, + "step": 30 + }, + { + "epoch": 0.1, + "learning_rate": 1.9894137003747404e-05, + "loss": 0.1019, + "step": 31 + }, + { + "epoch": 0.1, + "learning_rate": 1.987850539057036e-05, + "loss": 0.0542, + "step": 32 + }, + { + "epoch": 0.1, + "learning_rate": 1.986180478852149e-05, + "loss": 0.0688, + "step": 33 + }, + { + "epoch": 0.11, + "learning_rate": 1.984403700483347e-05, + "loss": 0.0529, + "step": 34 + }, + { + "epoch": 0.11, + "learning_rate": 1.9825203962222573e-05, + "loss": 0.0781, + "step": 35 + }, + { + "epoch": 0.11, + "learning_rate": 1.9805307698680592e-05, + "loss": 0.0445, + "step": 36 + }, + { + "epoch": 0.12, + "learning_rate": 1.9784350367254322e-05, + "loss": 0.0474, + "step": 37 + }, + { + "epoch": 0.12, + "learning_rate": 1.976233423581255e-05, + "loss": 0.0281, + "step": 38 + }, + { + "epoch": 0.12, + "learning_rate": 1.9739261686800662e-05, + "loss": 0.0791, + "step": 39 + }, + { + "epoch": 0.13, + "learning_rate": 1.97151352169828e-05, + "loss": 0.0267, + "step": 40 + }, + { + "epoch": 0.13, + "learning_rate": 1.968995743717171e-05, + "loss": 0.0292, + "step": 41 + }, + { + "epoch": 0.13, + "learning_rate": 1.9663731071946207e-05, + "loss": 0.0924, + "step": 42 + }, + { + "epoch": 0.14, + "learning_rate": 1.963645895935632e-05, + "loss": 0.0382, + "step": 43 + }, + { + "epoch": 0.14, + "learning_rate": 1.9608144050616192e-05, + "loss": 0.0407, + "step": 44 + }, + { + "epoch": 0.14, + "learning_rate": 1.9578789409784727e-05, + "loss": 0.0279, + "step": 45 + }, + { + "epoch": 0.14, + "learning_rate": 1.954839821343401e-05, + "loss": 0.031, + "step": 46 + }, + { + "epoch": 0.15, + "learning_rate": 1.951697375030553e-05, + "loss": 0.0441, + "step": 47 + }, + { + "epoch": 0.15, + "learning_rate": 1.9484519420954356e-05, + "loss": 0.0429, + "step": 48 + }, + { + "epoch": 0.15, + "learning_rate": 1.9451038737381078e-05, + "loss": 0.038, + "step": 49 + }, + { + "epoch": 0.16, + "learning_rate": 1.941653532265182e-05, + "loss": 0.0212, + "step": 50 + }, + { + "epoch": 0.16, + "learning_rate": 1.9381012910506146e-05, + "loss": 0.0713, + "step": 51 + }, + { + "epoch": 0.16, + "learning_rate": 1.934447534495301e-05, + "loss": 0.0833, + "step": 52 + }, + { + "epoch": 0.17, + "learning_rate": 1.930692657985482e-05, + "loss": 0.0168, + "step": 53 + }, + { + "epoch": 0.17, + "learning_rate": 1.926837067849953e-05, + "loss": 0.0442, + "step": 54 + }, + { + "epoch": 0.17, + "learning_rate": 1.9228811813160972e-05, + "loss": 0.0174, + "step": 55 + }, + { + "epoch": 0.18, + "learning_rate": 1.9188254264647338e-05, + "loss": 0.0499, + "step": 56 + }, + { + "epoch": 0.18, + "learning_rate": 1.9146702421837952e-05, + "loss": 0.0431, + "step": 57 + }, + { + "epoch": 0.18, + "learning_rate": 1.910416078120832e-05, + "loss": 0.023, + "step": 58 + }, + { + "epoch": 0.19, + "learning_rate": 1.906063394634356e-05, + "loss": 0.0238, + "step": 59 + }, + { + "epoch": 0.19, + "learning_rate": 1.901612662744024e-05, + "loss": 0.0139, + "step": 60 + }, + { + "epoch": 0.19, + "learning_rate": 1.8970643640796642e-05, + "loss": 0.0808, + "step": 61 + }, + { + "epoch": 0.19, + "learning_rate": 1.89241899082916e-05, + "loss": 0.0155, + "step": 62 + }, + { + "epoch": 0.2, + "learning_rate": 1.887677045685188e-05, + "loss": 0.0236, + "step": 63 + }, + { + "epoch": 0.2, + "learning_rate": 1.882839041790818e-05, + "loss": 0.0387, + "step": 64 + }, + { + "epoch": 0.2, + "learning_rate": 1.877905502683987e-05, + "loss": 0.0338, + "step": 65 + }, + { + "epoch": 0.21, + "learning_rate": 1.8728769622408423e-05, + "loss": 0.0755, + "step": 66 + }, + { + "epoch": 0.21, + "learning_rate": 1.8677539646179706e-05, + "loss": 0.0364, + "step": 67 + }, + { + "epoch": 0.21, + "learning_rate": 1.862537064193513e-05, + "loss": 0.0475, + "step": 68 + }, + { + "epoch": 0.22, + "learning_rate": 1.8572268255071718e-05, + "loss": 0.0162, + "step": 69 + }, + { + "epoch": 0.22, + "learning_rate": 1.851823823199122e-05, + "loss": 0.0373, + "step": 70 + }, + { + "epoch": 0.22, + "learning_rate": 1.851823823199122e-05, + "loss": 0.0331, + "step": 71 + }, + { + "epoch": 0.23, + "learning_rate": 1.8463286419478256e-05, + "loss": 0.0221, + "step": 72 + }, + { + "epoch": 0.23, + "learning_rate": 1.8407418764067627e-05, + "loss": 0.0437, + "step": 73 + }, + { + "epoch": 0.23, + "learning_rate": 1.8407418764067627e-05, + "loss": 0.077, + "step": 74 + }, + { + "epoch": 0.24, + "learning_rate": 1.8350641311400813e-05, + "loss": 0.0175, + "step": 75 + }, + { + "epoch": 0.24, + "learning_rate": 1.8292960205571742e-05, + "loss": 0.0354, + "step": 76 + }, + { + "epoch": 0.24, + "learning_rate": 1.8234381688461943e-05, + "loss": 0.0093, + "step": 77 + }, + { + "epoch": 0.25, + "learning_rate": 1.817491209906506e-05, + "loss": 0.0214, + "step": 78 + }, + { + "epoch": 0.25, + "learning_rate": 1.8114557872800906e-05, + "loss": 0.0172, + "step": 79 + }, + { + "epoch": 0.25, + "learning_rate": 1.8053325540819048e-05, + "loss": 0.0376, + "step": 80 + }, + { + "epoch": 0.25, + "learning_rate": 1.799122172929206e-05, + "loss": 0.0288, + "step": 81 + }, + { + "epoch": 0.26, + "learning_rate": 1.7928253158698474e-05, + "loss": 0.0212, + "step": 82 + }, + { + "epoch": 0.26, + "learning_rate": 1.7864426643095537e-05, + "loss": 0.0628, + "step": 83 + }, + { + "epoch": 0.26, + "learning_rate": 1.7799749089381843e-05, + "loss": 0.0616, + "step": 84 + }, + { + "epoch": 0.27, + "learning_rate": 1.773422749654988e-05, + "loss": 0.0661, + "step": 85 + }, + { + "epoch": 0.27, + "learning_rate": 1.7667868954928695e-05, + "loss": 0.0349, + "step": 86 + }, + { + "epoch": 0.27, + "learning_rate": 1.7600680645416583e-05, + "loss": 0.0488, + "step": 87 + }, + { + "epoch": 0.28, + "learning_rate": 1.7532669838704036e-05, + "loss": 0.0415, + "step": 88 + }, + { + "epoch": 0.28, + "learning_rate": 1.746384389448694e-05, + "loss": 0.0232, + "step": 89 + }, + { + "epoch": 0.28, + "learning_rate": 1.739421026067017e-05, + "loss": 0.0421, + "step": 90 + }, + { + "epoch": 0.29, + "learning_rate": 1.7323776472561625e-05, + "loss": 0.0205, + "step": 91 + }, + { + "epoch": 0.29, + "learning_rate": 1.7252550152056795e-05, + "loss": 0.0839, + "step": 92 + }, + { + "epoch": 0.29, + "learning_rate": 1.7180539006813973e-05, + "loss": 0.0184, + "step": 93 + }, + { + "epoch": 0.3, + "learning_rate": 1.7107750829420177e-05, + "loss": 0.0409, + "step": 94 + }, + { + "epoch": 0.3, + "learning_rate": 1.7034193496547903e-05, + "loss": 0.0343, + "step": 95 + }, + { + "epoch": 0.3, + "learning_rate": 1.6959874968102736e-05, + "loss": 0.0144, + "step": 96 + }, + { + "epoch": 0.31, + "learning_rate": 1.6884803286362e-05, + "loss": 0.0377, + "step": 97 + }, + { + "epoch": 0.31, + "learning_rate": 1.6808986575104464e-05, + "loss": 0.0562, + "step": 98 + }, + { + "epoch": 0.31, + "learning_rate": 1.6732433038731245e-05, + "loss": 0.0438, + "step": 99 + }, + { + "epoch": 0.31, + "learning_rate": 1.665515096137797e-05, + "loss": 0.0106, + "step": 100 + }, + { + "epoch": 0.32, + "learning_rate": 1.657714870601833e-05, + "loss": 0.0294, + "step": 101 + }, + { + "epoch": 0.32, + "learning_rate": 1.649843471355909e-05, + "loss": 0.0284, + "step": 102 + }, + { + "epoch": 0.32, + "learning_rate": 1.641901750192666e-05, + "loss": 0.0144, + "step": 103 + }, + { + "epoch": 0.33, + "learning_rate": 1.6338905665145352e-05, + "loss": 0.0094, + "step": 104 + }, + { + "epoch": 0.33, + "learning_rate": 1.6258107872407376e-05, + "loss": 0.0353, + "step": 105 + }, + { + "epoch": 0.33, + "learning_rate": 1.6176632867134738e-05, + "loss": 0.0529, + "step": 106 + }, + { + "epoch": 0.34, + "learning_rate": 1.609448946603304e-05, + "loss": 0.0392, + "step": 107 + }, + { + "epoch": 0.34, + "learning_rate": 1.601168655813745e-05, + "loss": 0.0646, + "step": 108 + }, + { + "epoch": 0.34, + "learning_rate": 1.592823310385073e-05, + "loss": 0.0207, + "step": 109 + }, + { + "epoch": 0.35, + "learning_rate": 1.584413813397364e-05, + "loss": 0.0133, + "step": 110 + }, + { + "epoch": 0.35, + "learning_rate": 1.5759410748727663e-05, + "loss": 0.0229, + "step": 111 + }, + { + "epoch": 0.35, + "learning_rate": 1.5674060116770234e-05, + "loss": 0.0408, + "step": 112 + }, + { + "epoch": 0.36, + "learning_rate": 1.5588095474202597e-05, + "loss": 0.0145, + "step": 113 + }, + { + "epoch": 0.36, + "learning_rate": 1.5501526123570277e-05, + "loss": 0.0389, + "step": 114 + }, + { + "epoch": 0.36, + "learning_rate": 1.5414361432856475e-05, + "loss": 0.063, + "step": 115 + }, + { + "epoch": 0.36, + "learning_rate": 1.532661083446829e-05, + "loss": 0.0663, + "step": 116 + }, + { + "epoch": 0.37, + "learning_rate": 1.5238283824216015e-05, + "loss": 0.0387, + "step": 117 + }, + { + "epoch": 0.37, + "learning_rate": 1.514938996028556e-05, + "loss": 0.0437, + "step": 118 + }, + { + "epoch": 0.37, + "learning_rate": 1.5059938862204126e-05, + "loss": 0.0204, + "step": 119 + }, + { + "epoch": 0.38, + "learning_rate": 1.4969940209799248e-05, + "loss": 0.0333, + "step": 120 + }, + { + "epoch": 0.38, + "learning_rate": 1.4879403742151283e-05, + "loss": 0.0429, + "step": 121 + }, + { + "epoch": 0.38, + "learning_rate": 1.4788339256539543e-05, + "loss": 0.0382, + "step": 122 + }, + { + "epoch": 0.39, + "learning_rate": 1.469675660738206e-05, + "loss": 0.0408, + "step": 123 + }, + { + "epoch": 0.39, + "learning_rate": 1.4604665705169239e-05, + "loss": 0.0193, + "step": 124 + }, + { + "epoch": 0.39, + "learning_rate": 1.4512076515391375e-05, + "loss": 0.0293, + "step": 125 + }, + { + "epoch": 0.4, + "learning_rate": 1.4418999057460277e-05, + "loss": 0.0277, + "step": 126 + }, + { + "epoch": 0.4, + "learning_rate": 1.4325443403625012e-05, + "loss": 0.0423, + "step": 127 + }, + { + "epoch": 0.4, + "learning_rate": 1.4231419677881966e-05, + "loss": 0.0222, + "step": 128 + }, + { + "epoch": 0.41, + "learning_rate": 1.4136938054879284e-05, + "loss": 0.0238, + "step": 129 + }, + { + "epoch": 0.41, + "learning_rate": 1.404200875881582e-05, + "loss": 0.0364, + "step": 130 + }, + { + "epoch": 0.41, + "learning_rate": 1.3946642062334765e-05, + "loss": 0.0313, + "step": 131 + }, + { + "epoch": 0.42, + "learning_rate": 1.3850848285411994e-05, + "loss": 0.0484, + "step": 132 + }, + { + "epoch": 0.42, + "learning_rate": 1.3754637794239303e-05, + "loss": 0.0325, + "step": 133 + }, + { + "epoch": 0.42, + "learning_rate": 1.3658021000102638e-05, + "loss": 0.0396, + "step": 134 + }, + { + "epoch": 0.42, + "learning_rate": 1.356100835825547e-05, + "loss": 0.0268, + "step": 135 + }, + { + "epoch": 0.43, + "learning_rate": 1.3463610366787392e-05, + "loss": 0.0143, + "step": 136 + }, + { + "epoch": 0.43, + "learning_rate": 1.3365837565488065e-05, + "loss": 0.012, + "step": 137 + }, + { + "epoch": 0.43, + "learning_rate": 1.326770053470668e-05, + "loss": 0.0388, + "step": 138 + }, + { + "epoch": 0.44, + "learning_rate": 1.316920989420703e-05, + "loss": 0.0152, + "step": 139 + }, + { + "epoch": 0.44, + "learning_rate": 1.3070376302018287e-05, + "loss": 0.0296, + "step": 140 + }, + { + "epoch": 0.44, + "learning_rate": 1.2971210453281675e-05, + "loss": 0.02, + "step": 141 + }, + { + "epoch": 0.45, + "learning_rate": 1.2871723079093101e-05, + "loss": 0.007, + "step": 142 + }, + { + "epoch": 0.45, + "learning_rate": 1.2771924945341906e-05, + "loss": 0.0375, + "step": 143 + }, + { + "epoch": 0.45, + "learning_rate": 1.2671826851545851e-05, + "loss": 0.0237, + "step": 144 + }, + { + "epoch": 0.46, + "learning_rate": 1.257143962968246e-05, + "loss": 0.0162, + "step": 145 + }, + { + "epoch": 0.46, + "learning_rate": 1.2470774143016854e-05, + "loss": 0.0575, + "step": 146 + }, + { + "epoch": 0.46, + "learning_rate": 1.236984128492619e-05, + "loss": 0.0142, + "step": 147 + }, + { + "epoch": 0.47, + "learning_rate": 1.2268651977720867e-05, + "loss": 0.0405, + "step": 148 + }, + { + "epoch": 0.47, + "learning_rate": 1.2167217171462566e-05, + "loss": 0.0531, + "step": 149 + }, + { + "epoch": 0.47, + "learning_rate": 1.206554784277931e-05, + "loss": 0.0157, + "step": 150 + }, + { + "epoch": 0.47, + "learning_rate": 1.1963654993677645e-05, + "loss": 0.0332, + "step": 151 + }, + { + "epoch": 0.48, + "learning_rate": 1.1861549650352069e-05, + "loss": 0.0092, + "step": 152 + }, + { + "epoch": 0.48, + "learning_rate": 1.1759242861991855e-05, + "loss": 0.0278, + "step": 153 + }, + { + "epoch": 0.48, + "learning_rate": 1.1656745699585373e-05, + "loss": 0.0445, + "step": 154 + }, + { + "epoch": 0.49, + "learning_rate": 1.155406925472205e-05, + "loss": 0.0546, + "step": 155 + }, + { + "epoch": 0.49, + "learning_rate": 1.145122463839213e-05, + "loss": 0.0293, + "step": 156 + }, + { + "epoch": 0.49, + "learning_rate": 1.1348222979784289e-05, + "loss": 0.0078, + "step": 157 + }, + { + "epoch": 0.5, + "learning_rate": 1.1245075425081328e-05, + "loss": 0.0327, + "step": 158 + }, + { + "epoch": 0.5, + "learning_rate": 1.1141793136253987e-05, + "loss": 0.0459, + "step": 159 + }, + { + "epoch": 0.5, + "learning_rate": 1.1038387289853069e-05, + "loss": 0.0583, + "step": 160 + }, + { + "epoch": 0.51, + "learning_rate": 1.09348690758e-05, + "loss": 0.0631, + "step": 161 + }, + { + "epoch": 0.51, + "learning_rate": 1.0831249696175918e-05, + "loss": 0.0197, + "step": 162 + }, + { + "epoch": 0.51, + "learning_rate": 1.072754036400944e-05, + "loss": 0.0409, + "step": 163 + }, + { + "epoch": 0.52, + "learning_rate": 1.0623752302063284e-05, + "loss": 0.054, + "step": 164 + }, + { + "epoch": 0.52, + "learning_rate": 1.0519896741619803e-05, + "loss": 0.0105, + "step": 165 + }, + { + "epoch": 0.52, + "learning_rate": 1.041598492126561e-05, + "loss": 0.0594, + "step": 166 + }, + { + "epoch": 0.53, + "learning_rate": 1.0312028085675393e-05, + "loss": 0.0402, + "step": 167 + }, + { + "epoch": 0.53, + "learning_rate": 1.0208037484395114e-05, + "loss": 0.0202, + "step": 168 + }, + { + "epoch": 0.53, + "learning_rate": 1.0104024370624644e-05, + "loss": 0.0433, + "step": 169 + }, + { + "epoch": 0.53, + "learning_rate": 1e-05, + "loss": 0.049, + "step": 170 + }, + { + "epoch": 0.54, + "learning_rate": 9.89597562937536e-06, + "loss": 0.0529, + "step": 171 + }, + { + "epoch": 0.54, + "learning_rate": 9.791962515604887e-06, + "loss": 0.02, + "step": 172 + }, + { + "epoch": 0.54, + "learning_rate": 9.687971914324607e-06, + "loss": 0.0358, + "step": 173 + }, + { + "epoch": 0.55, + "learning_rate": 9.584015078734395e-06, + "loss": 0.0268, + "step": 174 + }, + { + "epoch": 0.55, + "learning_rate": 9.480103258380198e-06, + "loss": 0.0211, + "step": 175 + }, + { + "epoch": 0.55, + "learning_rate": 9.376247697936719e-06, + "loss": 0.045, + "step": 176 + }, + { + "epoch": 0.56, + "learning_rate": 9.272459635990563e-06, + "loss": 0.0487, + "step": 177 + }, + { + "epoch": 0.56, + "learning_rate": 9.168750303824085e-06, + "loss": 0.0386, + "step": 178 + }, + { + "epoch": 0.56, + "learning_rate": 9.065130924199998e-06, + "loss": 0.0332, + "step": 179 + }, + { + "epoch": 0.57, + "learning_rate": 8.961612710146934e-06, + "loss": 0.0447, + "step": 180 + }, + { + "epoch": 0.57, + "learning_rate": 8.858206863746018e-06, + "loss": 0.0215, + "step": 181 + }, + { + "epoch": 0.57, + "learning_rate": 8.754924574918675e-06, + "loss": 0.0513, + "step": 182 + }, + { + "epoch": 0.58, + "learning_rate": 8.651777020215713e-06, + "loss": 0.0232, + "step": 183 + }, + { + "epoch": 0.58, + "learning_rate": 8.548775361607872e-06, + "loss": 0.0623, + "step": 184 + }, + { + "epoch": 0.58, + "learning_rate": 8.445930745277953e-06, + "loss": 0.0338, + "step": 185 + }, + { + "epoch": 0.58, + "learning_rate": 8.343254300414629e-06, + "loss": 0.0129, + "step": 186 + }, + { + "epoch": 0.59, + "learning_rate": 8.240757138008149e-06, + "loss": 0.0535, + "step": 187 + }, + { + "epoch": 0.59, + "learning_rate": 8.138450349647936e-06, + "loss": 0.047, + "step": 188 + }, + { + "epoch": 0.59, + "learning_rate": 8.036345006322358e-06, + "loss": 0.0273, + "step": 189 + }, + { + "epoch": 0.6, + "learning_rate": 7.934452157220693e-06, + "loss": 0.0069, + "step": 190 + }, + { + "epoch": 0.6, + "learning_rate": 7.832782828537437e-06, + "loss": 0.0336, + "step": 191 + }, + { + "epoch": 0.6, + "learning_rate": 7.731348022279135e-06, + "loss": 0.031, + "step": 192 + }, + { + "epoch": 0.61, + "learning_rate": 7.630158715073813e-06, + "loss": 0.039, + "step": 193 + }, + { + "epoch": 0.61, + "learning_rate": 7.529225856983151e-06, + "loss": 0.0368, + "step": 194 + }, + { + "epoch": 0.61, + "learning_rate": 7.428560370317542e-06, + "loss": 0.0225, + "step": 195 + }, + { + "epoch": 0.62, + "learning_rate": 7.328173148454151e-06, + "loss": 0.0558, + "step": 196 + }, + { + "epoch": 0.62, + "learning_rate": 7.228075054658096e-06, + "loss": 0.034, + "step": 197 + }, + { + "epoch": 0.62, + "learning_rate": 7.1282769209069005e-06, + "loss": 0.051, + "step": 198 + }, + { + "epoch": 0.63, + "learning_rate": 7.028789546718327e-06, + "loss": 0.0714, + "step": 199 + }, + { + "epoch": 0.63, + "learning_rate": 6.9296236979817175e-06, + "loss": 0.0525, + "step": 200 + }, + { + "epoch": 0.63, + "learning_rate": 6.8307901057929735e-06, + "loss": 0.0178, + "step": 201 + }, + { + "epoch": 0.64, + "learning_rate": 6.732299465293322e-06, + "loss": 0.0326, + "step": 202 + }, + { + "epoch": 0.64, + "learning_rate": 6.634162434511939e-06, + "loss": 0.0276, + "step": 203 + }, + { + "epoch": 0.64, + "learning_rate": 6.53638963321261e-06, + "loss": 0.0151, + "step": 204 + }, + { + "epoch": 0.64, + "learning_rate": 6.438991641744531e-06, + "loss": 0.0449, + "step": 205 + }, + { + "epoch": 0.65, + "learning_rate": 6.3419789998973655e-06, + "loss": 0.0273, + "step": 206 + }, + { + "epoch": 0.65, + "learning_rate": 6.245362205760703e-06, + "loss": 0.0417, + "step": 207 + }, + { + "epoch": 0.65, + "learning_rate": 6.149151714588009e-06, + "loss": 0.0112, + "step": 208 + }, + { + "epoch": 0.66, + "learning_rate": 6.053357937665237e-06, + "loss": 0.0358, + "step": 209 + }, + { + "epoch": 0.66, + "learning_rate": 5.957991241184184e-06, + "loss": 0.0559, + "step": 210 + }, + { + "epoch": 0.66, + "learning_rate": 5.863061945120719e-06, + "loss": 0.0312, + "step": 211 + }, + { + "epoch": 0.67, + "learning_rate": 5.768580322118034e-06, + "loss": 0.045, + "step": 212 + }, + { + "epoch": 0.67, + "learning_rate": 5.674556596374993e-06, + "loss": 0.0118, + "step": 213 + }, + { + "epoch": 0.67, + "learning_rate": 5.581000942539729e-06, + "loss": 0.0234, + "step": 214 + }, + { + "epoch": 0.68, + "learning_rate": 5.487923484608629e-06, + "loss": 0.0143, + "step": 215 + }, + { + "epoch": 0.68, + "learning_rate": 5.395334294830766e-06, + "loss": 0.016, + "step": 216 + }, + { + "epoch": 0.68, + "learning_rate": 5.3032433926179395e-06, + "loss": 0.0164, + "step": 217 + }, + { + "epoch": 0.69, + "learning_rate": 5.211660743460458e-06, + "loss": 0.0252, + "step": 218 + }, + { + "epoch": 0.69, + "learning_rate": 5.120596257848716e-06, + "loss": 0.0069, + "step": 219 + }, + { + "epoch": 0.69, + "learning_rate": 5.0300597902007565e-06, + "loss": 0.0417, + "step": 220 + }, + { + "epoch": 0.69, + "learning_rate": 4.940061137795876e-06, + "loss": 0.0282, + "step": 221 + }, + { + "epoch": 0.7, + "learning_rate": 4.850610039714444e-06, + "loss": 0.0277, + "step": 222 + }, + { + "epoch": 0.7, + "learning_rate": 4.7617161757839895e-06, + "loss": 0.0161, + "step": 223 + }, + { + "epoch": 0.7, + "learning_rate": 4.673389165531714e-06, + "loss": 0.0377, + "step": 224 + }, + { + "epoch": 0.71, + "learning_rate": 4.5856385671435285e-06, + "loss": 0.0286, + "step": 225 + }, + { + "epoch": 0.71, + "learning_rate": 4.498473876429727e-06, + "loss": 0.025, + "step": 226 + }, + { + "epoch": 0.71, + "learning_rate": 4.411904525797408e-06, + "loss": 0.04, + "step": 227 + }, + { + "epoch": 0.72, + "learning_rate": 4.3259398832297665e-06, + "loss": 0.0051, + "step": 228 + }, + { + "epoch": 0.72, + "learning_rate": 4.240589251272342e-06, + "loss": 0.036, + "step": 229 + }, + { + "epoch": 0.72, + "learning_rate": 4.155861866026364e-06, + "loss": 0.0291, + "step": 230 + }, + { + "epoch": 0.73, + "learning_rate": 4.0717668961492725e-06, + "loss": 0.0459, + "step": 231 + }, + { + "epoch": 0.73, + "learning_rate": 3.9883134418625535e-06, + "loss": 0.0438, + "step": 232 + }, + { + "epoch": 0.73, + "learning_rate": 3.905510533966959e-06, + "loss": 0.0104, + "step": 233 + }, + { + "epoch": 0.74, + "learning_rate": 3.823367132865266e-06, + "loss": 0.0972, + "step": 234 + }, + { + "epoch": 0.74, + "learning_rate": 3.7418921275926245e-06, + "loss": 0.013, + "step": 235 + }, + { + "epoch": 0.74, + "learning_rate": 3.6610943348546524e-06, + "loss": 0.0647, + "step": 236 + }, + { + "epoch": 0.75, + "learning_rate": 3.5809824980733445e-06, + "loss": 0.0306, + "step": 237 + }, + { + "epoch": 0.75, + "learning_rate": 3.5015652864409142e-06, + "loss": 0.0271, + "step": 238 + }, + { + "epoch": 0.75, + "learning_rate": 3.422851293981676e-06, + "loss": 0.0238, + "step": 239 + }, + { + "epoch": 0.75, + "learning_rate": 3.3448490386220355e-06, + "loss": 0.0246, + "step": 240 + }, + { + "epoch": 0.76, + "learning_rate": 3.2675669612687565e-06, + "loss": 0.0139, + "step": 241 + }, + { + "epoch": 0.76, + "learning_rate": 3.191013424895536e-06, + "loss": 0.0159, + "step": 242 + }, + { + "epoch": 0.76, + "learning_rate": 3.115196713638e-06, + "loss": 0.0308, + "step": 243 + }, + { + "epoch": 0.77, + "learning_rate": 3.0401250318972643e-06, + "loss": 0.0287, + "step": 244 + }, + { + "epoch": 0.77, + "learning_rate": 2.965806503452098e-06, + "loss": 0.0511, + "step": 245 + }, + { + "epoch": 0.77, + "learning_rate": 2.892249170579826e-06, + "loss": 0.0481, + "step": 246 + }, + { + "epoch": 0.78, + "learning_rate": 2.819460993186032e-06, + "loss": 0.0355, + "step": 247 + }, + { + "epoch": 0.78, + "learning_rate": 2.7474498479432087e-06, + "loss": 0.0177, + "step": 248 + }, + { + "epoch": 0.78, + "learning_rate": 2.6762235274383775e-06, + "loss": 0.0495, + "step": 249 + }, + { + "epoch": 0.79, + "learning_rate": 2.6057897393298328e-06, + "loss": 0.0096, + "step": 250 + }, + { + "epoch": 0.79, + "learning_rate": 2.5361561055130625e-06, + "loss": 0.0073, + "step": 251 + }, + { + "epoch": 0.79, + "learning_rate": 2.4673301612959653e-06, + "loss": 0.0309, + "step": 252 + }, + { + "epoch": 0.8, + "learning_rate": 2.3993193545834182e-06, + "loss": 0.0416, + "step": 253 + }, + { + "epoch": 0.8, + "learning_rate": 2.3321310450713066e-06, + "loss": 0.0327, + "step": 254 + }, + { + "epoch": 0.8, + "learning_rate": 2.265772503450122e-06, + "loss": 0.0551, + "step": 255 + }, + { + "epoch": 0.81, + "learning_rate": 2.2002509106181625e-06, + "loss": 0.0214, + "step": 256 + }, + { + "epoch": 0.81, + "learning_rate": 2.1355733569044633e-06, + "loss": 0.0226, + "step": 257 + }, + { + "epoch": 0.81, + "learning_rate": 2.0717468413015285e-06, + "loss": 0.0623, + "step": 258 + }, + { + "epoch": 0.81, + "learning_rate": 2.008778270707944e-06, + "loss": 0.0428, + "step": 259 + }, + { + "epoch": 0.82, + "learning_rate": 1.946674459180955e-06, + "loss": 0.0054, + "step": 260 + }, + { + "epoch": 0.82, + "learning_rate": 1.8854421271990964e-06, + "loss": 0.0274, + "step": 261 + }, + { + "epoch": 0.82, + "learning_rate": 1.8250879009349398e-06, + "loss": 0.0495, + "step": 262 + }, + { + "epoch": 0.83, + "learning_rate": 1.7656183115380577e-06, + "loss": 0.0432, + "step": 263 + }, + { + "epoch": 0.83, + "learning_rate": 1.707039794428259e-06, + "loss": 0.01, + "step": 264 + }, + { + "epoch": 0.83, + "learning_rate": 1.6493586885991908e-06, + "loss": 0.0189, + "step": 265 + }, + { + "epoch": 0.84, + "learning_rate": 1.5925812359323745e-06, + "loss": 0.0153, + "step": 266 + }, + { + "epoch": 0.84, + "learning_rate": 1.536713580521746e-06, + "loss": 0.0123, + "step": 267 + }, + { + "epoch": 0.84, + "learning_rate": 1.4817617680087826e-06, + "loss": 0.0317, + "step": 268 + }, + { + "epoch": 0.85, + "learning_rate": 1.4277317449282834e-06, + "loss": 0.0206, + "step": 269 + }, + { + "epoch": 0.85, + "learning_rate": 1.3746293580648718e-06, + "loss": 0.0647, + "step": 270 + }, + { + "epoch": 0.85, + "learning_rate": 1.3224603538202929e-06, + "loss": 0.0289, + "step": 271 + }, + { + "epoch": 0.86, + "learning_rate": 1.2712303775915803e-06, + "loss": 0.0391, + "step": 272 + }, + { + "epoch": 0.86, + "learning_rate": 1.220944973160133e-06, + "loss": 0.0286, + "step": 273 + }, + { + "epoch": 0.86, + "learning_rate": 1.1716095820918217e-06, + "loss": 0.0037, + "step": 274 + }, + { + "epoch": 0.86, + "learning_rate": 1.1232295431481222e-06, + "loss": 0.0317, + "step": 275 + }, + { + "epoch": 0.87, + "learning_rate": 1.075810091708399e-06, + "loss": 0.0212, + "step": 276 + }, + { + "epoch": 0.87, + "learning_rate": 1.0293563592033595e-06, + "loss": 0.0146, + "step": 277 + }, + { + "epoch": 0.87, + "learning_rate": 9.838733725597615e-07, + "loss": 0.0321, + "step": 278 + }, + { + "epoch": 0.88, + "learning_rate": 9.393660536564408e-07, + "loss": 0.0099, + "step": 279 + }, + { + "epoch": 0.88, + "learning_rate": 8.958392187916842e-07, + "loss": 0.0283, + "step": 280 + }, + { + "epoch": 0.88, + "learning_rate": 8.532975781620511e-07, + "loss": 0.0274, + "step": 281 + }, + { + "epoch": 0.89, + "learning_rate": 8.117457353526626e-07, + "loss": 0.0246, + "step": 282 + }, + { + "epoch": 0.89, + "learning_rate": 7.711881868390292e-07, + "loss": 0.0173, + "step": 283 + }, + { + "epoch": 0.89, + "learning_rate": 7.316293215004689e-07, + "loss": 0.0156, + "step": 284 + }, + { + "epoch": 0.9, + "learning_rate": 6.930734201451817e-07, + "loss": 0.0209, + "step": 285 + }, + { + "epoch": 0.9, + "learning_rate": 6.555246550469907e-07, + "loss": 0.0054, + "step": 286 + }, + { + "epoch": 0.9, + "learning_rate": 6.189870894938587e-07, + "loss": 0.0249, + "step": 287 + }, + { + "epoch": 0.91, + "learning_rate": 5.834646773481811e-07, + "loss": 0.0084, + "step": 288 + }, + { + "epoch": 0.91, + "learning_rate": 5.489612626189245e-07, + "loss": 0.0085, + "step": 289 + }, + { + "epoch": 0.91, + "learning_rate": 5.154805790456486e-07, + "loss": 0.0282, + "step": 290 + }, + { + "epoch": 0.92, + "learning_rate": 4.830262496944693e-07, + "loss": 0.0207, + "step": 291 + }, + { + "epoch": 0.92, + "learning_rate": 4.5160178656599495e-07, + "loss": 0.0277, + "step": 292 + }, + { + "epoch": 0.92, + "learning_rate": 4.21210590215273e-07, + "loss": 0.0155, + "step": 293 + }, + { + "epoch": 0.92, + "learning_rate": 3.918559493838114e-07, + "loss": 0.0233, + "step": 294 + }, + { + "epoch": 0.93, + "learning_rate": 3.635410406436857e-07, + "loss": 0.0204, + "step": 295 + }, + { + "epoch": 0.93, + "learning_rate": 3.3626892805379565e-07, + "loss": 0.031, + "step": 296 + }, + { + "epoch": 0.93, + "learning_rate": 3.100425628282899e-07, + "loss": 0.0142, + "step": 297 + }, + { + "epoch": 0.94, + "learning_rate": 2.8486478301720246e-07, + "loss": 0.0369, + "step": 298 + }, + { + "epoch": 0.94, + "learning_rate": 2.607383131993424e-07, + "loss": 0.0035, + "step": 299 + }, + { + "epoch": 0.94, + "learning_rate": 2.3766576418745024e-07, + "loss": 0.0038, + "step": 300 + }, + { + "epoch": 0.95, + "learning_rate": 2.1564963274568028e-07, + "loss": 0.0224, + "step": 301 + }, + { + "epoch": 0.95, + "learning_rate": 1.9469230131940907e-07, + "loss": 0.0196, + "step": 302 + }, + { + "epoch": 0.95, + "learning_rate": 1.7479603777742937e-07, + "loss": 0.0045, + "step": 303 + }, + { + "epoch": 0.96, + "learning_rate": 1.559629951665298e-07, + "loss": 0.0312, + "step": 304 + }, + { + "epoch": 0.96, + "learning_rate": 1.3819521147851122e-07, + "loss": 0.0204, + "step": 305 + }, + { + "epoch": 0.96, + "learning_rate": 1.2149460942964097e-07, + "loss": 0.0438, + "step": 306 + }, + { + "epoch": 0.97, + "learning_rate": 1.0586299625259699e-07, + "loss": 0.0589, + "step": 307 + }, + { + "epoch": 0.97, + "learning_rate": 9.130206350089765e-08, + "loss": 0.0348, + "step": 308 + }, + { + "epoch": 0.97, + "learning_rate": 7.781338686584928e-08, + "loss": 0.0103, + "step": 309 + }, + { + "epoch": 0.97, + "learning_rate": 6.539842600603918e-08, + "loss": 0.0441, + "step": 310 + }, + { + "epoch": 0.98, + "learning_rate": 5.405852438937764e-08, + "loss": 0.0365, + "step": 311 + }, + { + "epoch": 0.98, + "learning_rate": 4.3794909147720776e-08, + "loss": 0.0303, + "step": 312 + }, + { + "epoch": 0.98, + "learning_rate": 3.460869094407127e-08, + "loss": 0.0067, + "step": 313 + }, + { + "epoch": 0.99, + "learning_rate": 2.6500863852395585e-08, + "loss": 0.0295, + "step": 314 + }, + { + "epoch": 0.99, + "learning_rate": 1.947230525005006e-08, + "loss": 0.0609, + "step": 315 + }, + { + "epoch": 0.99, + "learning_rate": 1.3523775722834586e-08, + "loss": 0.0322, + "step": 316 + }, + { + "epoch": 1.0, + "learning_rate": 8.655918982689582e-09, + "loss": 0.0128, + "step": 317 + }, + { + "epoch": 1.0, + "learning_rate": 4.869261798035041e-09, + "loss": 0.0368, + "step": 318 + }, + { + "epoch": 1.0, + "step": 318, + "total_flos": 3024316907520.0, + "train_loss": 0.03735237892383253, + "train_runtime": 2488.3642, + "train_samples_per_second": 2.55, + "train_steps_per_second": 0.128 + } + ], + "logging_steps": 1.0, + "max_steps": 318, + "num_input_tokens_seen": 0, + "num_train_epochs": 1, + "save_steps": 500, + "total_flos": 3024316907520.0, + "train_batch_size": 10, + "trial_name": null, + "trial_params": null +} diff --git a/CheckGuard Models/wholeimage/drawer/finetune_lora_llava_mistral.sh b/CheckGuard Models/wholeimage/drawer/finetune_lora_llava_mistral.sh new file mode 100644 index 0000000000000000000000000000000000000000..888d2b5cda5d3112b078b17ea22614940aedb94c --- /dev/null +++ b/CheckGuard Models/wholeimage/drawer/finetune_lora_llava_mistral.sh @@ -0,0 +1,43 @@ +#!/bin/bash +# Use first parameter as GPU IDs, default to "0,1,2,3" if not provided +GPU_IDS=${1:-0,1,2,3} + + +CUDA_VISIBLE_DEVICES=0,1,2,3 deepspeed --include localhost:"$GPU_IDS" --master_port 29606\ + llava/train/train_mem.py \ + --lora_enable True --lora_r 128 --lora_alpha 256 --mm_projector_lr 2e-5 \ + --deepspeed ./scripts/zero3.json \ + --model_name_or_path liuhaotian/llava-v1.6-mistral-7b \ + --version mistral_instruct \ + --data_path /home/larry5/project/LLaVA-1.6-ft/data/peft/drawer/drawer_dataset.json \ + --image_folder /home/larry5/project/LLaVA-1.6-ft/data/data/ \ + --vision_tower openai/clip-vit-large-patch14-336 \ + --mm_projector_type mlp2x_gelu \ + --mm_vision_select_layer -2 \ + --mm_use_im_start_end False \ + --mm_use_im_patch_token False \ + --mm_patch_merge_type spatial_unpad \ + --image_aspect_ratio anyres \ + --group_by_modality_length False \ + --bf16 False \ + --fp16 True \ + --output_dir /home/larry5/project/LLaVA-1.6-ft/scripts_peft/mistral/lora/llava-lora-mistral-r128a256/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model \ + --num_train_epochs 1 \ + --per_device_train_batch_size 10 \ + --per_device_eval_batch_size 1 \ + --gradient_accumulation_steps 1 \ + --evaluation_strategy "no" \ + --save_strategy "steps" \ + --save_steps 500 \ + --save_total_limit 5 \ + --learning_rate 2e-5 \ + --weight_decay 0. \ + --warmup_ratio 0.05 \ + --lr_scheduler_type "cosine" \ + --logging_steps 1 \ + --tf32 True \ + --model_max_length 4096 \ + --gradient_checkpointing True \ + --dataloader_num_workers 4 \ + --lazy_preprocess True \ + --report_to wandb \ \ No newline at end of file diff --git a/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/README.md b/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/README.md new file mode 100644 index 0000000000000000000000000000000000000000..bdb138eee6972419f6d60676388b52fd99ec478e --- /dev/null +++ b/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/README.md @@ -0,0 +1,202 @@ +--- +library_name: peft +base_model: liuhaotian/llava-v1.6-mistral-7b +--- + +# Model Card for Model ID + + + + + +## Model Details + +### Model Description + + + + + +- **Developed by:** [More Information Needed] +- **Funded by [optional]:** [More Information Needed] +- **Shared by [optional]:** [More Information Needed] +- **Model type:** [More Information Needed] +- **Language(s) (NLP):** [More Information Needed] +- **License:** [More Information Needed] +- **Finetuned from model [optional]:** [More Information Needed] + +### Model Sources [optional] + + + +- **Repository:** [More Information Needed] +- **Paper [optional]:** [More Information Needed] +- **Demo [optional]:** [More Information Needed] + +## Uses + + + +### Direct Use + + + +[More Information Needed] + +### Downstream Use [optional] + + + +[More Information Needed] + +### Out-of-Scope Use + + + +[More Information Needed] + +## Bias, Risks, and Limitations + + + +[More Information Needed] + +### Recommendations + + + +Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. + +## How to Get Started with the Model + +Use the code below to get started with the model. + +[More Information Needed] + +## Training Details + +### Training Data + + + +[More Information Needed] + +### Training Procedure + + + +#### Preprocessing [optional] + +[More Information Needed] + + +#### Training Hyperparameters + +- **Training regime:** [More Information Needed] + +#### Speeds, Sizes, Times [optional] + + + +[More Information Needed] + +## Evaluation + + + +### Testing Data, Factors & Metrics + +#### Testing Data + + + +[More Information Needed] + +#### Factors + + + +[More Information Needed] + +#### Metrics + + + +[More Information Needed] + +### Results + +[More Information Needed] + +#### Summary + + + +## Model Examination [optional] + + + +[More Information Needed] + +## Environmental Impact + + + +Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). + +- **Hardware Type:** [More Information Needed] +- **Hours used:** [More Information Needed] +- **Cloud Provider:** [More Information Needed] +- **Compute Region:** [More Information Needed] +- **Carbon Emitted:** [More Information Needed] + +## Technical Specifications [optional] + +### Model Architecture and Objective + +[More Information Needed] + +### Compute Infrastructure + +[More Information Needed] + +#### Hardware + +[More Information Needed] + +#### Software + +[More Information Needed] + +## Citation [optional] + + + +**BibTeX:** + +[More Information Needed] + +**APA:** + +[More Information Needed] + +## Glossary [optional] + + + +[More Information Needed] + +## More Information [optional] + +[More Information Needed] + +## Model Card Authors [optional] + +[More Information Needed] + +## Model Card Contact + +[More Information Needed] +### Framework versions + +- PEFT 0.10.0 \ No newline at end of file diff --git a/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/adapter_config.json b/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/adapter_config.json new file mode 100644 index 0000000000000000000000000000000000000000..ef5bf065d7583dfd5a0290e6e9f081e6403f2d4b --- /dev/null +++ b/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/adapter_config.json @@ -0,0 +1,34 @@ +{ + "alpha_pattern": {}, + "auto_mapping": null, + "base_model_name_or_path": "liuhaotian/llava-v1.6-mistral-7b", + "bias": "none", + "fan_in_fan_out": false, + "inference_mode": true, + "init_lora_weights": true, + "layer_replication": null, + "layers_pattern": null, + "layers_to_transform": null, + "loftq_config": {}, + "lora_alpha": 256, + "lora_dropout": 0.05, + "megatron_config": null, + "megatron_core": "megatron.core", + "modules_to_save": null, + "peft_type": "LORA", + "r": 128, + "rank_pattern": {}, + "revision": null, + "target_modules": [ + "k_proj", + "v_proj", + "gate_proj", + "q_proj", + "down_proj", + "up_proj", + "o_proj" + ], + "task_type": "CAUSAL_LM", + "use_dora": false, + "use_rslora": false +} \ No newline at end of file diff --git a/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/adapter_model.safetensors b/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/adapter_model.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..25497c4816a2174676682a8129f97b8c8a90231a --- /dev/null +++ b/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/adapter_model.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:dcb7baa92bad870249687f6d37c2bf0e0e5528f3562bd85db4126f10d29e1f9d +size 708924928 diff --git a/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/README.md b/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/README.md new file mode 100644 index 0000000000000000000000000000000000000000..bdb138eee6972419f6d60676388b52fd99ec478e --- /dev/null +++ b/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/README.md @@ -0,0 +1,202 @@ +--- +library_name: peft +base_model: liuhaotian/llava-v1.6-mistral-7b +--- + +# Model Card for Model ID + + + + + +## Model Details + +### Model Description + + + + + +- **Developed by:** [More Information Needed] +- **Funded by [optional]:** [More Information Needed] +- **Shared by [optional]:** [More Information Needed] +- **Model type:** [More Information Needed] +- **Language(s) (NLP):** [More Information Needed] +- **License:** [More Information Needed] +- **Finetuned from model [optional]:** [More Information Needed] + +### Model Sources [optional] + + + +- **Repository:** [More Information Needed] +- **Paper [optional]:** [More Information Needed] +- **Demo [optional]:** [More Information Needed] + +## Uses + + + +### Direct Use + + + +[More Information Needed] + +### Downstream Use [optional] + + + +[More Information Needed] + +### Out-of-Scope Use + + + +[More Information Needed] + +## Bias, Risks, and Limitations + + + +[More Information Needed] + +### Recommendations + + + +Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. + +## How to Get Started with the Model + +Use the code below to get started with the model. + +[More Information Needed] + +## Training Details + +### Training Data + + + +[More Information Needed] + +### Training Procedure + + + +#### Preprocessing [optional] + +[More Information Needed] + + +#### Training Hyperparameters + +- **Training regime:** [More Information Needed] + +#### Speeds, Sizes, Times [optional] + + + +[More Information Needed] + +## Evaluation + + + +### Testing Data, Factors & Metrics + +#### Testing Data + + + +[More Information Needed] + +#### Factors + + + +[More Information Needed] + +#### Metrics + + + +[More Information Needed] + +### Results + +[More Information Needed] + +#### Summary + + + +## Model Examination [optional] + + + +[More Information Needed] + +## Environmental Impact + + + +Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). + +- **Hardware Type:** [More Information Needed] +- **Hours used:** [More Information Needed] +- **Cloud Provider:** [More Information Needed] +- **Compute Region:** [More Information Needed] +- **Carbon Emitted:** [More Information Needed] + +## Technical Specifications [optional] + +### Model Architecture and Objective + +[More Information Needed] + +### Compute Infrastructure + +[More Information Needed] + +#### Hardware + +[More Information Needed] + +#### Software + +[More Information Needed] + +## Citation [optional] + + + +**BibTeX:** + +[More Information Needed] + +**APA:** + +[More Information Needed] + +## Glossary [optional] + + + +[More Information Needed] + +## More Information [optional] + +[More Information Needed] + +## Model Card Authors [optional] + +[More Information Needed] + +## Model Card Contact + +[More Information Needed] +### Framework versions + +- PEFT 0.10.0 \ No newline at end of file diff --git a/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/adapter_config.json b/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/adapter_config.json new file mode 100644 index 0000000000000000000000000000000000000000..ef5bf065d7583dfd5a0290e6e9f081e6403f2d4b --- /dev/null +++ b/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/adapter_config.json @@ -0,0 +1,34 @@ +{ + "alpha_pattern": {}, + "auto_mapping": null, + "base_model_name_or_path": "liuhaotian/llava-v1.6-mistral-7b", + "bias": "none", + "fan_in_fan_out": false, + "inference_mode": true, + "init_lora_weights": true, + "layer_replication": null, + "layers_pattern": null, + "layers_to_transform": null, + "loftq_config": {}, + "lora_alpha": 256, + "lora_dropout": 0.05, + "megatron_config": null, + "megatron_core": "megatron.core", + "modules_to_save": null, + "peft_type": "LORA", + "r": 128, + "rank_pattern": {}, + "revision": null, + "target_modules": [ + "k_proj", + "v_proj", + "gate_proj", + "q_proj", + "down_proj", + "up_proj", + "o_proj" + ], + "task_type": "CAUSAL_LM", + "use_dora": false, + "use_rslora": false +} \ No newline at end of file diff --git a/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/adapter_model.safetensors b/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/adapter_model.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..25270a0909f9f03f04ce33fc3df40a29ec431828 --- /dev/null +++ b/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/adapter_model.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5d20cade4c1bb14c7fe64c27a174ee58185d85e1ebe2fa7e7b2d4e66c68d7535 +size 1417762896 diff --git a/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/global_step500/zero_pp_rank_0_mp_rank_00_model_states.pt b/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/global_step500/zero_pp_rank_0_mp_rank_00_model_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..a9e77c89cd2c3e63da4ade9d98e52d10a0f0bcfc --- /dev/null +++ b/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/global_step500/zero_pp_rank_0_mp_rank_00_model_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:15855d27b1c9447e6de51958e65550ef87c450448a95db12ed37af1ce46b87ba +size 632242 diff --git a/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/global_step500/zero_pp_rank_0_mp_rank_00_optim_states.pt b/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/global_step500/zero_pp_rank_0_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..f7072ef63ef2064f092621c6509723acfb4ff658 --- /dev/null +++ b/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/global_step500/zero_pp_rank_0_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:aa7042b6a63589c371d7b5f5ee99a3beda47557aed8679ad9a1449546b2ac6ef +size 4504787266 diff --git a/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/latest b/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/latest new file mode 100644 index 0000000000000000000000000000000000000000..f0b47ce15fff9a01b2a416a473b2148085048a50 --- /dev/null +++ b/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/latest @@ -0,0 +1 @@ +global_step500 \ No newline at end of file diff --git a/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/rng_state.pth b/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/rng_state.pth new file mode 100644 index 0000000000000000000000000000000000000000..30f630c64f92aad6ee0cf192e35f06b61fa08947 --- /dev/null +++ b/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/rng_state.pth @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a5ab840621b891b2fa4886e04a2c52941f09c0bd67bac84d3289b54102d26c75 +size 14244 diff --git a/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/scheduler.pt b/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/scheduler.pt new file mode 100644 index 0000000000000000000000000000000000000000..0245a633ad4dd2a8707d70d61e1b1f17491ae6cb --- /dev/null +++ b/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/scheduler.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:905d66842f5634a044a31e5cfed71d9d2c3ea3227bd786ae6077edd1f4d03a9d +size 1064 diff --git a/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/special_tokens_map.json b/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/special_tokens_map.json new file mode 100644 index 0000000000000000000000000000000000000000..14761dcf1466dc232bd41de9c21d4c617b15755e --- /dev/null +++ b/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/special_tokens_map.json @@ -0,0 +1,24 @@ +{ + "bos_token": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "eos_token": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "pad_token": "", + "unk_token": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + } +} diff --git a/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/tokenizer.model b/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/tokenizer.model new file mode 100644 index 0000000000000000000000000000000000000000..8b443ef19c2a19acc3ac64fb9c3db4a72921dff6 --- /dev/null +++ b/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/tokenizer.model @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055 +size 493443 diff --git a/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/tokenizer_config.json b/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/tokenizer_config.json new file mode 100644 index 0000000000000000000000000000000000000000..d0ea5c3458cd84f0062b47fa0476bb328b3e208a --- /dev/null +++ b/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/tokenizer_config.json @@ -0,0 +1,44 @@ +{ + "add_bos_token": true, + "add_eos_token": false, + "added_tokens_decoder": { + "0": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "1": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "2": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + } + }, + "additional_special_tokens": [], + "bos_token": "", + "chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}", + "clean_up_tokenization_spaces": false, + "eos_token": "", + "legacy": true, + "model_max_length": 4096, + "pad_token": "", + "padding_side": "right", + "sp_model_kwargs": {}, + "spaces_between_special_tokens": false, + "tokenizer_class": "LlamaTokenizer", + "unk_token": "", + "use_default_system_prompt": false +} diff --git a/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/trainer_state.json b/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/trainer_state.json new file mode 100644 index 0000000000000000000000000000000000000000..11ae466714107c5717841008a81d3575231b21dd --- /dev/null +++ b/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/trainer_state.json @@ -0,0 +1,3021 @@ +{ + "best_metric": null, + "best_model_checkpoint": null, + "epoch": 0.8445945945945946, + "eval_steps": 500, + "global_step": 500, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "epoch": 0.0, + "learning_rate": 6.666666666666667e-07, + "loss": 0.6778, + "step": 1 + }, + { + "epoch": 0.0, + "learning_rate": 1.3333333333333334e-06, + "loss": 0.7858, + "step": 2 + }, + { + "epoch": 0.01, + "learning_rate": 2.0000000000000003e-06, + "loss": 0.637, + "step": 3 + }, + { + "epoch": 0.01, + "learning_rate": 2.666666666666667e-06, + "loss": 0.8891, + "step": 4 + }, + { + "epoch": 0.01, + "learning_rate": 3.3333333333333333e-06, + "loss": 0.5252, + "step": 5 + }, + { + "epoch": 0.01, + "learning_rate": 4.000000000000001e-06, + "loss": 0.5716, + "step": 6 + }, + { + "epoch": 0.01, + "learning_rate": 4.666666666666667e-06, + "loss": 0.405, + "step": 7 + }, + { + "epoch": 0.01, + "learning_rate": 5.333333333333334e-06, + "loss": 0.3647, + "step": 8 + }, + { + "epoch": 0.02, + "learning_rate": 6e-06, + "loss": 0.3804, + "step": 9 + }, + { + "epoch": 0.02, + "learning_rate": 6.666666666666667e-06, + "loss": 0.3187, + "step": 10 + }, + { + "epoch": 0.02, + "learning_rate": 7.333333333333333e-06, + "loss": 0.3995, + "step": 11 + }, + { + "epoch": 0.02, + "learning_rate": 8.000000000000001e-06, + "loss": 0.1845, + "step": 12 + }, + { + "epoch": 0.02, + "learning_rate": 8.666666666666668e-06, + "loss": 0.3313, + "step": 13 + }, + { + "epoch": 0.02, + "learning_rate": 9.333333333333334e-06, + "loss": 0.3947, + "step": 14 + }, + { + "epoch": 0.03, + "learning_rate": 1e-05, + "loss": 0.2065, + "step": 15 + }, + { + "epoch": 0.03, + "learning_rate": 1.0666666666666667e-05, + "loss": 0.3842, + "step": 16 + }, + { + "epoch": 0.03, + "learning_rate": 1.1333333333333334e-05, + "loss": 0.4008, + "step": 17 + }, + { + "epoch": 0.03, + "learning_rate": 1.2e-05, + "loss": 0.2834, + "step": 18 + }, + { + "epoch": 0.03, + "learning_rate": 1.2666666666666667e-05, + "loss": 0.3042, + "step": 19 + }, + { + "epoch": 0.03, + "learning_rate": 1.3333333333333333e-05, + "loss": 0.4071, + "step": 20 + }, + { + "epoch": 0.04, + "learning_rate": 1.4e-05, + "loss": 0.2516, + "step": 21 + }, + { + "epoch": 0.04, + "learning_rate": 1.4666666666666666e-05, + "loss": 0.3165, + "step": 22 + }, + { + "epoch": 0.04, + "learning_rate": 1.5333333333333334e-05, + "loss": 0.2704, + "step": 23 + }, + { + "epoch": 0.04, + "learning_rate": 1.6000000000000003e-05, + "loss": 0.3171, + "step": 24 + }, + { + "epoch": 0.04, + "learning_rate": 1.6666666666666667e-05, + "loss": 0.5139, + "step": 25 + }, + { + "epoch": 0.04, + "learning_rate": 1.7333333333333336e-05, + "loss": 0.3724, + "step": 26 + }, + { + "epoch": 0.05, + "learning_rate": 1.8e-05, + "loss": 0.2179, + "step": 27 + }, + { + "epoch": 0.05, + "learning_rate": 1.866666666666667e-05, + "loss": 0.4084, + "step": 28 + }, + { + "epoch": 0.05, + "learning_rate": 1.9333333333333333e-05, + "loss": 0.3582, + "step": 29 + }, + { + "epoch": 0.05, + "learning_rate": 2e-05, + "loss": 0.2471, + "step": 30 + }, + { + "epoch": 0.05, + "learning_rate": 1.9999843758648253e-05, + "loss": 0.254, + "step": 31 + }, + { + "epoch": 0.05, + "learning_rate": 1.9999375039475278e-05, + "loss": 0.3107, + "step": 32 + }, + { + "epoch": 0.06, + "learning_rate": 1.9998593857127736e-05, + "loss": 0.1689, + "step": 33 + }, + { + "epoch": 0.06, + "learning_rate": 1.9997500236016233e-05, + "loss": 0.3537, + "step": 34 + }, + { + "epoch": 0.06, + "learning_rate": 1.999609421031453e-05, + "loss": 0.215, + "step": 35 + }, + { + "epoch": 0.06, + "learning_rate": 1.9994375823958504e-05, + "loss": 0.1335, + "step": 36 + }, + { + "epoch": 0.06, + "learning_rate": 1.999234513064475e-05, + "loss": 0.6074, + "step": 37 + }, + { + "epoch": 0.06, + "learning_rate": 1.9990002193828923e-05, + "loss": 0.2102, + "step": 38 + }, + { + "epoch": 0.07, + "learning_rate": 1.998734708672375e-05, + "loss": 0.1328, + "step": 39 + }, + { + "epoch": 0.07, + "learning_rate": 1.998437989229673e-05, + "loss": 0.2783, + "step": 40 + }, + { + "epoch": 0.07, + "learning_rate": 1.9981100703267567e-05, + "loss": 0.1648, + "step": 41 + }, + { + "epoch": 0.07, + "learning_rate": 1.9977509622105233e-05, + "loss": 0.2885, + "step": 42 + }, + { + "epoch": 0.07, + "learning_rate": 1.9973606761024813e-05, + "loss": 0.241, + "step": 43 + }, + { + "epoch": 0.07, + "learning_rate": 1.9969392241983957e-05, + "loss": 0.2298, + "step": 44 + }, + { + "epoch": 0.08, + "learning_rate": 1.9964866196679105e-05, + "loss": 0.1629, + "step": 45 + }, + { + "epoch": 0.08, + "learning_rate": 1.9960028766541336e-05, + "loss": 0.1911, + "step": 46 + }, + { + "epoch": 0.08, + "learning_rate": 1.995488010273198e-05, + "loss": 0.3749, + "step": 47 + }, + { + "epoch": 0.08, + "learning_rate": 1.994942036613787e-05, + "loss": 0.4347, + "step": 48 + }, + { + "epoch": 0.08, + "learning_rate": 1.9943649727366335e-05, + "loss": 0.1651, + "step": 49 + }, + { + "epoch": 0.08, + "learning_rate": 1.9937568366739858e-05, + "loss": 0.476, + "step": 50 + }, + { + "epoch": 0.09, + "learning_rate": 1.9931176474290438e-05, + "loss": 0.269, + "step": 51 + }, + { + "epoch": 0.09, + "learning_rate": 1.9924474249753656e-05, + "loss": 0.6341, + "step": 52 + }, + { + "epoch": 0.09, + "learning_rate": 1.9917461902562435e-05, + "loss": 0.2207, + "step": 53 + }, + { + "epoch": 0.09, + "learning_rate": 1.9910139651840497e-05, + "loss": 0.26, + "step": 54 + }, + { + "epoch": 0.09, + "learning_rate": 1.990250772639552e-05, + "loss": 0.1328, + "step": 55 + }, + { + "epoch": 0.09, + "learning_rate": 1.9894566364711965e-05, + "loss": 0.4922, + "step": 56 + }, + { + "epoch": 0.1, + "learning_rate": 1.988631581494365e-05, + "loss": 0.2979, + "step": 57 + }, + { + "epoch": 0.1, + "learning_rate": 1.9877756334905983e-05, + "loss": 0.2875, + "step": 58 + }, + { + "epoch": 0.1, + "learning_rate": 1.9868888192067915e-05, + "loss": 0.2682, + "step": 59 + }, + { + "epoch": 0.1, + "learning_rate": 1.9859711663543573e-05, + "loss": 0.1769, + "step": 60 + }, + { + "epoch": 0.1, + "learning_rate": 1.9850227036083592e-05, + "loss": 0.2952, + "step": 61 + }, + { + "epoch": 0.1, + "learning_rate": 1.9840434606066182e-05, + "loss": 0.2048, + "step": 62 + }, + { + "epoch": 0.11, + "learning_rate": 1.983033467948784e-05, + "loss": 0.2215, + "step": 63 + }, + { + "epoch": 0.11, + "learning_rate": 1.9819927571953804e-05, + "loss": 0.3016, + "step": 64 + }, + { + "epoch": 0.11, + "learning_rate": 1.9809213608668188e-05, + "loss": 0.4735, + "step": 65 + }, + { + "epoch": 0.11, + "learning_rate": 1.9798193124423804e-05, + "loss": 0.3743, + "step": 66 + }, + { + "epoch": 0.11, + "learning_rate": 1.978686646359173e-05, + "loss": 0.229, + "step": 67 + }, + { + "epoch": 0.11, + "learning_rate": 1.9775233980110524e-05, + "loss": 0.2431, + "step": 68 + }, + { + "epoch": 0.12, + "learning_rate": 1.9763296037475174e-05, + "loss": 0.2257, + "step": 69 + }, + { + "epoch": 0.12, + "learning_rate": 1.9751053008725736e-05, + "loss": 0.1851, + "step": 70 + }, + { + "epoch": 0.12, + "learning_rate": 1.9738505276435692e-05, + "loss": 0.179, + "step": 71 + }, + { + "epoch": 0.12, + "learning_rate": 1.9725653232699962e-05, + "loss": 0.1604, + "step": 72 + }, + { + "epoch": 0.12, + "learning_rate": 1.9712497279122692e-05, + "loss": 0.3912, + "step": 73 + }, + { + "epoch": 0.12, + "learning_rate": 1.969903782680467e-05, + "loss": 0.5239, + "step": 74 + }, + { + "epoch": 0.13, + "learning_rate": 1.96852752963305e-05, + "loss": 0.284, + "step": 75 + }, + { + "epoch": 0.13, + "learning_rate": 1.967121011775546e-05, + "loss": 0.2228, + "step": 76 + }, + { + "epoch": 0.13, + "learning_rate": 1.9656842730592046e-05, + "loss": 0.4633, + "step": 77 + }, + { + "epoch": 0.13, + "learning_rate": 1.9642173583796265e-05, + "loss": 0.4491, + "step": 78 + }, + { + "epoch": 0.13, + "learning_rate": 1.962720313575358e-05, + "loss": 0.3252, + "step": 79 + }, + { + "epoch": 0.14, + "learning_rate": 1.961193185426459e-05, + "loss": 0.175, + "step": 80 + }, + { + "epoch": 0.14, + "learning_rate": 1.9596360216530436e-05, + "loss": 0.2405, + "step": 81 + }, + { + "epoch": 0.14, + "learning_rate": 1.958048870913786e-05, + "loss": 0.1445, + "step": 82 + }, + { + "epoch": 0.14, + "learning_rate": 1.9564317828044022e-05, + "loss": 0.1549, + "step": 83 + }, + { + "epoch": 0.14, + "learning_rate": 1.9547848078560975e-05, + "loss": 0.2074, + "step": 84 + }, + { + "epoch": 0.14, + "learning_rate": 1.9531079975339912e-05, + "loss": 0.375, + "step": 85 + }, + { + "epoch": 0.15, + "learning_rate": 1.9514014042355057e-05, + "loss": 0.2914, + "step": 86 + }, + { + "epoch": 0.15, + "learning_rate": 1.9496650812887293e-05, + "loss": 0.2202, + "step": 87 + }, + { + "epoch": 0.15, + "learning_rate": 1.9478990829507507e-05, + "loss": 0.1598, + "step": 88 + }, + { + "epoch": 0.15, + "learning_rate": 1.946103464405964e-05, + "loss": 0.5804, + "step": 89 + }, + { + "epoch": 0.15, + "learning_rate": 1.9442782817643425e-05, + "loss": 0.125, + "step": 90 + }, + { + "epoch": 0.15, + "learning_rate": 1.9424235920596866e-05, + "loss": 0.338, + "step": 91 + }, + { + "epoch": 0.16, + "learning_rate": 1.9405394532478422e-05, + "loss": 0.3918, + "step": 92 + }, + { + "epoch": 0.16, + "learning_rate": 1.9386259242048883e-05, + "loss": 0.302, + "step": 93 + }, + { + "epoch": 0.16, + "learning_rate": 1.9366830647252974e-05, + "loss": 0.1556, + "step": 94 + }, + { + "epoch": 0.16, + "learning_rate": 1.9347109355200672e-05, + "loss": 0.2169, + "step": 95 + }, + { + "epoch": 0.16, + "learning_rate": 1.9327095982148258e-05, + "loss": 0.0737, + "step": 96 + }, + { + "epoch": 0.16, + "learning_rate": 1.9306791153479007e-05, + "loss": 0.2776, + "step": 97 + }, + { + "epoch": 0.17, + "learning_rate": 1.928619550368371e-05, + "loss": 0.2158, + "step": 98 + }, + { + "epoch": 0.17, + "learning_rate": 1.9265309676340787e-05, + "loss": 0.1743, + "step": 99 + }, + { + "epoch": 0.17, + "learning_rate": 1.9244134324096223e-05, + "loss": 0.4233, + "step": 100 + }, + { + "epoch": 0.17, + "learning_rate": 1.9222670108643152e-05, + "loss": 0.1737, + "step": 101 + }, + { + "epoch": 0.17, + "learning_rate": 1.9200917700701176e-05, + "loss": 0.3509, + "step": 102 + }, + { + "epoch": 0.17, + "learning_rate": 1.9178877779995423e-05, + "loss": 0.1843, + "step": 103 + }, + { + "epoch": 0.18, + "learning_rate": 1.915655103523529e-05, + "loss": 0.3164, + "step": 104 + }, + { + "epoch": 0.18, + "learning_rate": 1.9133938164092942e-05, + "loss": 0.3705, + "step": 105 + }, + { + "epoch": 0.18, + "learning_rate": 1.9111039873181478e-05, + "loss": 0.1795, + "step": 106 + }, + { + "epoch": 0.18, + "learning_rate": 1.908785687803289e-05, + "loss": 0.2387, + "step": 107 + }, + { + "epoch": 0.18, + "learning_rate": 1.9064389903075676e-05, + "loss": 0.2459, + "step": 108 + }, + { + "epoch": 0.18, + "learning_rate": 1.904063968161222e-05, + "loss": 0.3093, + "step": 109 + }, + { + "epoch": 0.19, + "learning_rate": 1.901660695579585e-05, + "loss": 0.282, + "step": 110 + }, + { + "epoch": 0.19, + "learning_rate": 1.899229247660769e-05, + "loss": 0.3662, + "step": 111 + }, + { + "epoch": 0.19, + "learning_rate": 1.8967697003833156e-05, + "loss": 0.2212, + "step": 112 + }, + { + "epoch": 0.19, + "learning_rate": 1.894282130603823e-05, + "loss": 0.1693, + "step": 113 + }, + { + "epoch": 0.19, + "learning_rate": 1.8917666160545446e-05, + "loss": 0.2523, + "step": 114 + }, + { + "epoch": 0.19, + "learning_rate": 1.8892232353409582e-05, + "loss": 0.2582, + "step": 115 + }, + { + "epoch": 0.2, + "learning_rate": 1.8892232353409582e-05, + "loss": 0.227, + "step": 116 + }, + { + "epoch": 0.2, + "learning_rate": 1.8866520679393127e-05, + "loss": 0.1532, + "step": 117 + }, + { + "epoch": 0.2, + "learning_rate": 1.884053194194142e-05, + "loss": 0.2189, + "step": 118 + }, + { + "epoch": 0.2, + "learning_rate": 1.8814266953157557e-05, + "loss": 0.147, + "step": 119 + }, + { + "epoch": 0.2, + "learning_rate": 1.8787726533777003e-05, + "loss": 0.2196, + "step": 120 + }, + { + "epoch": 0.2, + "learning_rate": 1.876091151314196e-05, + "loss": 0.2105, + "step": 121 + }, + { + "epoch": 0.21, + "learning_rate": 1.8733822729175452e-05, + "loss": 0.118, + "step": 122 + }, + { + "epoch": 0.21, + "learning_rate": 1.8706461028355107e-05, + "loss": 0.2145, + "step": 123 + }, + { + "epoch": 0.21, + "learning_rate": 1.867882726568676e-05, + "loss": 0.2689, + "step": 124 + }, + { + "epoch": 0.21, + "learning_rate": 1.865092230467769e-05, + "loss": 0.1862, + "step": 125 + }, + { + "epoch": 0.21, + "learning_rate": 1.8622747017309676e-05, + "loss": 0.2517, + "step": 126 + }, + { + "epoch": 0.21, + "learning_rate": 1.8594302284011704e-05, + "loss": 0.2234, + "step": 127 + }, + { + "epoch": 0.22, + "learning_rate": 1.8565588993632488e-05, + "loss": 0.416, + "step": 128 + }, + { + "epoch": 0.22, + "learning_rate": 1.85366080434127e-05, + "loss": 0.2848, + "step": 129 + }, + { + "epoch": 0.22, + "learning_rate": 1.8507360338956896e-05, + "loss": 0.2564, + "step": 130 + }, + { + "epoch": 0.22, + "learning_rate": 1.8477846794205258e-05, + "loss": 0.1887, + "step": 131 + }, + { + "epoch": 0.22, + "learning_rate": 1.844806833140501e-05, + "loss": 0.2172, + "step": 132 + }, + { + "epoch": 0.22, + "learning_rate": 1.8418025881081612e-05, + "loss": 0.2342, + "step": 133 + }, + { + "epoch": 0.23, + "learning_rate": 1.8387720382009665e-05, + "loss": 0.3647, + "step": 134 + }, + { + "epoch": 0.23, + "learning_rate": 1.8357152781183606e-05, + "loss": 0.4555, + "step": 135 + }, + { + "epoch": 0.23, + "learning_rate": 1.832632403378808e-05, + "loss": 0.7154, + "step": 136 + }, + { + "epoch": 0.23, + "learning_rate": 1.829523510316813e-05, + "loss": 0.2239, + "step": 137 + }, + { + "epoch": 0.23, + "learning_rate": 1.8263886960799062e-05, + "loss": 0.2482, + "step": 138 + }, + { + "epoch": 0.23, + "learning_rate": 1.82322805862561e-05, + "loss": 0.314, + "step": 139 + }, + { + "epoch": 0.24, + "learning_rate": 1.8200416967183785e-05, + "loss": 0.2708, + "step": 140 + }, + { + "epoch": 0.24, + "learning_rate": 1.8168297099265094e-05, + "loss": 0.2582, + "step": 141 + }, + { + "epoch": 0.24, + "learning_rate": 1.813592198619035e-05, + "loss": 0.2136, + "step": 142 + }, + { + "epoch": 0.24, + "learning_rate": 1.810329263962584e-05, + "loss": 0.2046, + "step": 143 + }, + { + "epoch": 0.24, + "learning_rate": 1.8070410079182198e-05, + "loss": 0.1413, + "step": 144 + }, + { + "epoch": 0.24, + "learning_rate": 1.803727533238257e-05, + "loss": 0.254, + "step": 145 + }, + { + "epoch": 0.25, + "learning_rate": 1.8003889434630473e-05, + "loss": 0.3183, + "step": 146 + }, + { + "epoch": 0.25, + "learning_rate": 1.7970253429177477e-05, + "loss": 0.1788, + "step": 147 + }, + { + "epoch": 0.25, + "learning_rate": 1.793636836709057e-05, + "loss": 0.1193, + "step": 148 + }, + { + "epoch": 0.25, + "learning_rate": 1.7902235307219333e-05, + "loss": 0.1632, + "step": 149 + }, + { + "epoch": 0.25, + "learning_rate": 1.7867855316162846e-05, + "loss": 0.2055, + "step": 150 + }, + { + "epoch": 0.26, + "learning_rate": 1.7833229468236367e-05, + "loss": 0.2053, + "step": 151 + }, + { + "epoch": 0.26, + "learning_rate": 1.7798358845437754e-05, + "loss": 0.1196, + "step": 152 + }, + { + "epoch": 0.26, + "learning_rate": 1.776324453741365e-05, + "loss": 0.1903, + "step": 153 + }, + { + "epoch": 0.26, + "learning_rate": 1.772788764142545e-05, + "loss": 0.35, + "step": 154 + }, + { + "epoch": 0.26, + "learning_rate": 1.7692289262315e-05, + "loss": 0.2117, + "step": 155 + }, + { + "epoch": 0.26, + "learning_rate": 1.765645051247007e-05, + "loss": 0.2519, + "step": 156 + }, + { + "epoch": 0.27, + "learning_rate": 1.7620372511789607e-05, + "loss": 0.2019, + "step": 157 + }, + { + "epoch": 0.27, + "learning_rate": 1.7584056387648727e-05, + "loss": 0.16, + "step": 158 + }, + { + "epoch": 0.27, + "learning_rate": 1.75475032748635e-05, + "loss": 0.1916, + "step": 159 + }, + { + "epoch": 0.27, + "learning_rate": 1.751071431565547e-05, + "loss": 0.3202, + "step": 160 + }, + { + "epoch": 0.27, + "learning_rate": 1.747369065961599e-05, + "loss": 0.3153, + "step": 161 + }, + { + "epoch": 0.27, + "learning_rate": 1.7436433463670262e-05, + "loss": 0.2454, + "step": 162 + }, + { + "epoch": 0.28, + "learning_rate": 1.7398943892041223e-05, + "loss": 0.1146, + "step": 163 + }, + { + "epoch": 0.28, + "learning_rate": 1.7361223116213143e-05, + "loss": 0.2135, + "step": 164 + }, + { + "epoch": 0.28, + "learning_rate": 1.7323272314895022e-05, + "loss": 0.2555, + "step": 165 + }, + { + "epoch": 0.28, + "learning_rate": 1.728509267398376e-05, + "loss": 0.1648, + "step": 166 + }, + { + "epoch": 0.28, + "learning_rate": 1.7246685386527098e-05, + "loss": 0.2556, + "step": 167 + }, + { + "epoch": 0.28, + "learning_rate": 1.7208051652686335e-05, + "loss": 0.0675, + "step": 168 + }, + { + "epoch": 0.29, + "learning_rate": 1.7169192679698837e-05, + "loss": 0.1801, + "step": 169 + }, + { + "epoch": 0.29, + "learning_rate": 1.713010968184029e-05, + "loss": 0.1639, + "step": 170 + }, + { + "epoch": 0.29, + "learning_rate": 1.7090803880386784e-05, + "loss": 0.1983, + "step": 171 + }, + { + "epoch": 0.29, + "learning_rate": 1.7051276503576623e-05, + "loss": 0.2065, + "step": 172 + }, + { + "epoch": 0.29, + "learning_rate": 1.701152878657197e-05, + "loss": 0.386, + "step": 173 + }, + { + "epoch": 0.29, + "learning_rate": 1.6971561971420225e-05, + "loss": 0.1026, + "step": 174 + }, + { + "epoch": 0.3, + "learning_rate": 1.693137730701524e-05, + "loss": 0.141, + "step": 175 + }, + { + "epoch": 0.3, + "learning_rate": 1.6890976049058267e-05, + "loss": 0.3519, + "step": 176 + }, + { + "epoch": 0.3, + "learning_rate": 1.6850359460018737e-05, + "loss": 0.1873, + "step": 177 + }, + { + "epoch": 0.3, + "learning_rate": 1.6809528809094808e-05, + "loss": 0.2236, + "step": 178 + }, + { + "epoch": 0.3, + "learning_rate": 1.6768485372173696e-05, + "loss": 0.1955, + "step": 179 + }, + { + "epoch": 0.3, + "learning_rate": 1.6727230431791816e-05, + "loss": 0.2819, + "step": 180 + }, + { + "epoch": 0.31, + "learning_rate": 1.6685765277094702e-05, + "loss": 0.1513, + "step": 181 + }, + { + "epoch": 0.31, + "learning_rate": 1.6644091203796707e-05, + "loss": 0.1258, + "step": 182 + }, + { + "epoch": 0.31, + "learning_rate": 1.6602209514140552e-05, + "loss": 0.3084, + "step": 183 + }, + { + "epoch": 0.31, + "learning_rate": 1.656012151685659e-05, + "loss": 0.1943, + "step": 184 + }, + { + "epoch": 0.31, + "learning_rate": 1.6517828527121942e-05, + "loss": 0.1087, + "step": 185 + }, + { + "epoch": 0.31, + "learning_rate": 1.6475331866519387e-05, + "loss": 0.3218, + "step": 186 + }, + { + "epoch": 0.32, + "learning_rate": 1.6432632862996056e-05, + "loss": 0.2016, + "step": 187 + }, + { + "epoch": 0.32, + "learning_rate": 1.6389732850821967e-05, + "loss": 0.2355, + "step": 188 + }, + { + "epoch": 0.32, + "learning_rate": 1.634663317054829e-05, + "loss": 0.3003, + "step": 189 + }, + { + "epoch": 0.32, + "learning_rate": 1.6303335168965484e-05, + "loss": 0.2318, + "step": 190 + }, + { + "epoch": 0.32, + "learning_rate": 1.6259840199061215e-05, + "loss": 0.1513, + "step": 191 + }, + { + "epoch": 0.32, + "learning_rate": 1.6216149619978064e-05, + "loss": 0.1612, + "step": 192 + }, + { + "epoch": 0.33, + "learning_rate": 1.617226479697105e-05, + "loss": 0.1565, + "step": 193 + }, + { + "epoch": 0.33, + "learning_rate": 1.612818710136499e-05, + "loss": 0.3011, + "step": 194 + }, + { + "epoch": 0.33, + "learning_rate": 1.608391791051163e-05, + "loss": 0.2011, + "step": 195 + }, + { + "epoch": 0.33, + "learning_rate": 1.6039458607746614e-05, + "loss": 0.1629, + "step": 196 + }, + { + "epoch": 0.33, + "learning_rate": 1.599481058234626e-05, + "loss": 0.1287, + "step": 197 + }, + { + "epoch": 0.33, + "learning_rate": 1.5949975229484132e-05, + "loss": 0.2725, + "step": 198 + }, + { + "epoch": 0.34, + "learning_rate": 1.5904953950187458e-05, + "loss": 0.4143, + "step": 199 + }, + { + "epoch": 0.34, + "learning_rate": 1.5859748151293347e-05, + "loss": 0.1918, + "step": 200 + }, + { + "epoch": 0.34, + "learning_rate": 1.5814359245404818e-05, + "loss": 0.2486, + "step": 201 + }, + { + "epoch": 0.34, + "learning_rate": 1.576878865084668e-05, + "loss": 0.4387, + "step": 202 + }, + { + "epoch": 0.34, + "learning_rate": 1.5723037791621193e-05, + "loss": 0.2768, + "step": 203 + }, + { + "epoch": 0.34, + "learning_rate": 1.5677108097363565e-05, + "loss": 0.1003, + "step": 204 + }, + { + "epoch": 0.35, + "learning_rate": 1.563100100329731e-05, + "loss": 0.4326, + "step": 205 + }, + { + "epoch": 0.35, + "learning_rate": 1.558471795018936e-05, + "loss": 0.0864, + "step": 206 + }, + { + "epoch": 0.35, + "learning_rate": 1.5538260384305076e-05, + "loss": 0.3033, + "step": 207 + }, + { + "epoch": 0.35, + "learning_rate": 1.5491629757363033e-05, + "loss": 0.1332, + "step": 208 + }, + { + "epoch": 0.35, + "learning_rate": 1.5444827526489675e-05, + "loss": 0.193, + "step": 209 + }, + { + "epoch": 0.35, + "learning_rate": 1.539785515417376e-05, + "loss": 0.2706, + "step": 210 + }, + { + "epoch": 0.36, + "learning_rate": 1.5350714108220673e-05, + "loss": 0.1861, + "step": 211 + }, + { + "epoch": 0.36, + "learning_rate": 1.5303405861706574e-05, + "loss": 0.3058, + "step": 212 + }, + { + "epoch": 0.36, + "learning_rate": 1.5255931892932333e-05, + "loss": 0.1898, + "step": 213 + }, + { + "epoch": 0.36, + "learning_rate": 1.5208293685377357e-05, + "loss": 0.2667, + "step": 214 + }, + { + "epoch": 0.36, + "learning_rate": 1.5160492727653241e-05, + "loss": 0.1723, + "step": 215 + }, + { + "epoch": 0.36, + "learning_rate": 1.5112530513457236e-05, + "loss": 0.2885, + "step": 216 + }, + { + "epoch": 0.37, + "learning_rate": 1.5064408541525573e-05, + "loss": 0.214, + "step": 217 + }, + { + "epoch": 0.37, + "learning_rate": 1.501612831558664e-05, + "loss": 0.2457, + "step": 218 + }, + { + "epoch": 0.37, + "learning_rate": 1.4967691344313995e-05, + "loss": 0.1488, + "step": 219 + }, + { + "epoch": 0.37, + "learning_rate": 1.4919099141279203e-05, + "loss": 0.1468, + "step": 220 + }, + { + "epoch": 0.37, + "learning_rate": 1.4870353224904572e-05, + "loss": 0.1331, + "step": 221 + }, + { + "epoch": 0.38, + "learning_rate": 1.4821455118415669e-05, + "loss": 0.3833, + "step": 222 + }, + { + "epoch": 0.38, + "learning_rate": 1.4772406349793744e-05, + "loss": 0.3083, + "step": 223 + }, + { + "epoch": 0.38, + "learning_rate": 1.4723208451727983e-05, + "loss": 0.5103, + "step": 224 + }, + { + "epoch": 0.38, + "learning_rate": 1.4673862961567602e-05, + "loss": 0.2315, + "step": 225 + }, + { + "epoch": 0.38, + "learning_rate": 1.4624371421273823e-05, + "loss": 0.5056, + "step": 226 + }, + { + "epoch": 0.38, + "learning_rate": 1.457473537737167e-05, + "loss": 0.345, + "step": 227 + }, + { + "epoch": 0.39, + "learning_rate": 1.4524956380901669e-05, + "loss": 0.2486, + "step": 228 + }, + { + "epoch": 0.39, + "learning_rate": 1.4475035987371355e-05, + "loss": 0.1334, + "step": 229 + }, + { + "epoch": 0.39, + "learning_rate": 1.442497575670668e-05, + "loss": 0.2026, + "step": 230 + }, + { + "epoch": 0.39, + "learning_rate": 1.4374777253203273e-05, + "loss": 0.2028, + "step": 231 + }, + { + "epoch": 0.39, + "learning_rate": 1.4324442045477536e-05, + "loss": 0.1024, + "step": 232 + }, + { + "epoch": 0.39, + "learning_rate": 1.4273971706417648e-05, + "loss": 0.1336, + "step": 233 + }, + { + "epoch": 0.4, + "learning_rate": 1.4223367813134412e-05, + "loss": 0.2927, + "step": 234 + }, + { + "epoch": 0.4, + "learning_rate": 1.4172631946911964e-05, + "loss": 0.3204, + "step": 235 + }, + { + "epoch": 0.4, + "learning_rate": 1.4121765693158364e-05, + "loss": 0.1417, + "step": 236 + }, + { + "epoch": 0.4, + "learning_rate": 1.407077064135607e-05, + "loss": 0.2767, + "step": 237 + }, + { + "epoch": 0.4, + "learning_rate": 1.4019648385012243e-05, + "loss": 0.1877, + "step": 238 + }, + { + "epoch": 0.4, + "learning_rate": 1.3968400521608969e-05, + "loss": 0.1902, + "step": 239 + }, + { + "epoch": 0.41, + "learning_rate": 1.3917028652553338e-05, + "loss": 0.1976, + "step": 240 + }, + { + "epoch": 0.41, + "learning_rate": 1.3865534383127406e-05, + "loss": 0.1658, + "step": 241 + }, + { + "epoch": 0.41, + "learning_rate": 1.3813919322438021e-05, + "loss": 0.4002, + "step": 242 + }, + { + "epoch": 0.41, + "learning_rate": 1.3762185083366557e-05, + "loss": 0.2596, + "step": 243 + }, + { + "epoch": 0.41, + "learning_rate": 1.3710333282518504e-05, + "loss": 0.0957, + "step": 244 + }, + { + "epoch": 0.41, + "learning_rate": 1.3658365540172948e-05, + "loss": 0.242, + "step": 245 + }, + { + "epoch": 0.42, + "learning_rate": 1.3606283480231957e-05, + "loss": 0.4266, + "step": 246 + }, + { + "epoch": 0.42, + "learning_rate": 1.3554088730169814e-05, + "loss": 0.3886, + "step": 247 + }, + { + "epoch": 0.42, + "learning_rate": 1.3501782920982185e-05, + "loss": 0.1089, + "step": 248 + }, + { + "epoch": 0.42, + "learning_rate": 1.3449367687135134e-05, + "loss": 0.3312, + "step": 249 + }, + { + "epoch": 0.42, + "learning_rate": 1.339684466651406e-05, + "loss": 0.2238, + "step": 250 + }, + { + "epoch": 0.42, + "learning_rate": 1.334421550037251e-05, + "loss": 0.1046, + "step": 251 + }, + { + "epoch": 0.43, + "learning_rate": 1.334421550037251e-05, + "loss": 0.1617, + "step": 252 + }, + { + "epoch": 0.43, + "learning_rate": 1.3291481833280897e-05, + "loss": 0.0849, + "step": 253 + }, + { + "epoch": 0.43, + "learning_rate": 1.3238645313075104e-05, + "loss": 0.2548, + "step": 254 + }, + { + "epoch": 0.43, + "learning_rate": 1.3185707590805004e-05, + "loss": 0.1738, + "step": 255 + }, + { + "epoch": 0.43, + "learning_rate": 1.313267032068285e-05, + "loss": 0.1744, + "step": 256 + }, + { + "epoch": 0.43, + "learning_rate": 1.3079535160031598e-05, + "loss": 0.3275, + "step": 257 + }, + { + "epoch": 0.44, + "learning_rate": 1.3026303769233112e-05, + "loss": 0.2187, + "step": 258 + }, + { + "epoch": 0.44, + "learning_rate": 1.2972977811676286e-05, + "loss": 0.13, + "step": 259 + }, + { + "epoch": 0.44, + "learning_rate": 1.2919558953705055e-05, + "loss": 0.1644, + "step": 260 + }, + { + "epoch": 0.44, + "learning_rate": 1.2866048864566338e-05, + "loss": 0.3441, + "step": 261 + }, + { + "epoch": 0.44, + "learning_rate": 1.2812449216357863e-05, + "loss": 0.1805, + "step": 262 + }, + { + "epoch": 0.44, + "learning_rate": 1.275876168397593e-05, + "loss": 0.1578, + "step": 263 + }, + { + "epoch": 0.45, + "learning_rate": 1.270498794506307e-05, + "loss": 0.4781, + "step": 264 + }, + { + "epoch": 0.45, + "learning_rate": 1.2651129679955604e-05, + "loss": 0.1001, + "step": 265 + }, + { + "epoch": 0.45, + "learning_rate": 1.259718857163117e-05, + "loss": 0.225, + "step": 266 + }, + { + "epoch": 0.45, + "learning_rate": 1.2543166305656099e-05, + "loss": 0.216, + "step": 267 + }, + { + "epoch": 0.45, + "learning_rate": 1.2489064570132764e-05, + "loss": 0.3636, + "step": 268 + }, + { + "epoch": 0.45, + "learning_rate": 1.2434885055646823e-05, + "loss": 0.3873, + "step": 269 + }, + { + "epoch": 0.46, + "learning_rate": 1.2380629455214392e-05, + "loss": 0.1739, + "step": 270 + }, + { + "epoch": 0.46, + "learning_rate": 1.2326299464229143e-05, + "loss": 0.2209, + "step": 271 + }, + { + "epoch": 0.46, + "learning_rate": 1.2271896780409321e-05, + "loss": 0.1852, + "step": 272 + }, + { + "epoch": 0.46, + "learning_rate": 1.2217423103744694e-05, + "loss": 0.206, + "step": 273 + }, + { + "epoch": 0.46, + "learning_rate": 1.2162880136443447e-05, + "loss": 0.073, + "step": 274 + }, + { + "epoch": 0.46, + "learning_rate": 1.2108269582878957e-05, + "loss": 0.3641, + "step": 275 + }, + { + "epoch": 0.47, + "learning_rate": 1.2053593149536576e-05, + "loss": 0.1036, + "step": 276 + }, + { + "epoch": 0.47, + "learning_rate": 1.1998852544960266e-05, + "loss": 0.1654, + "step": 277 + }, + { + "epoch": 0.47, + "learning_rate": 1.1944049479699244e-05, + "loss": 0.4466, + "step": 278 + }, + { + "epoch": 0.47, + "learning_rate": 1.1889185666254505e-05, + "loss": 0.1723, + "step": 279 + }, + { + "epoch": 0.47, + "learning_rate": 1.1834262819025326e-05, + "loss": 0.11, + "step": 280 + }, + { + "epoch": 0.47, + "learning_rate": 1.1779282654255685e-05, + "loss": 0.1551, + "step": 281 + }, + { + "epoch": 0.48, + "learning_rate": 1.1724246889980638e-05, + "loss": 0.3681, + "step": 282 + }, + { + "epoch": 0.48, + "learning_rate": 1.166915724597262e-05, + "loss": 0.1615, + "step": 283 + }, + { + "epoch": 0.48, + "learning_rate": 1.1614015443687723e-05, + "loss": 0.1501, + "step": 284 + }, + { + "epoch": 0.48, + "learning_rate": 1.1558823206211894e-05, + "loss": 0.1206, + "step": 285 + }, + { + "epoch": 0.48, + "learning_rate": 1.150358225820709e-05, + "loss": 0.195, + "step": 286 + }, + { + "epoch": 0.48, + "learning_rate": 1.1448294325857387e-05, + "loss": 0.0672, + "step": 287 + }, + { + "epoch": 0.49, + "learning_rate": 1.1392961136815046e-05, + "loss": 0.1577, + "step": 288 + }, + { + "epoch": 0.49, + "learning_rate": 1.133758442014651e-05, + "loss": 0.4435, + "step": 289 + }, + { + "epoch": 0.49, + "learning_rate": 1.1282165906278402e-05, + "loss": 0.249, + "step": 290 + }, + { + "epoch": 0.49, + "learning_rate": 1.122670732694342e-05, + "loss": 0.2221, + "step": 291 + }, + { + "epoch": 0.49, + "learning_rate": 1.1171210415126248e-05, + "loss": 0.1312, + "step": 292 + }, + { + "epoch": 0.49, + "learning_rate": 1.1115676905009385e-05, + "loss": 0.15, + "step": 293 + }, + { + "epoch": 0.5, + "learning_rate": 1.1060108531918972e-05, + "loss": 0.1346, + "step": 294 + }, + { + "epoch": 0.5, + "learning_rate": 1.1004507032270553e-05, + "loss": 0.2224, + "step": 295 + }, + { + "epoch": 0.5, + "learning_rate": 1.094887414351482e-05, + "loss": 0.2183, + "step": 296 + }, + { + "epoch": 0.5, + "learning_rate": 1.0893211604083325e-05, + "loss": 0.154, + "step": 297 + }, + { + "epoch": 0.5, + "learning_rate": 1.0837521153334143e-05, + "loss": 0.1895, + "step": 298 + }, + { + "epoch": 0.51, + "learning_rate": 1.078180453149754e-05, + "loss": 0.3471, + "step": 299 + }, + { + "epoch": 0.51, + "learning_rate": 1.0726063479621574e-05, + "loss": 0.3142, + "step": 300 + }, + { + "epoch": 0.51, + "learning_rate": 1.067029973951771e-05, + "loss": 0.1031, + "step": 301 + }, + { + "epoch": 0.51, + "learning_rate": 1.0614515053706367e-05, + "loss": 0.1477, + "step": 302 + }, + { + "epoch": 0.51, + "learning_rate": 1.0558711165362491e-05, + "loss": 0.1898, + "step": 303 + }, + { + "epoch": 0.51, + "learning_rate": 1.0502889818261075e-05, + "loss": 0.3198, + "step": 304 + }, + { + "epoch": 0.52, + "learning_rate": 1.044705275672266e-05, + "loss": 0.3473, + "step": 305 + }, + { + "epoch": 0.52, + "learning_rate": 1.0391201725558842e-05, + "loss": 0.164, + "step": 306 + }, + { + "epoch": 0.52, + "learning_rate": 1.0335338470017742e-05, + "loss": 0.2804, + "step": 307 + }, + { + "epoch": 0.52, + "learning_rate": 1.0279464735729472e-05, + "loss": 0.1787, + "step": 308 + }, + { + "epoch": 0.52, + "learning_rate": 1.0223582268651585e-05, + "loss": 0.174, + "step": 309 + }, + { + "epoch": 0.52, + "learning_rate": 1.0167692815014527e-05, + "loss": 0.204, + "step": 310 + }, + { + "epoch": 0.53, + "learning_rate": 1.0111798121267047e-05, + "loss": 0.1659, + "step": 311 + }, + { + "epoch": 0.53, + "learning_rate": 1.0055899934021649e-05, + "loss": 0.0851, + "step": 312 + }, + { + "epoch": 0.53, + "learning_rate": 1e-05, + "loss": 0.125, + "step": 313 + }, + { + "epoch": 0.53, + "learning_rate": 9.944100065978351e-06, + "loss": 0.1399, + "step": 314 + }, + { + "epoch": 0.53, + "learning_rate": 9.888201878732956e-06, + "loss": 0.1191, + "step": 315 + }, + { + "epoch": 0.53, + "learning_rate": 9.832307184985475e-06, + "loss": 0.2573, + "step": 316 + }, + { + "epoch": 0.54, + "learning_rate": 9.776417731348416e-06, + "loss": 0.1156, + "step": 317 + }, + { + "epoch": 0.54, + "learning_rate": 9.720535264270529e-06, + "loss": 0.2918, + "step": 318 + }, + { + "epoch": 0.54, + "learning_rate": 9.664661529982261e-06, + "loss": 0.5064, + "step": 319 + }, + { + "epoch": 0.54, + "learning_rate": 9.60879827444116e-06, + "loss": 0.1789, + "step": 320 + }, + { + "epoch": 0.54, + "learning_rate": 9.552947243277346e-06, + "loss": 0.2524, + "step": 321 + }, + { + "epoch": 0.54, + "learning_rate": 9.497110181738928e-06, + "loss": 0.1238, + "step": 322 + }, + { + "epoch": 0.55, + "learning_rate": 9.44128883463751e-06, + "loss": 0.3283, + "step": 323 + }, + { + "epoch": 0.55, + "learning_rate": 9.385484946293636e-06, + "loss": 0.2177, + "step": 324 + }, + { + "epoch": 0.55, + "learning_rate": 9.329700260482292e-06, + "loss": 0.2896, + "step": 325 + }, + { + "epoch": 0.55, + "learning_rate": 9.273936520378428e-06, + "loss": 0.4432, + "step": 326 + }, + { + "epoch": 0.55, + "learning_rate": 9.218195468502462e-06, + "loss": 0.1969, + "step": 327 + }, + { + "epoch": 0.55, + "learning_rate": 9.16247884666586e-06, + "loss": 0.1486, + "step": 328 + }, + { + "epoch": 0.56, + "learning_rate": 9.106788395916679e-06, + "loss": 0.3046, + "step": 329 + }, + { + "epoch": 0.56, + "learning_rate": 9.051125856485183e-06, + "loss": 0.1931, + "step": 330 + }, + { + "epoch": 0.56, + "learning_rate": 8.99549296772945e-06, + "loss": 0.1927, + "step": 331 + }, + { + "epoch": 0.56, + "learning_rate": 8.939891468081033e-06, + "loss": 0.2417, + "step": 332 + }, + { + "epoch": 0.56, + "learning_rate": 8.884323094990619e-06, + "loss": 0.2002, + "step": 333 + }, + { + "epoch": 0.56, + "learning_rate": 8.828789584873754e-06, + "loss": 0.1437, + "step": 334 + }, + { + "epoch": 0.57, + "learning_rate": 8.773292673056582e-06, + "loss": 0.2163, + "step": 335 + }, + { + "epoch": 0.57, + "learning_rate": 8.717834093721598e-06, + "loss": 0.0948, + "step": 336 + }, + { + "epoch": 0.57, + "learning_rate": 8.662415579853492e-06, + "loss": 0.1959, + "step": 337 + }, + { + "epoch": 0.57, + "learning_rate": 8.607038863184957e-06, + "loss": 0.1448, + "step": 338 + }, + { + "epoch": 0.57, + "learning_rate": 8.551705674142618e-06, + "loss": 0.1835, + "step": 339 + }, + { + "epoch": 0.57, + "learning_rate": 8.496417741792912e-06, + "loss": 0.1655, + "step": 340 + }, + { + "epoch": 0.58, + "learning_rate": 8.44117679378811e-06, + "loss": 0.1666, + "step": 341 + }, + { + "epoch": 0.58, + "learning_rate": 8.385984556312282e-06, + "loss": 0.1771, + "step": 342 + }, + { + "epoch": 0.58, + "learning_rate": 8.330842754027383e-06, + "loss": 0.1141, + "step": 343 + }, + { + "epoch": 0.58, + "learning_rate": 8.275753110019367e-06, + "loss": 0.3248, + "step": 344 + }, + { + "epoch": 0.58, + "learning_rate": 8.220717345744316e-06, + "loss": 0.2598, + "step": 345 + }, + { + "epoch": 0.58, + "learning_rate": 8.165737180974678e-06, + "loss": 0.1587, + "step": 346 + }, + { + "epoch": 0.59, + "learning_rate": 8.110814333745496e-06, + "loss": 0.1711, + "step": 347 + }, + { + "epoch": 0.59, + "learning_rate": 8.05595052030076e-06, + "loss": 0.1615, + "step": 348 + }, + { + "epoch": 0.59, + "learning_rate": 8.001147455039735e-06, + "loss": 0.1857, + "step": 349 + }, + { + "epoch": 0.59, + "learning_rate": 7.94640685046343e-06, + "loss": 0.1025, + "step": 350 + }, + { + "epoch": 0.59, + "learning_rate": 7.891730417121044e-06, + "loss": 0.1696, + "step": 351 + }, + { + "epoch": 0.59, + "learning_rate": 7.837119863556554e-06, + "loss": 0.1765, + "step": 352 + }, + { + "epoch": 0.6, + "learning_rate": 7.782576896255307e-06, + "loss": 0.3, + "step": 353 + }, + { + "epoch": 0.6, + "learning_rate": 7.72810321959068e-06, + "loss": 0.1344, + "step": 354 + }, + { + "epoch": 0.6, + "learning_rate": 7.673700535770859e-06, + "loss": 0.3158, + "step": 355 + }, + { + "epoch": 0.6, + "learning_rate": 7.619370544785608e-06, + "loss": 0.1455, + "step": 356 + }, + { + "epoch": 0.6, + "learning_rate": 7.56511494435318e-06, + "loss": 0.2933, + "step": 357 + }, + { + "epoch": 0.6, + "learning_rate": 7.510935429867237e-06, + "loss": 0.0901, + "step": 358 + }, + { + "epoch": 0.61, + "learning_rate": 7.4568336943439055e-06, + "loss": 0.2275, + "step": 359 + }, + { + "epoch": 0.61, + "learning_rate": 7.402811428368832e-06, + "loss": 0.1897, + "step": 360 + }, + { + "epoch": 0.61, + "learning_rate": 7.348870320044399e-06, + "loss": 0.2391, + "step": 361 + }, + { + "epoch": 0.61, + "learning_rate": 7.295012054936934e-06, + "loss": 0.1899, + "step": 362 + }, + { + "epoch": 0.61, + "learning_rate": 7.241238316024069e-06, + "loss": 0.1385, + "step": 363 + }, + { + "epoch": 0.61, + "learning_rate": 7.187550783642141e-06, + "loss": 0.0762, + "step": 364 + }, + { + "epoch": 0.62, + "learning_rate": 7.133951135433666e-06, + "loss": 0.2305, + "step": 365 + }, + { + "epoch": 0.62, + "learning_rate": 7.080441046294948e-06, + "loss": 0.1229, + "step": 366 + }, + { + "epoch": 0.62, + "learning_rate": 7.027022188323716e-06, + "loss": 0.1246, + "step": 367 + }, + { + "epoch": 0.62, + "learning_rate": 6.973696230766891e-06, + "loss": 0.2491, + "step": 368 + }, + { + "epoch": 0.62, + "learning_rate": 6.920464839968405e-06, + "loss": 0.1749, + "step": 369 + }, + { + "epoch": 0.62, + "learning_rate": 6.8673296793171555e-06, + "loss": 0.1952, + "step": 370 + }, + { + "epoch": 0.63, + "learning_rate": 6.814292409194998e-06, + "loss": 0.115, + "step": 371 + }, + { + "epoch": 0.63, + "learning_rate": 6.761354686924895e-06, + "loss": 0.1391, + "step": 372 + }, + { + "epoch": 0.63, + "learning_rate": 6.708518166719107e-06, + "loss": 0.209, + "step": 373 + }, + { + "epoch": 0.63, + "learning_rate": 6.655784499627491e-06, + "loss": 0.4016, + "step": 374 + }, + { + "epoch": 0.63, + "learning_rate": 6.603155333485945e-06, + "loss": 0.1919, + "step": 375 + }, + { + "epoch": 0.64, + "learning_rate": 6.550632312864869e-06, + "loss": 0.2142, + "step": 376 + }, + { + "epoch": 0.64, + "learning_rate": 6.498217079017818e-06, + "loss": 0.1622, + "step": 377 + }, + { + "epoch": 0.64, + "learning_rate": 6.445911269830189e-06, + "loss": 0.1669, + "step": 378 + }, + { + "epoch": 0.64, + "learning_rate": 6.393716519768047e-06, + "loss": 0.3306, + "step": 379 + }, + { + "epoch": 0.64, + "learning_rate": 6.341634459827053e-06, + "loss": 0.0774, + "step": 380 + }, + { + "epoch": 0.64, + "learning_rate": 6.289666717481497e-06, + "loss": 0.2361, + "step": 381 + }, + { + "epoch": 0.65, + "learning_rate": 6.237814916633444e-06, + "loss": 0.2916, + "step": 382 + }, + { + "epoch": 0.65, + "learning_rate": 6.1860806775619785e-06, + "loss": 0.2664, + "step": 383 + }, + { + "epoch": 0.65, + "learning_rate": 6.134465616872598e-06, + "loss": 0.4905, + "step": 384 + }, + { + "epoch": 0.65, + "learning_rate": 6.082971347446662e-06, + "loss": 0.1202, + "step": 385 + }, + { + "epoch": 0.65, + "learning_rate": 6.0315994783910345e-06, + "loss": 0.2228, + "step": 386 + }, + { + "epoch": 0.65, + "learning_rate": 5.980351614987759e-06, + "loss": 0.1403, + "step": 387 + }, + { + "epoch": 0.66, + "learning_rate": 5.929229358643932e-06, + "loss": 0.3658, + "step": 388 + }, + { + "epoch": 0.66, + "learning_rate": 5.878234306841637e-06, + "loss": 0.121, + "step": 389 + }, + { + "epoch": 0.66, + "learning_rate": 5.827368053088043e-06, + "loss": 0.2419, + "step": 390 + }, + { + "epoch": 0.66, + "learning_rate": 5.7766321868655935e-06, + "loss": 0.1211, + "step": 391 + }, + { + "epoch": 0.66, + "learning_rate": 5.726028293582355e-06, + "loss": 0.419, + "step": 392 + }, + { + "epoch": 0.66, + "learning_rate": 5.67555795452247e-06, + "loss": 0.2181, + "step": 393 + }, + { + "epoch": 0.67, + "learning_rate": 5.62522274679673e-06, + "loss": 0.1513, + "step": 394 + }, + { + "epoch": 0.67, + "learning_rate": 5.575024243293319e-06, + "loss": 0.1522, + "step": 395 + }, + { + "epoch": 0.67, + "learning_rate": 5.524964012628648e-06, + "loss": 0.1583, + "step": 396 + }, + { + "epoch": 0.67, + "learning_rate": 5.475043619098334e-06, + "loss": 0.1475, + "step": 397 + }, + { + "epoch": 0.67, + "learning_rate": 5.42526462262833e-06, + "loss": 0.1265, + "step": 398 + }, + { + "epoch": 0.67, + "learning_rate": 5.375628578726181e-06, + "loss": 0.0715, + "step": 399 + }, + { + "epoch": 0.68, + "learning_rate": 5.326137038432399e-06, + "loss": 0.1164, + "step": 400 + }, + { + "epoch": 0.68, + "learning_rate": 5.276791548272018e-06, + "loss": 0.3881, + "step": 401 + }, + { + "epoch": 0.68, + "learning_rate": 5.227593650206258e-06, + "loss": 0.1464, + "step": 402 + }, + { + "epoch": 0.68, + "learning_rate": 5.1785448815843334e-06, + "loss": 0.2286, + "step": 403 + }, + { + "epoch": 0.68, + "learning_rate": 5.129646775095432e-06, + "loss": 0.1454, + "step": 404 + }, + { + "epoch": 0.68, + "learning_rate": 5.0809008587207965e-06, + "loss": 0.1155, + "step": 405 + }, + { + "epoch": 0.69, + "learning_rate": 5.032308655686011e-06, + "loss": 0.1199, + "step": 406 + }, + { + "epoch": 0.69, + "learning_rate": 4.983871684413363e-06, + "loss": 0.3385, + "step": 407 + }, + { + "epoch": 0.69, + "learning_rate": 4.935591458474433e-06, + "loss": 0.2083, + "step": 408 + }, + { + "epoch": 0.69, + "learning_rate": 4.8874694865427676e-06, + "loss": 0.1057, + "step": 409 + }, + { + "epoch": 0.69, + "learning_rate": 4.8395072723467585e-06, + "loss": 0.1584, + "step": 410 + }, + { + "epoch": 0.69, + "learning_rate": 4.791706314622645e-06, + "loss": 0.2643, + "step": 411 + }, + { + "epoch": 0.7, + "learning_rate": 4.74406810706767e-06, + "loss": 0.1302, + "step": 412 + }, + { + "epoch": 0.7, + "learning_rate": 4.69659413829343e-06, + "loss": 0.2024, + "step": 413 + }, + { + "epoch": 0.7, + "learning_rate": 4.649285891779327e-06, + "loss": 0.1177, + "step": 414 + }, + { + "epoch": 0.7, + "learning_rate": 4.602144845826246e-06, + "loss": 0.1947, + "step": 415 + }, + { + "epoch": 0.7, + "learning_rate": 4.5551724735103285e-06, + "loss": 0.1209, + "step": 416 + }, + { + "epoch": 0.7, + "learning_rate": 4.508370242636968e-06, + "loss": 0.2273, + "step": 417 + }, + { + "epoch": 0.71, + "learning_rate": 4.461739615694929e-06, + "loss": 0.3131, + "step": 418 + }, + { + "epoch": 0.71, + "learning_rate": 4.415282049810644e-06, + "loss": 0.41, + "step": 419 + }, + { + "epoch": 0.71, + "learning_rate": 4.368998996702694e-06, + "loss": 0.218, + "step": 420 + }, + { + "epoch": 0.71, + "learning_rate": 4.3228919026364345e-06, + "loss": 0.1857, + "step": 421 + }, + { + "epoch": 0.71, + "learning_rate": 4.276962208378811e-06, + "loss": 0.1159, + "step": 422 + }, + { + "epoch": 0.71, + "learning_rate": 4.231211349153319e-06, + "loss": 0.1981, + "step": 423 + }, + { + "epoch": 0.72, + "learning_rate": 4.185640754595183e-06, + "loss": 0.2907, + "step": 424 + }, + { + "epoch": 0.72, + "learning_rate": 4.140251848706656e-06, + "loss": 0.1582, + "step": 425 + }, + { + "epoch": 0.72, + "learning_rate": 4.095046049812545e-06, + "loss": 0.1264, + "step": 426 + }, + { + "epoch": 0.72, + "learning_rate": 4.050024770515869e-06, + "loss": 0.1817, + "step": 427 + }, + { + "epoch": 0.72, + "learning_rate": 4.005189417653743e-06, + "loss": 0.1073, + "step": 428 + }, + { + "epoch": 0.72, + "learning_rate": 3.960541392253387e-06, + "loss": 0.3221, + "step": 429 + }, + { + "epoch": 0.73, + "learning_rate": 3.916082089488372e-06, + "loss": 0.2237, + "step": 430 + }, + { + "epoch": 0.73, + "learning_rate": 3.8718128986350154e-06, + "loss": 0.3927, + "step": 431 + }, + { + "epoch": 0.73, + "learning_rate": 3.827735203028953e-06, + "loss": 0.1443, + "step": 432 + }, + { + "epoch": 0.73, + "learning_rate": 3.7838503800219393e-06, + "loss": 0.1289, + "step": 433 + }, + { + "epoch": 0.73, + "learning_rate": 3.740159800938784e-06, + "loss": 0.1407, + "step": 434 + }, + { + "epoch": 0.73, + "learning_rate": 3.696664831034519e-06, + "loss": 0.4103, + "step": 435 + }, + { + "epoch": 0.74, + "learning_rate": 3.6533668294517154e-06, + "loss": 0.1538, + "step": 436 + }, + { + "epoch": 0.74, + "learning_rate": 3.6102671491780393e-06, + "loss": 0.4277, + "step": 437 + }, + { + "epoch": 0.74, + "learning_rate": 3.5673671370039464e-06, + "loss": 0.1458, + "step": 438 + }, + { + "epoch": 0.74, + "learning_rate": 3.5246681334806177e-06, + "loss": 0.1699, + "step": 439 + }, + { + "epoch": 0.74, + "learning_rate": 3.482171472878062e-06, + "loss": 0.2724, + "step": 440 + }, + { + "epoch": 0.74, + "learning_rate": 3.4398784831434127e-06, + "loss": 0.2037, + "step": 441 + }, + { + "epoch": 0.75, + "learning_rate": 3.39779048585945e-06, + "loss": 0.3123, + "step": 442 + }, + { + "epoch": 0.75, + "learning_rate": 3.3559087962032956e-06, + "loss": 0.2008, + "step": 443 + }, + { + "epoch": 0.75, + "learning_rate": 3.314234722905302e-06, + "loss": 0.253, + "step": 444 + }, + { + "epoch": 0.75, + "learning_rate": 3.272769568208183e-06, + "loss": 0.1709, + "step": 445 + }, + { + "epoch": 0.75, + "learning_rate": 3.2315146278263053e-06, + "loss": 0.2399, + "step": 446 + }, + { + "epoch": 0.76, + "learning_rate": 3.1904711909051933e-06, + "loss": 0.1039, + "step": 447 + }, + { + "epoch": 0.76, + "learning_rate": 3.149640539981267e-06, + "loss": 0.2212, + "step": 448 + }, + { + "epoch": 0.76, + "learning_rate": 3.1090239509417364e-06, + "loss": 0.2057, + "step": 449 + }, + { + "epoch": 0.76, + "learning_rate": 3.0686226929847617e-06, + "loss": 0.1692, + "step": 450 + }, + { + "epoch": 0.76, + "learning_rate": 3.0284380285797767e-06, + "loss": 0.1658, + "step": 451 + }, + { + "epoch": 0.76, + "learning_rate": 2.9884712134280324e-06, + "loss": 0.1372, + "step": 452 + }, + { + "epoch": 0.77, + "learning_rate": 2.948723496423379e-06, + "loss": 0.1991, + "step": 453 + }, + { + "epoch": 0.77, + "learning_rate": 2.909196119613218e-06, + "loss": 0.1983, + "step": 454 + }, + { + "epoch": 0.77, + "learning_rate": 2.869890318159713e-06, + "loss": 0.4125, + "step": 455 + }, + { + "epoch": 0.77, + "learning_rate": 2.8308073203011667e-06, + "loss": 0.4987, + "step": 456 + }, + { + "epoch": 0.77, + "learning_rate": 2.7919483473136678e-06, + "loss": 0.1212, + "step": 457 + }, + { + "epoch": 0.77, + "learning_rate": 2.753314613472906e-06, + "loss": 0.2399, + "step": 458 + }, + { + "epoch": 0.78, + "learning_rate": 2.7149073260162416e-06, + "loss": 0.1534, + "step": 459 + }, + { + "epoch": 0.78, + "learning_rate": 2.6767276851049818e-06, + "loss": 0.2789, + "step": 460 + }, + { + "epoch": 0.78, + "learning_rate": 2.63877688378686e-06, + "loss": 0.1404, + "step": 461 + }, + { + "epoch": 0.78, + "learning_rate": 2.6010561079587817e-06, + "loss": 0.1757, + "step": 462 + }, + { + "epoch": 0.78, + "learning_rate": 2.5635665363297424e-06, + "loss": 0.1194, + "step": 463 + }, + { + "epoch": 0.78, + "learning_rate": 2.5263093403840145e-06, + "loss": 0.1268, + "step": 464 + }, + { + "epoch": 0.79, + "learning_rate": 2.489285684344532e-06, + "loss": 0.1493, + "step": 465 + }, + { + "epoch": 0.79, + "learning_rate": 2.452496725136503e-06, + "loss": 0.2272, + "step": 466 + }, + { + "epoch": 0.79, + "learning_rate": 2.4159436123512737e-06, + "loss": 0.1863, + "step": 467 + }, + { + "epoch": 0.79, + "learning_rate": 2.3796274882103964e-06, + "loss": 0.1783, + "step": 468 + }, + { + "epoch": 0.79, + "learning_rate": 2.3435494875299315e-06, + "loss": 0.1379, + "step": 469 + }, + { + "epoch": 0.79, + "learning_rate": 2.3077107376850005e-06, + "loss": 0.4607, + "step": 470 + }, + { + "epoch": 0.8, + "learning_rate": 2.272112358574551e-06, + "loss": 0.078, + "step": 471 + }, + { + "epoch": 0.8, + "learning_rate": 2.2367554625863496e-06, + "loss": 0.2215, + "step": 472 + }, + { + "epoch": 0.8, + "learning_rate": 2.2016411545622497e-06, + "loss": 0.1333, + "step": 473 + }, + { + "epoch": 0.8, + "learning_rate": 2.1667705317636333e-06, + "loss": 0.1098, + "step": 474 + }, + { + "epoch": 0.8, + "learning_rate": 2.132144683837155e-06, + "loss": 0.1947, + "step": 475 + }, + { + "epoch": 0.8, + "learning_rate": 2.0977646927806682e-06, + "loss": 0.1148, + "step": 476 + }, + { + "epoch": 0.81, + "learning_rate": 2.0636316329094317e-06, + "loss": 0.2097, + "step": 477 + }, + { + "epoch": 0.81, + "learning_rate": 2.029746570822524e-06, + "loss": 0.127, + "step": 478 + }, + { + "epoch": 0.81, + "learning_rate": 1.996110565369527e-06, + "loss": 0.2963, + "step": 479 + }, + { + "epoch": 0.81, + "learning_rate": 1.9627246676174363e-06, + "loss": 0.172, + "step": 480 + }, + { + "epoch": 0.81, + "learning_rate": 1.929589920817806e-06, + "loss": 0.2083, + "step": 481 + }, + { + "epoch": 0.81, + "learning_rate": 1.896707360374167e-06, + "loss": 0.1132, + "step": 482 + }, + { + "epoch": 0.82, + "learning_rate": 1.8640780138096515e-06, + "loss": 0.2204, + "step": 483 + }, + { + "epoch": 0.82, + "learning_rate": 1.8317029007349086e-06, + "loss": 0.2599, + "step": 484 + }, + { + "epoch": 0.82, + "learning_rate": 1.799583032816219e-06, + "loss": 0.2668, + "step": 485 + }, + { + "epoch": 0.82, + "learning_rate": 1.7677194137439036e-06, + "loss": 0.1575, + "step": 486 + }, + { + "epoch": 0.82, + "learning_rate": 1.7361130392009407e-06, + "loss": 0.2251, + "step": 487 + }, + { + "epoch": 0.82, + "learning_rate": 1.7047648968318697e-06, + "loss": 0.2407, + "step": 488 + }, + { + "epoch": 0.83, + "learning_rate": 1.6736759662119183e-06, + "loss": 0.1042, + "step": 489 + }, + { + "epoch": 0.83, + "learning_rate": 1.642847218816398e-06, + "loss": 0.2138, + "step": 490 + }, + { + "epoch": 0.83, + "learning_rate": 1.6122796179903355e-06, + "loss": 0.185, + "step": 491 + }, + { + "epoch": 0.83, + "learning_rate": 1.5819741189183902e-06, + "loss": 0.1251, + "step": 492 + }, + { + "epoch": 0.83, + "learning_rate": 1.5519316685949903e-06, + "loss": 0.1887, + "step": 493 + }, + { + "epoch": 0.83, + "learning_rate": 1.522153205794742e-06, + "loss": 0.1527, + "step": 494 + }, + { + "epoch": 0.84, + "learning_rate": 1.492639661043106e-06, + "loss": 0.3192, + "step": 495 + }, + { + "epoch": 0.84, + "learning_rate": 1.4633919565873033e-06, + "loss": 0.2173, + "step": 496 + }, + { + "epoch": 0.84, + "learning_rate": 1.4344110063675143e-06, + "loss": 0.1351, + "step": 497 + }, + { + "epoch": 0.84, + "learning_rate": 1.4056977159883011e-06, + "loss": 0.1096, + "step": 498 + }, + { + "epoch": 0.84, + "learning_rate": 1.377252982690327e-06, + "loss": 0.2903, + "step": 499 + }, + { + "epoch": 0.84, + "learning_rate": 1.3490776953223107e-06, + "loss": 0.1286, + "step": 500 + } + ], + "logging_steps": 1.0, + "max_steps": 592, + "num_input_tokens_seen": 0, + "num_train_epochs": 1, + "save_steps": 500, + "total_flos": 1569118617600.0, + "train_batch_size": 10, + "trial_name": null, + "trial_params": null +} diff --git a/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/training_args.bin b/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/training_args.bin new file mode 100644 index 0000000000000000000000000000000000000000..e2c71c8e66f03018064e6d1844aa66a28e44832d --- /dev/null +++ b/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/training_args.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ac20dc8b29eda10237fe52b517b0a3b28eb3b5986c5cee88e9da095ea6b8c41f +size 6968 diff --git a/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/zero_to_fp32.py b/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/zero_to_fp32.py new file mode 100644 index 0000000000000000000000000000000000000000..c98caae31534368be22b67fc4ae906836c992a8d --- /dev/null +++ b/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/checkpoint-500/zero_to_fp32.py @@ -0,0 +1,587 @@ +#!/usr/bin/env python + +# Copyright (c) Microsoft Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team + +# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets +# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in +# the future. Once extracted, the weights don't require DeepSpeed and can be used in any +# application. +# +# example: python zero_to_fp32.py . pytorch_model.bin + +import argparse +import torch +import glob +import math +import os +import re +from collections import OrderedDict +from dataclasses import dataclass + +# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with +# DeepSpeed data structures it has to be available in the current python environment. +from deepspeed.utils import logger +from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS, + FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES, + FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS) + + +@dataclass +class zero_model_state: + buffers: dict() + param_shapes: dict() + shared_params: list + ds_version: int + frozen_param_shapes: dict() + frozen_param_fragments: dict() + + +debug = 0 + +# load to cpu +device = torch.device('cpu') + + +def atoi(text): + return int(text) if text.isdigit() else text + + +def natural_keys(text): + ''' + alist.sort(key=natural_keys) sorts in human order + http://nedbatchelder.com/blog/200712/human_sorting.html + (See Toothy's implementation in the comments) + ''' + return [atoi(c) for c in re.split(r'(\d+)', text)] + + +def get_model_state_file(checkpoint_dir, zero_stage): + if not os.path.isdir(checkpoint_dir): + raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist") + + # there should be only one file + if zero_stage <= 2: + file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt") + elif zero_stage == 3: + file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt") + + if not os.path.exists(file): + raise FileNotFoundError(f"can't find model states file at '{file}'") + + return file + + +def get_checkpoint_files(checkpoint_dir, glob_pattern): + # XXX: need to test that this simple glob rule works for multi-node setup too + ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys) + + if len(ckpt_files) == 0: + raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'") + + return ckpt_files + + +def get_optim_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt") + + +def get_model_state_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_model_states.pt") + + +def parse_model_states(files): + zero_model_states = [] + for file in files: + state_dict = torch.load(file, map_location=device) + + if BUFFER_NAMES not in state_dict: + raise ValueError(f"{file} is not a model state checkpoint") + buffer_names = state_dict[BUFFER_NAMES] + if debug: + print("Found buffers:", buffer_names) + + # recover just the buffers while restoring them to fp32 if they were saved in fp16 + buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names} + param_shapes = state_dict[PARAM_SHAPES] + + # collect parameters that are included in param_shapes + param_names = [] + for s in param_shapes: + for name in s.keys(): + param_names.append(name) + + # update with frozen parameters + frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None) + if frozen_param_shapes is not None: + if debug: + print(f"Found frozen_param_shapes: {frozen_param_shapes}") + param_names += list(frozen_param_shapes.keys()) + + # handle shared params + shared_params = [[k, v] for k, v in state_dict["shared_params"].items()] + + ds_version = state_dict.get(DS_VERSION, None) + + frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None) + + z_model_state = zero_model_state(buffers=buffers, + param_shapes=param_shapes, + shared_params=shared_params, + ds_version=ds_version, + frozen_param_shapes=frozen_param_shapes, + frozen_param_fragments=frozen_param_fragments) + zero_model_states.append(z_model_state) + + return zero_model_states + + +def parse_optim_states(files, ds_checkpoint_dir): + + total_files = len(files) + state_dicts = [] + for f in files: + state_dict = torch.load(f, map_location=device) + # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights + # and also handle the case where it was already removed by another helper script + state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None) + state_dicts.append(state_dict) + + if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]: + raise ValueError(f"{files[0]} is not a zero checkpoint") + zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE] + world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT] + + # For ZeRO-2 each param group can have different partition_count as data parallelism for expert + # parameters can be different from data parallelism for non-expert parameters. So we can just + # use the max of the partition_count to get the dp world_size. + + if type(world_size) is list: + world_size = max(world_size) + + if world_size != total_files: + raise ValueError( + f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. " + "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes." + ) + + # the groups are named differently in each stage + if zero_stage <= 2: + fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS + elif zero_stage == 3: + fp32_groups_key = FP32_FLAT_GROUPS + else: + raise ValueError(f"unknown zero stage {zero_stage}") + + if zero_stage <= 2: + fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))] + elif zero_stage == 3: + # if there is more than one param group, there will be multiple flattened tensors - one + # flattened tensor per group - for simplicity merge them into a single tensor + # + # XXX: could make the script more memory efficient for when there are multiple groups - it + # will require matching the sub-lists of param_shapes for each param group flattened tensor + + fp32_flat_groups = [ + torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts)) + ] + + return zero_stage, world_size, fp32_flat_groups + + +def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir): + """ + Returns fp32 state_dict reconstructed from ds checkpoint + + Args: + - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are) + + """ + print(f"Processing zero checkpoint '{ds_checkpoint_dir}'") + + optim_files = get_optim_files(ds_checkpoint_dir) + zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir) + print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}") + + model_files = get_model_state_files(ds_checkpoint_dir) + + zero_model_states = parse_model_states(model_files) + print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}') + + if zero_stage <= 2: + return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states) + elif zero_stage == 3: + return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states) + + +def _zero2_merge_frozen_params(state_dict, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + frozen_param_fragments = zero_model_states[0].frozen_param_fragments + + if debug: + num_elem = sum(s.numel() for s in frozen_param_shapes.values()) + print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in frozen_param_fragments.values()]) + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + state_dict[name] = frozen_param_fragments[name] + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + + # Reconstruction protocol: + # + # XXX: document this + + if debug: + for i in range(world_size): + for j in range(len(fp32_flat_groups[0])): + print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}") + + # XXX: memory usage doubles here (zero2) + num_param_groups = len(fp32_flat_groups[0]) + merged_single_partition_of_fp32_groups = [] + for i in range(num_param_groups): + merged_partitions = [sd[i] for sd in fp32_flat_groups] + full_single_fp32_vector = torch.cat(merged_partitions, 0) + merged_single_partition_of_fp32_groups.append(full_single_fp32_vector) + avail_numel = sum( + [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups]) + + if debug: + wanted_params = sum([len(shapes) for shapes in param_shapes]) + wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes]) + # not asserting if there is a mismatch due to possible padding + print(f"Have {avail_numel} numels to process.") + print(f"Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + total_numel = 0 + total_params = 0 + for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups): + offset = 0 + avail_numel = full_single_fp32_vector.numel() + for name, shape in shapes.items(): + + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + total_params += 1 + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape) + offset += unpartitioned_numel + + # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and + # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex + # paddings performed in the code it's almost impossible to predict the exact numbers w/o the + # live optimizer object, so we are checking that the numbers are within the right range + align_to = 2 * world_size + + def zero2_align(x): + return align_to * math.ceil(x / align_to) + + if debug: + print(f"original offset={offset}, avail_numel={avail_numel}") + + offset = zero2_align(offset) + avail_numel = zero2_align(avail_numel) + + if debug: + print(f"aligned offset={offset}, avail_numel={avail_numel}") + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + _zero2_merge_frozen_params(state_dict, zero_model_states) + + _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def zero3_partitioned_param_info(unpartitioned_numel, world_size): + remainder = unpartitioned_numel % world_size + padding_numel = (world_size - remainder) if remainder else 0 + partitioned_numel = math.ceil(unpartitioned_numel / world_size) + return partitioned_numel, padding_numel + + +def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + if debug: + for i in range(world_size): + num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values()) + print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in zero_model_states[0].frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states) + state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape) + + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + avail_numel = fp32_flat_groups[0].numel() * world_size + # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each + # param, re-consolidating each param, while dealing with padding if any + + # merge list of dicts, preserving order + param_shapes = {k: v for d in param_shapes for k, v in d.items()} + + if debug: + for i in range(world_size): + print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}") + + wanted_params = len(param_shapes) + wanted_numel = sum(shape.numel() for shape in param_shapes.values()) + # not asserting if there is a mismatch due to possible padding + avail_numel = fp32_flat_groups[0].numel() * world_size + print(f"Trainable params: Have {avail_numel} numels to process.") + print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + offset = 0 + total_numel = 0 + total_params = 0 + for name, shape in param_shapes.items(): + + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + total_params += 1 + + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + # XXX: memory usage doubles here + state_dict[name] = torch.cat( + tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)), + 0).narrow(0, 0, unpartitioned_numel).view(shape) + offset += partitioned_numel + + offset *= world_size + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + _zero3_merge_frozen_params(state_dict, world_size, zero_model_states) + + _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with + ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example + via a model hub. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14`` + + Returns: + - pytorch ``state_dict`` + + Note: this approach may not work if your application doesn't have sufficient free CPU memory and + you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with + the checkpoint. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + # do the training and checkpoint saving + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu + model = model.cpu() # move to cpu + model.load_state_dict(state_dict) + # submit to model hub or save the model to share with others + + In this example the ``model`` will no longer be usable in the deepspeed context of the same + application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead. + + """ + if tag is None: + latest_path = os.path.join(checkpoint_dir, 'latest') + if os.path.isfile(latest_path): + with open(latest_path, 'r') as fd: + tag = fd.read().strip() + else: + raise ValueError(f"Unable to find 'latest' file at {latest_path}") + + ds_checkpoint_dir = os.path.join(checkpoint_dir, tag) + + if not os.path.isdir(ds_checkpoint_dir): + raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist") + + return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir) + + +def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be + loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin) + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + """ + + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) + print(f"Saving fp32 state dict to {output_file}") + torch.save(state_dict, output_file) + + +def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None): + """ + 1. Put the provided model to cpu + 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` + 3. Load it into the provided model + + Args: + - ``model``: the model object to update + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + + Returns: + - ``model`: modified model + + Make sure you have plenty of CPU memory available before you call this function. If you don't + have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it + conveniently placed for you in the checkpoint folder. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint + model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) + # submit to model hub or save the model to share with others + + Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context + of the same application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + """ + logger.info(f"Extracting fp32 weights") + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) + + logger.info(f"Overwriting model with fp32 weights") + model = model.cpu() + model.load_state_dict(state_dict, strict=False) + + return model + + +if __name__ == "__main__": + + parser = argparse.ArgumentParser() + parser.add_argument("checkpoint_dir", + type=str, + help="path to the desired checkpoint folder, e.g., path/checkpoint-12") + parser.add_argument( + "output_file", + type=str, + help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)") + parser.add_argument("-t", + "--tag", + type=str, + default=None, + help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1") + parser.add_argument("-d", "--debug", action='store_true', help="enable debug") + args = parser.parse_args() + + debug = args.debug + + convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag) diff --git a/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/config.json b/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/config.json new file mode 100644 index 0000000000000000000000000000000000000000..93e133af45036a778791b5679a8953a4f6a35a33 --- /dev/null +++ b/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/config.json @@ -0,0 +1,70 @@ +{ + "_name_or_path": "liuhaotian/llava-v1.6-mistral-7b", + "architectures": [ + "LlavaMistralForCausalLM" + ], + "attention_dropout": 0.0, + "bos_token_id": 1, + "eos_token_id": 2, + "freeze_mm_mlp_adapter": false, + "freeze_mm_vision_resampler": false, + "hidden_act": "silu", + "hidden_size": 4096, + "image_aspect_ratio": "anyres", + "image_crop_resolution": 224, + "image_grid_pinpoints": [ + [ + 336, + 672 + ], + [ + 672, + 336 + ], + [ + 672, + 672 + ], + [ + 1008, + 336 + ], + [ + 336, + 1008 + ] + ], + "image_split_resolution": 224, + "initializer_range": 0.02, + "intermediate_size": 14336, + "max_position_embeddings": 32768, + "mm_hidden_size": 1024, + "mm_patch_merge_type": "spatial_unpad", + "mm_projector_lr": 2e-05, + "mm_projector_type": "mlp2x_gelu", + "mm_resampler_type": null, + "mm_use_im_patch_token": false, + "mm_use_im_start_end": false, + "mm_vision_select_feature": "patch", + "mm_vision_select_layer": -2, + "mm_vision_tower": "openai/clip-vit-large-patch14-336", + "mm_vision_tower_lr": 2e-06, + "model_type": "llava_mistral", + "num_attention_heads": 32, + "num_hidden_layers": 32, + "num_key_value_heads": 8, + "rms_norm_eps": 1e-05, + "rope_theta": 1000000.0, + "sliding_window": null, + "tie_word_embeddings": false, + "tokenizer_model_max_length": 4096, + "tokenizer_padding_side": "right", + "torch_dtype": "bfloat16", + "transformers_version": "4.37.2", + "tune_mm_mlp_adapter": false, + "tune_mm_vision_resampler": false, + "unfreeze_mm_vision_tower": true, + "use_cache": true, + "use_mm_proj": true, + "vocab_size": 32000 +} diff --git a/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/non_lora_trainables.bin b/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/non_lora_trainables.bin new file mode 100644 index 0000000000000000000000000000000000000000..1ddf0ac9d3c1f362fdfdb32c168b26967a7c3e38 --- /dev/null +++ b/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/non_lora_trainables.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:50e91c6e79b848a7c5e717c26bd45fad3beda6f3c54739ee912dd5aa12b5b123 +size 41961648 diff --git a/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/trainer_state.json b/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/trainer_state.json new file mode 100644 index 0000000000000000000000000000000000000000..d37c1828403b320337f5f2d3bcf018cf1cbfcd73 --- /dev/null +++ b/CheckGuard Models/wholeimage/drawer/llava-lora-mistral-r128a256-10BS-model/trainer_state.json @@ -0,0 +1,3582 @@ +{ + "best_metric": null, + "best_model_checkpoint": null, + "epoch": 1.0, + "eval_steps": 500, + "global_step": 592, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "epoch": 0.0, + "learning_rate": 6.666666666666667e-07, + "loss": 0.6778, + "step": 1 + }, + { + "epoch": 0.0, + "learning_rate": 1.3333333333333334e-06, + "loss": 0.7858, + "step": 2 + }, + { + "epoch": 0.01, + "learning_rate": 2.0000000000000003e-06, + "loss": 0.637, + "step": 3 + }, + { + "epoch": 0.01, + "learning_rate": 2.666666666666667e-06, + "loss": 0.8891, + "step": 4 + }, + { + "epoch": 0.01, + "learning_rate": 3.3333333333333333e-06, + "loss": 0.5252, + "step": 5 + }, + { + "epoch": 0.01, + "learning_rate": 4.000000000000001e-06, + "loss": 0.5716, + "step": 6 + }, + { + "epoch": 0.01, + "learning_rate": 4.666666666666667e-06, + "loss": 0.405, + "step": 7 + }, + { + "epoch": 0.01, + "learning_rate": 5.333333333333334e-06, + "loss": 0.3647, + "step": 8 + }, + { + "epoch": 0.02, + "learning_rate": 6e-06, + "loss": 0.3804, + "step": 9 + }, + { + "epoch": 0.02, + "learning_rate": 6.666666666666667e-06, + "loss": 0.3187, + "step": 10 + }, + { + "epoch": 0.02, + "learning_rate": 7.333333333333333e-06, + "loss": 0.3995, + "step": 11 + }, + { + "epoch": 0.02, + "learning_rate": 8.000000000000001e-06, + "loss": 0.1845, + "step": 12 + }, + { + "epoch": 0.02, + "learning_rate": 8.666666666666668e-06, + "loss": 0.3313, + "step": 13 + }, + { + "epoch": 0.02, + "learning_rate": 9.333333333333334e-06, + "loss": 0.3947, + "step": 14 + }, + { + "epoch": 0.03, + "learning_rate": 1e-05, + "loss": 0.2065, + "step": 15 + }, + { + "epoch": 0.03, + "learning_rate": 1.0666666666666667e-05, + "loss": 0.3842, + "step": 16 + }, + { + "epoch": 0.03, + "learning_rate": 1.1333333333333334e-05, + "loss": 0.4008, + "step": 17 + }, + { + "epoch": 0.03, + "learning_rate": 1.2e-05, + "loss": 0.2834, + "step": 18 + }, + { + "epoch": 0.03, + "learning_rate": 1.2666666666666667e-05, + "loss": 0.3042, + "step": 19 + }, + { + "epoch": 0.03, + "learning_rate": 1.3333333333333333e-05, + "loss": 0.4071, + "step": 20 + }, + { + "epoch": 0.04, + "learning_rate": 1.4e-05, + "loss": 0.2516, + "step": 21 + }, + { + "epoch": 0.04, + "learning_rate": 1.4666666666666666e-05, + "loss": 0.3165, + "step": 22 + }, + { + "epoch": 0.04, + "learning_rate": 1.5333333333333334e-05, + "loss": 0.2704, + "step": 23 + }, + { + "epoch": 0.04, + "learning_rate": 1.6000000000000003e-05, + "loss": 0.3171, + "step": 24 + }, + { + "epoch": 0.04, + "learning_rate": 1.6666666666666667e-05, + "loss": 0.5139, + "step": 25 + }, + { + "epoch": 0.04, + "learning_rate": 1.7333333333333336e-05, + "loss": 0.3724, + "step": 26 + }, + { + "epoch": 0.05, + "learning_rate": 1.8e-05, + "loss": 0.2179, + "step": 27 + }, + { + "epoch": 0.05, + "learning_rate": 1.866666666666667e-05, + "loss": 0.4084, + "step": 28 + }, + { + "epoch": 0.05, + "learning_rate": 1.9333333333333333e-05, + "loss": 0.3582, + "step": 29 + }, + { + "epoch": 0.05, + "learning_rate": 2e-05, + "loss": 0.2471, + "step": 30 + }, + { + "epoch": 0.05, + "learning_rate": 1.9999843758648253e-05, + "loss": 0.254, + "step": 31 + }, + { + "epoch": 0.05, + "learning_rate": 1.9999375039475278e-05, + "loss": 0.3107, + "step": 32 + }, + { + "epoch": 0.06, + "learning_rate": 1.9998593857127736e-05, + "loss": 0.1689, + "step": 33 + }, + { + "epoch": 0.06, + "learning_rate": 1.9997500236016233e-05, + "loss": 0.3537, + "step": 34 + }, + { + "epoch": 0.06, + "learning_rate": 1.999609421031453e-05, + "loss": 0.215, + "step": 35 + }, + { + "epoch": 0.06, + "learning_rate": 1.9994375823958504e-05, + "loss": 0.1335, + "step": 36 + }, + { + "epoch": 0.06, + "learning_rate": 1.999234513064475e-05, + "loss": 0.6074, + "step": 37 + }, + { + "epoch": 0.06, + "learning_rate": 1.9990002193828923e-05, + "loss": 0.2102, + "step": 38 + }, + { + "epoch": 0.07, + "learning_rate": 1.998734708672375e-05, + "loss": 0.1328, + "step": 39 + }, + { + "epoch": 0.07, + "learning_rate": 1.998437989229673e-05, + "loss": 0.2783, + "step": 40 + }, + { + "epoch": 0.07, + "learning_rate": 1.9981100703267567e-05, + "loss": 0.1648, + "step": 41 + }, + { + "epoch": 0.07, + "learning_rate": 1.9977509622105233e-05, + "loss": 0.2885, + "step": 42 + }, + { + "epoch": 0.07, + "learning_rate": 1.9973606761024813e-05, + "loss": 0.241, + "step": 43 + }, + { + "epoch": 0.07, + "learning_rate": 1.9969392241983957e-05, + "loss": 0.2298, + "step": 44 + }, + { + "epoch": 0.08, + "learning_rate": 1.9964866196679105e-05, + "loss": 0.1629, + "step": 45 + }, + { + "epoch": 0.08, + "learning_rate": 1.9960028766541336e-05, + "loss": 0.1911, + "step": 46 + }, + { + "epoch": 0.08, + "learning_rate": 1.995488010273198e-05, + "loss": 0.3749, + "step": 47 + }, + { + "epoch": 0.08, + "learning_rate": 1.994942036613787e-05, + "loss": 0.4347, + "step": 48 + }, + { + "epoch": 0.08, + "learning_rate": 1.9943649727366335e-05, + "loss": 0.1651, + "step": 49 + }, + { + "epoch": 0.08, + "learning_rate": 1.9937568366739858e-05, + "loss": 0.476, + "step": 50 + }, + { + "epoch": 0.09, + "learning_rate": 1.9931176474290438e-05, + "loss": 0.269, + "step": 51 + }, + { + "epoch": 0.09, + "learning_rate": 1.9924474249753656e-05, + "loss": 0.6341, + "step": 52 + }, + { + "epoch": 0.09, + "learning_rate": 1.9917461902562435e-05, + "loss": 0.2207, + "step": 53 + }, + { + "epoch": 0.09, + "learning_rate": 1.9910139651840497e-05, + "loss": 0.26, + "step": 54 + }, + { + "epoch": 0.09, + "learning_rate": 1.990250772639552e-05, + "loss": 0.1328, + "step": 55 + }, + { + "epoch": 0.09, + "learning_rate": 1.9894566364711965e-05, + "loss": 0.4922, + "step": 56 + }, + { + "epoch": 0.1, + "learning_rate": 1.988631581494365e-05, + "loss": 0.2979, + "step": 57 + }, + { + "epoch": 0.1, + "learning_rate": 1.9877756334905983e-05, + "loss": 0.2875, + "step": 58 + }, + { + "epoch": 0.1, + "learning_rate": 1.9868888192067915e-05, + "loss": 0.2682, + "step": 59 + }, + { + "epoch": 0.1, + "learning_rate": 1.9859711663543573e-05, + "loss": 0.1769, + "step": 60 + }, + { + "epoch": 0.1, + "learning_rate": 1.9850227036083592e-05, + "loss": 0.2952, + "step": 61 + }, + { + "epoch": 0.1, + "learning_rate": 1.9840434606066182e-05, + "loss": 0.2048, + "step": 62 + }, + { + "epoch": 0.11, + "learning_rate": 1.983033467948784e-05, + "loss": 0.2215, + "step": 63 + }, + { + "epoch": 0.11, + "learning_rate": 1.9819927571953804e-05, + "loss": 0.3016, + "step": 64 + }, + { + "epoch": 0.11, + "learning_rate": 1.9809213608668188e-05, + "loss": 0.4735, + "step": 65 + }, + { + "epoch": 0.11, + "learning_rate": 1.9798193124423804e-05, + "loss": 0.3743, + "step": 66 + }, + { + "epoch": 0.11, + "learning_rate": 1.978686646359173e-05, + "loss": 0.229, + "step": 67 + }, + { + "epoch": 0.11, + "learning_rate": 1.9775233980110524e-05, + "loss": 0.2431, + "step": 68 + }, + { + "epoch": 0.12, + "learning_rate": 1.9763296037475174e-05, + "loss": 0.2257, + "step": 69 + }, + { + "epoch": 0.12, + "learning_rate": 1.9751053008725736e-05, + "loss": 0.1851, + "step": 70 + }, + { + "epoch": 0.12, + "learning_rate": 1.9738505276435692e-05, + "loss": 0.179, + "step": 71 + }, + { + "epoch": 0.12, + "learning_rate": 1.9725653232699962e-05, + "loss": 0.1604, + "step": 72 + }, + { + "epoch": 0.12, + "learning_rate": 1.9712497279122692e-05, + "loss": 0.3912, + "step": 73 + }, + { + "epoch": 0.12, + "learning_rate": 1.969903782680467e-05, + "loss": 0.5239, + "step": 74 + }, + { + "epoch": 0.13, + "learning_rate": 1.96852752963305e-05, + "loss": 0.284, + "step": 75 + }, + { + "epoch": 0.13, + "learning_rate": 1.967121011775546e-05, + "loss": 0.2228, + "step": 76 + }, + { + "epoch": 0.13, + "learning_rate": 1.9656842730592046e-05, + "loss": 0.4633, + "step": 77 + }, + { + "epoch": 0.13, + "learning_rate": 1.9642173583796265e-05, + "loss": 0.4491, + "step": 78 + }, + { + "epoch": 0.13, + "learning_rate": 1.962720313575358e-05, + "loss": 0.3252, + "step": 79 + }, + { + "epoch": 0.14, + "learning_rate": 1.961193185426459e-05, + "loss": 0.175, + "step": 80 + }, + { + "epoch": 0.14, + "learning_rate": 1.9596360216530436e-05, + "loss": 0.2405, + "step": 81 + }, + { + "epoch": 0.14, + "learning_rate": 1.958048870913786e-05, + "loss": 0.1445, + "step": 82 + }, + { + "epoch": 0.14, + "learning_rate": 1.9564317828044022e-05, + "loss": 0.1549, + "step": 83 + }, + { + "epoch": 0.14, + "learning_rate": 1.9547848078560975e-05, + "loss": 0.2074, + "step": 84 + }, + { + "epoch": 0.14, + "learning_rate": 1.9531079975339912e-05, + "loss": 0.375, + "step": 85 + }, + { + "epoch": 0.15, + "learning_rate": 1.9514014042355057e-05, + "loss": 0.2914, + "step": 86 + }, + { + "epoch": 0.15, + "learning_rate": 1.9496650812887293e-05, + "loss": 0.2202, + "step": 87 + }, + { + "epoch": 0.15, + "learning_rate": 1.9478990829507507e-05, + "loss": 0.1598, + "step": 88 + }, + { + "epoch": 0.15, + "learning_rate": 1.946103464405964e-05, + "loss": 0.5804, + "step": 89 + }, + { + "epoch": 0.15, + "learning_rate": 1.9442782817643425e-05, + "loss": 0.125, + "step": 90 + }, + { + "epoch": 0.15, + "learning_rate": 1.9424235920596866e-05, + "loss": 0.338, + "step": 91 + }, + { + "epoch": 0.16, + "learning_rate": 1.9405394532478422e-05, + "loss": 0.3918, + "step": 92 + }, + { + "epoch": 0.16, + "learning_rate": 1.9386259242048883e-05, + "loss": 0.302, + "step": 93 + }, + { + "epoch": 0.16, + "learning_rate": 1.9366830647252974e-05, + "loss": 0.1556, + "step": 94 + }, + { + "epoch": 0.16, + "learning_rate": 1.9347109355200672e-05, + "loss": 0.2169, + "step": 95 + }, + { + "epoch": 0.16, + "learning_rate": 1.9327095982148258e-05, + "loss": 0.0737, + "step": 96 + }, + { + "epoch": 0.16, + "learning_rate": 1.9306791153479007e-05, + "loss": 0.2776, + "step": 97 + }, + { + "epoch": 0.17, + "learning_rate": 1.928619550368371e-05, + "loss": 0.2158, + "step": 98 + }, + { + "epoch": 0.17, + "learning_rate": 1.9265309676340787e-05, + "loss": 0.1743, + "step": 99 + }, + { + "epoch": 0.17, + "learning_rate": 1.9244134324096223e-05, + "loss": 0.4233, + "step": 100 + }, + { + "epoch": 0.17, + "learning_rate": 1.9222670108643152e-05, + "loss": 0.1737, + "step": 101 + }, + { + "epoch": 0.17, + "learning_rate": 1.9200917700701176e-05, + "loss": 0.3509, + "step": 102 + }, + { + "epoch": 0.17, + "learning_rate": 1.9178877779995423e-05, + "loss": 0.1843, + "step": 103 + }, + { + "epoch": 0.18, + "learning_rate": 1.915655103523529e-05, + "loss": 0.3164, + "step": 104 + }, + { + "epoch": 0.18, + "learning_rate": 1.9133938164092942e-05, + "loss": 0.3705, + "step": 105 + }, + { + "epoch": 0.18, + "learning_rate": 1.9111039873181478e-05, + "loss": 0.1795, + "step": 106 + }, + { + "epoch": 0.18, + "learning_rate": 1.908785687803289e-05, + "loss": 0.2387, + "step": 107 + }, + { + "epoch": 0.18, + "learning_rate": 1.9064389903075676e-05, + "loss": 0.2459, + "step": 108 + }, + { + "epoch": 0.18, + "learning_rate": 1.904063968161222e-05, + "loss": 0.3093, + "step": 109 + }, + { + "epoch": 0.19, + "learning_rate": 1.901660695579585e-05, + "loss": 0.282, + "step": 110 + }, + { + "epoch": 0.19, + "learning_rate": 1.899229247660769e-05, + "loss": 0.3662, + "step": 111 + }, + { + "epoch": 0.19, + "learning_rate": 1.8967697003833156e-05, + "loss": 0.2212, + "step": 112 + }, + { + "epoch": 0.19, + "learning_rate": 1.894282130603823e-05, + "loss": 0.1693, + "step": 113 + }, + { + "epoch": 0.19, + "learning_rate": 1.8917666160545446e-05, + "loss": 0.2523, + "step": 114 + }, + { + "epoch": 0.19, + "learning_rate": 1.8892232353409582e-05, + "loss": 0.2582, + "step": 115 + }, + { + "epoch": 0.2, + "learning_rate": 1.8892232353409582e-05, + "loss": 0.227, + "step": 116 + }, + { + "epoch": 0.2, + "learning_rate": 1.8866520679393127e-05, + "loss": 0.1532, + "step": 117 + }, + { + "epoch": 0.2, + "learning_rate": 1.884053194194142e-05, + "loss": 0.2189, + "step": 118 + }, + { + "epoch": 0.2, + "learning_rate": 1.8814266953157557e-05, + "loss": 0.147, + "step": 119 + }, + { + "epoch": 0.2, + "learning_rate": 1.8787726533777003e-05, + "loss": 0.2196, + "step": 120 + }, + { + "epoch": 0.2, + "learning_rate": 1.876091151314196e-05, + "loss": 0.2105, + "step": 121 + }, + { + "epoch": 0.21, + "learning_rate": 1.8733822729175452e-05, + "loss": 0.118, + "step": 122 + }, + { + "epoch": 0.21, + "learning_rate": 1.8706461028355107e-05, + "loss": 0.2145, + "step": 123 + }, + { + "epoch": 0.21, + "learning_rate": 1.867882726568676e-05, + "loss": 0.2689, + "step": 124 + }, + { + "epoch": 0.21, + "learning_rate": 1.865092230467769e-05, + "loss": 0.1862, + "step": 125 + }, + { + "epoch": 0.21, + "learning_rate": 1.8622747017309676e-05, + "loss": 0.2517, + "step": 126 + }, + { + "epoch": 0.21, + "learning_rate": 1.8594302284011704e-05, + "loss": 0.2234, + "step": 127 + }, + { + "epoch": 0.22, + "learning_rate": 1.8565588993632488e-05, + "loss": 0.416, + "step": 128 + }, + { + "epoch": 0.22, + "learning_rate": 1.85366080434127e-05, + "loss": 0.2848, + "step": 129 + }, + { + "epoch": 0.22, + "learning_rate": 1.8507360338956896e-05, + "loss": 0.2564, + "step": 130 + }, + { + "epoch": 0.22, + "learning_rate": 1.8477846794205258e-05, + "loss": 0.1887, + "step": 131 + }, + { + "epoch": 0.22, + "learning_rate": 1.844806833140501e-05, + "loss": 0.2172, + "step": 132 + }, + { + "epoch": 0.22, + "learning_rate": 1.8418025881081612e-05, + "loss": 0.2342, + "step": 133 + }, + { + "epoch": 0.23, + "learning_rate": 1.8387720382009665e-05, + "loss": 0.3647, + "step": 134 + }, + { + "epoch": 0.23, + "learning_rate": 1.8357152781183606e-05, + "loss": 0.4555, + "step": 135 + }, + { + "epoch": 0.23, + "learning_rate": 1.832632403378808e-05, + "loss": 0.7154, + "step": 136 + }, + { + "epoch": 0.23, + "learning_rate": 1.829523510316813e-05, + "loss": 0.2239, + "step": 137 + }, + { + "epoch": 0.23, + "learning_rate": 1.8263886960799062e-05, + "loss": 0.2482, + "step": 138 + }, + { + "epoch": 0.23, + "learning_rate": 1.82322805862561e-05, + "loss": 0.314, + "step": 139 + }, + { + "epoch": 0.24, + "learning_rate": 1.8200416967183785e-05, + "loss": 0.2708, + "step": 140 + }, + { + "epoch": 0.24, + "learning_rate": 1.8168297099265094e-05, + "loss": 0.2582, + "step": 141 + }, + { + "epoch": 0.24, + "learning_rate": 1.813592198619035e-05, + "loss": 0.2136, + "step": 142 + }, + { + "epoch": 0.24, + "learning_rate": 1.810329263962584e-05, + "loss": 0.2046, + "step": 143 + }, + { + "epoch": 0.24, + "learning_rate": 1.8070410079182198e-05, + "loss": 0.1413, + "step": 144 + }, + { + "epoch": 0.24, + "learning_rate": 1.803727533238257e-05, + "loss": 0.254, + "step": 145 + }, + { + "epoch": 0.25, + "learning_rate": 1.8003889434630473e-05, + "loss": 0.3183, + "step": 146 + }, + { + "epoch": 0.25, + "learning_rate": 1.7970253429177477e-05, + "loss": 0.1788, + "step": 147 + }, + { + "epoch": 0.25, + "learning_rate": 1.793636836709057e-05, + "loss": 0.1193, + "step": 148 + }, + { + "epoch": 0.25, + "learning_rate": 1.7902235307219333e-05, + "loss": 0.1632, + "step": 149 + }, + { + "epoch": 0.25, + "learning_rate": 1.7867855316162846e-05, + "loss": 0.2055, + "step": 150 + }, + { + "epoch": 0.26, + "learning_rate": 1.7833229468236367e-05, + "loss": 0.2053, + "step": 151 + }, + { + "epoch": 0.26, + "learning_rate": 1.7798358845437754e-05, + "loss": 0.1196, + "step": 152 + }, + { + "epoch": 0.26, + "learning_rate": 1.776324453741365e-05, + "loss": 0.1903, + "step": 153 + }, + { + "epoch": 0.26, + "learning_rate": 1.772788764142545e-05, + "loss": 0.35, + "step": 154 + }, + { + "epoch": 0.26, + "learning_rate": 1.7692289262315e-05, + "loss": 0.2117, + "step": 155 + }, + { + "epoch": 0.26, + "learning_rate": 1.765645051247007e-05, + "loss": 0.2519, + "step": 156 + }, + { + "epoch": 0.27, + "learning_rate": 1.7620372511789607e-05, + "loss": 0.2019, + "step": 157 + }, + { + "epoch": 0.27, + "learning_rate": 1.7584056387648727e-05, + "loss": 0.16, + "step": 158 + }, + { + "epoch": 0.27, + "learning_rate": 1.75475032748635e-05, + "loss": 0.1916, + "step": 159 + }, + { + "epoch": 0.27, + "learning_rate": 1.751071431565547e-05, + "loss": 0.3202, + "step": 160 + }, + { + "epoch": 0.27, + "learning_rate": 1.747369065961599e-05, + "loss": 0.3153, + "step": 161 + }, + { + "epoch": 0.27, + "learning_rate": 1.7436433463670262e-05, + "loss": 0.2454, + "step": 162 + }, + { + "epoch": 0.28, + "learning_rate": 1.7398943892041223e-05, + "loss": 0.1146, + "step": 163 + }, + { + "epoch": 0.28, + "learning_rate": 1.7361223116213143e-05, + "loss": 0.2135, + "step": 164 + }, + { + "epoch": 0.28, + "learning_rate": 1.7323272314895022e-05, + "loss": 0.2555, + "step": 165 + }, + { + "epoch": 0.28, + "learning_rate": 1.728509267398376e-05, + "loss": 0.1648, + "step": 166 + }, + { + "epoch": 0.28, + "learning_rate": 1.7246685386527098e-05, + "loss": 0.2556, + "step": 167 + }, + { + "epoch": 0.28, + "learning_rate": 1.7208051652686335e-05, + "loss": 0.0675, + "step": 168 + }, + { + "epoch": 0.29, + "learning_rate": 1.7169192679698837e-05, + "loss": 0.1801, + "step": 169 + }, + { + "epoch": 0.29, + "learning_rate": 1.713010968184029e-05, + "loss": 0.1639, + "step": 170 + }, + { + "epoch": 0.29, + "learning_rate": 1.7090803880386784e-05, + "loss": 0.1983, + "step": 171 + }, + { + "epoch": 0.29, + "learning_rate": 1.7051276503576623e-05, + "loss": 0.2065, + "step": 172 + }, + { + "epoch": 0.29, + "learning_rate": 1.701152878657197e-05, + "loss": 0.386, + "step": 173 + }, + { + "epoch": 0.29, + "learning_rate": 1.6971561971420225e-05, + "loss": 0.1026, + "step": 174 + }, + { + "epoch": 0.3, + "learning_rate": 1.693137730701524e-05, + "loss": 0.141, + "step": 175 + }, + { + "epoch": 0.3, + "learning_rate": 1.6890976049058267e-05, + "loss": 0.3519, + "step": 176 + }, + { + "epoch": 0.3, + "learning_rate": 1.6850359460018737e-05, + "loss": 0.1873, + "step": 177 + }, + { + "epoch": 0.3, + "learning_rate": 1.6809528809094808e-05, + "loss": 0.2236, + "step": 178 + }, + { + "epoch": 0.3, + "learning_rate": 1.6768485372173696e-05, + "loss": 0.1955, + "step": 179 + }, + { + "epoch": 0.3, + "learning_rate": 1.6727230431791816e-05, + "loss": 0.2819, + "step": 180 + }, + { + "epoch": 0.31, + "learning_rate": 1.6685765277094702e-05, + "loss": 0.1513, + "step": 181 + }, + { + "epoch": 0.31, + "learning_rate": 1.6644091203796707e-05, + "loss": 0.1258, + "step": 182 + }, + { + "epoch": 0.31, + "learning_rate": 1.6602209514140552e-05, + "loss": 0.3084, + "step": 183 + }, + { + "epoch": 0.31, + "learning_rate": 1.656012151685659e-05, + "loss": 0.1943, + "step": 184 + }, + { + "epoch": 0.31, + "learning_rate": 1.6517828527121942e-05, + "loss": 0.1087, + "step": 185 + }, + { + "epoch": 0.31, + "learning_rate": 1.6475331866519387e-05, + "loss": 0.3218, + "step": 186 + }, + { + "epoch": 0.32, + "learning_rate": 1.6432632862996056e-05, + "loss": 0.2016, + "step": 187 + }, + { + "epoch": 0.32, + "learning_rate": 1.6389732850821967e-05, + "loss": 0.2355, + "step": 188 + }, + { + "epoch": 0.32, + "learning_rate": 1.634663317054829e-05, + "loss": 0.3003, + "step": 189 + }, + { + "epoch": 0.32, + "learning_rate": 1.6303335168965484e-05, + "loss": 0.2318, + "step": 190 + }, + { + "epoch": 0.32, + "learning_rate": 1.6259840199061215e-05, + "loss": 0.1513, + "step": 191 + }, + { + "epoch": 0.32, + "learning_rate": 1.6216149619978064e-05, + "loss": 0.1612, + "step": 192 + }, + { + "epoch": 0.33, + "learning_rate": 1.617226479697105e-05, + "loss": 0.1565, + "step": 193 + }, + { + "epoch": 0.33, + "learning_rate": 1.612818710136499e-05, + "loss": 0.3011, + "step": 194 + }, + { + "epoch": 0.33, + "learning_rate": 1.608391791051163e-05, + "loss": 0.2011, + "step": 195 + }, + { + "epoch": 0.33, + "learning_rate": 1.6039458607746614e-05, + "loss": 0.1629, + "step": 196 + }, + { + "epoch": 0.33, + "learning_rate": 1.599481058234626e-05, + "loss": 0.1287, + "step": 197 + }, + { + "epoch": 0.33, + "learning_rate": 1.5949975229484132e-05, + "loss": 0.2725, + "step": 198 + }, + { + "epoch": 0.34, + "learning_rate": 1.5904953950187458e-05, + "loss": 0.4143, + "step": 199 + }, + { + "epoch": 0.34, + "learning_rate": 1.5859748151293347e-05, + "loss": 0.1918, + "step": 200 + }, + { + "epoch": 0.34, + "learning_rate": 1.5814359245404818e-05, + "loss": 0.2486, + "step": 201 + }, + { + "epoch": 0.34, + "learning_rate": 1.576878865084668e-05, + "loss": 0.4387, + "step": 202 + }, + { + "epoch": 0.34, + "learning_rate": 1.5723037791621193e-05, + "loss": 0.2768, + "step": 203 + }, + { + "epoch": 0.34, + "learning_rate": 1.5677108097363565e-05, + "loss": 0.1003, + "step": 204 + }, + { + "epoch": 0.35, + "learning_rate": 1.563100100329731e-05, + "loss": 0.4326, + "step": 205 + }, + { + "epoch": 0.35, + "learning_rate": 1.558471795018936e-05, + "loss": 0.0864, + "step": 206 + }, + { + "epoch": 0.35, + "learning_rate": 1.5538260384305076e-05, + "loss": 0.3033, + "step": 207 + }, + { + "epoch": 0.35, + "learning_rate": 1.5491629757363033e-05, + "loss": 0.1332, + "step": 208 + }, + { + "epoch": 0.35, + "learning_rate": 1.5444827526489675e-05, + "loss": 0.193, + "step": 209 + }, + { + "epoch": 0.35, + "learning_rate": 1.539785515417376e-05, + "loss": 0.2706, + "step": 210 + }, + { + "epoch": 0.36, + "learning_rate": 1.5350714108220673e-05, + "loss": 0.1861, + "step": 211 + }, + { + "epoch": 0.36, + "learning_rate": 1.5303405861706574e-05, + "loss": 0.3058, + "step": 212 + }, + { + "epoch": 0.36, + "learning_rate": 1.5255931892932333e-05, + "loss": 0.1898, + "step": 213 + }, + { + "epoch": 0.36, + "learning_rate": 1.5208293685377357e-05, + "loss": 0.2667, + "step": 214 + }, + { + "epoch": 0.36, + "learning_rate": 1.5160492727653241e-05, + "loss": 0.1723, + "step": 215 + }, + { + "epoch": 0.36, + "learning_rate": 1.5112530513457236e-05, + "loss": 0.2885, + "step": 216 + }, + { + "epoch": 0.37, + "learning_rate": 1.5064408541525573e-05, + "loss": 0.214, + "step": 217 + }, + { + "epoch": 0.37, + "learning_rate": 1.501612831558664e-05, + "loss": 0.2457, + "step": 218 + }, + { + "epoch": 0.37, + "learning_rate": 1.4967691344313995e-05, + "loss": 0.1488, + "step": 219 + }, + { + "epoch": 0.37, + "learning_rate": 1.4919099141279203e-05, + "loss": 0.1468, + "step": 220 + }, + { + "epoch": 0.37, + "learning_rate": 1.4870353224904572e-05, + "loss": 0.1331, + "step": 221 + }, + { + "epoch": 0.38, + "learning_rate": 1.4821455118415669e-05, + "loss": 0.3833, + "step": 222 + }, + { + "epoch": 0.38, + "learning_rate": 1.4772406349793744e-05, + "loss": 0.3083, + "step": 223 + }, + { + "epoch": 0.38, + "learning_rate": 1.4723208451727983e-05, + "loss": 0.5103, + "step": 224 + }, + { + "epoch": 0.38, + "learning_rate": 1.4673862961567602e-05, + "loss": 0.2315, + "step": 225 + }, + { + "epoch": 0.38, + "learning_rate": 1.4624371421273823e-05, + "loss": 0.5056, + "step": 226 + }, + { + "epoch": 0.38, + "learning_rate": 1.457473537737167e-05, + "loss": 0.345, + "step": 227 + }, + { + "epoch": 0.39, + "learning_rate": 1.4524956380901669e-05, + "loss": 0.2486, + "step": 228 + }, + { + "epoch": 0.39, + "learning_rate": 1.4475035987371355e-05, + "loss": 0.1334, + "step": 229 + }, + { + "epoch": 0.39, + "learning_rate": 1.442497575670668e-05, + "loss": 0.2026, + "step": 230 + }, + { + "epoch": 0.39, + "learning_rate": 1.4374777253203273e-05, + "loss": 0.2028, + "step": 231 + }, + { + "epoch": 0.39, + "learning_rate": 1.4324442045477536e-05, + "loss": 0.1024, + "step": 232 + }, + { + "epoch": 0.39, + "learning_rate": 1.4273971706417648e-05, + "loss": 0.1336, + "step": 233 + }, + { + "epoch": 0.4, + "learning_rate": 1.4223367813134412e-05, + "loss": 0.2927, + "step": 234 + }, + { + "epoch": 0.4, + "learning_rate": 1.4172631946911964e-05, + "loss": 0.3204, + "step": 235 + }, + { + "epoch": 0.4, + "learning_rate": 1.4121765693158364e-05, + "loss": 0.1417, + "step": 236 + }, + { + "epoch": 0.4, + "learning_rate": 1.407077064135607e-05, + "loss": 0.2767, + "step": 237 + }, + { + "epoch": 0.4, + "learning_rate": 1.4019648385012243e-05, + "loss": 0.1877, + "step": 238 + }, + { + "epoch": 0.4, + "learning_rate": 1.3968400521608969e-05, + "loss": 0.1902, + "step": 239 + }, + { + "epoch": 0.41, + "learning_rate": 1.3917028652553338e-05, + "loss": 0.1976, + "step": 240 + }, + { + "epoch": 0.41, + "learning_rate": 1.3865534383127406e-05, + "loss": 0.1658, + "step": 241 + }, + { + "epoch": 0.41, + "learning_rate": 1.3813919322438021e-05, + "loss": 0.4002, + "step": 242 + }, + { + "epoch": 0.41, + "learning_rate": 1.3762185083366557e-05, + "loss": 0.2596, + "step": 243 + }, + { + "epoch": 0.41, + "learning_rate": 1.3710333282518504e-05, + "loss": 0.0957, + "step": 244 + }, + { + "epoch": 0.41, + "learning_rate": 1.3658365540172948e-05, + "loss": 0.242, + "step": 245 + }, + { + "epoch": 0.42, + "learning_rate": 1.3606283480231957e-05, + "loss": 0.4266, + "step": 246 + }, + { + "epoch": 0.42, + "learning_rate": 1.3554088730169814e-05, + "loss": 0.3886, + "step": 247 + }, + { + "epoch": 0.42, + "learning_rate": 1.3501782920982185e-05, + "loss": 0.1089, + "step": 248 + }, + { + "epoch": 0.42, + "learning_rate": 1.3449367687135134e-05, + "loss": 0.3312, + "step": 249 + }, + { + "epoch": 0.42, + "learning_rate": 1.339684466651406e-05, + "loss": 0.2238, + "step": 250 + }, + { + "epoch": 0.42, + "learning_rate": 1.334421550037251e-05, + "loss": 0.1046, + "step": 251 + }, + { + "epoch": 0.43, + "learning_rate": 1.334421550037251e-05, + "loss": 0.1617, + "step": 252 + }, + { + "epoch": 0.43, + "learning_rate": 1.3291481833280897e-05, + "loss": 0.0849, + "step": 253 + }, + { + "epoch": 0.43, + "learning_rate": 1.3238645313075104e-05, + "loss": 0.2548, + "step": 254 + }, + { + "epoch": 0.43, + "learning_rate": 1.3185707590805004e-05, + "loss": 0.1738, + "step": 255 + }, + { + "epoch": 0.43, + "learning_rate": 1.313267032068285e-05, + "loss": 0.1744, + "step": 256 + }, + { + "epoch": 0.43, + "learning_rate": 1.3079535160031598e-05, + "loss": 0.3275, + "step": 257 + }, + { + "epoch": 0.44, + "learning_rate": 1.3026303769233112e-05, + "loss": 0.2187, + "step": 258 + }, + { + "epoch": 0.44, + "learning_rate": 1.2972977811676286e-05, + "loss": 0.13, + "step": 259 + }, + { + "epoch": 0.44, + "learning_rate": 1.2919558953705055e-05, + "loss": 0.1644, + "step": 260 + }, + { + "epoch": 0.44, + "learning_rate": 1.2866048864566338e-05, + "loss": 0.3441, + "step": 261 + }, + { + "epoch": 0.44, + "learning_rate": 1.2812449216357863e-05, + "loss": 0.1805, + "step": 262 + }, + { + "epoch": 0.44, + "learning_rate": 1.275876168397593e-05, + "loss": 0.1578, + "step": 263 + }, + { + "epoch": 0.45, + "learning_rate": 1.270498794506307e-05, + "loss": 0.4781, + "step": 264 + }, + { + "epoch": 0.45, + "learning_rate": 1.2651129679955604e-05, + "loss": 0.1001, + "step": 265 + }, + { + "epoch": 0.45, + "learning_rate": 1.259718857163117e-05, + "loss": 0.225, + "step": 266 + }, + { + "epoch": 0.45, + "learning_rate": 1.2543166305656099e-05, + "loss": 0.216, + "step": 267 + }, + { + "epoch": 0.45, + "learning_rate": 1.2489064570132764e-05, + "loss": 0.3636, + "step": 268 + }, + { + "epoch": 0.45, + "learning_rate": 1.2434885055646823e-05, + "loss": 0.3873, + "step": 269 + }, + { + "epoch": 0.46, + "learning_rate": 1.2380629455214392e-05, + "loss": 0.1739, + "step": 270 + }, + { + "epoch": 0.46, + "learning_rate": 1.2326299464229143e-05, + "loss": 0.2209, + "step": 271 + }, + { + "epoch": 0.46, + "learning_rate": 1.2271896780409321e-05, + "loss": 0.1852, + "step": 272 + }, + { + "epoch": 0.46, + "learning_rate": 1.2217423103744694e-05, + "loss": 0.206, + "step": 273 + }, + { + "epoch": 0.46, + "learning_rate": 1.2162880136443447e-05, + "loss": 0.073, + "step": 274 + }, + { + "epoch": 0.46, + "learning_rate": 1.2108269582878957e-05, + "loss": 0.3641, + "step": 275 + }, + { + "epoch": 0.47, + "learning_rate": 1.2053593149536576e-05, + "loss": 0.1036, + "step": 276 + }, + { + "epoch": 0.47, + "learning_rate": 1.1998852544960266e-05, + "loss": 0.1654, + "step": 277 + }, + { + "epoch": 0.47, + "learning_rate": 1.1944049479699244e-05, + "loss": 0.4466, + "step": 278 + }, + { + "epoch": 0.47, + "learning_rate": 1.1889185666254505e-05, + "loss": 0.1723, + "step": 279 + }, + { + "epoch": 0.47, + "learning_rate": 1.1834262819025326e-05, + "loss": 0.11, + "step": 280 + }, + { + "epoch": 0.47, + "learning_rate": 1.1779282654255685e-05, + "loss": 0.1551, + "step": 281 + }, + { + "epoch": 0.48, + "learning_rate": 1.1724246889980638e-05, + "loss": 0.3681, + "step": 282 + }, + { + "epoch": 0.48, + "learning_rate": 1.166915724597262e-05, + "loss": 0.1615, + "step": 283 + }, + { + "epoch": 0.48, + "learning_rate": 1.1614015443687723e-05, + "loss": 0.1501, + "step": 284 + }, + { + "epoch": 0.48, + "learning_rate": 1.1558823206211894e-05, + "loss": 0.1206, + "step": 285 + }, + { + "epoch": 0.48, + "learning_rate": 1.150358225820709e-05, + "loss": 0.195, + "step": 286 + }, + { + "epoch": 0.48, + "learning_rate": 1.1448294325857387e-05, + "loss": 0.0672, + "step": 287 + }, + { + "epoch": 0.49, + "learning_rate": 1.1392961136815046e-05, + "loss": 0.1577, + "step": 288 + }, + { + "epoch": 0.49, + "learning_rate": 1.133758442014651e-05, + "loss": 0.4435, + "step": 289 + }, + { + "epoch": 0.49, + "learning_rate": 1.1282165906278402e-05, + "loss": 0.249, + "step": 290 + }, + { + "epoch": 0.49, + "learning_rate": 1.122670732694342e-05, + "loss": 0.2221, + "step": 291 + }, + { + "epoch": 0.49, + "learning_rate": 1.1171210415126248e-05, + "loss": 0.1312, + "step": 292 + }, + { + "epoch": 0.49, + "learning_rate": 1.1115676905009385e-05, + "loss": 0.15, + "step": 293 + }, + { + "epoch": 0.5, + "learning_rate": 1.1060108531918972e-05, + "loss": 0.1346, + "step": 294 + }, + { + "epoch": 0.5, + "learning_rate": 1.1004507032270553e-05, + "loss": 0.2224, + "step": 295 + }, + { + "epoch": 0.5, + "learning_rate": 1.094887414351482e-05, + "loss": 0.2183, + "step": 296 + }, + { + "epoch": 0.5, + "learning_rate": 1.0893211604083325e-05, + "loss": 0.154, + "step": 297 + }, + { + "epoch": 0.5, + "learning_rate": 1.0837521153334143e-05, + "loss": 0.1895, + "step": 298 + }, + { + "epoch": 0.51, + "learning_rate": 1.078180453149754e-05, + "loss": 0.3471, + "step": 299 + }, + { + "epoch": 0.51, + "learning_rate": 1.0726063479621574e-05, + "loss": 0.3142, + "step": 300 + }, + { + "epoch": 0.51, + "learning_rate": 1.067029973951771e-05, + "loss": 0.1031, + "step": 301 + }, + { + "epoch": 0.51, + "learning_rate": 1.0614515053706367e-05, + "loss": 0.1477, + "step": 302 + }, + { + "epoch": 0.51, + "learning_rate": 1.0558711165362491e-05, + "loss": 0.1898, + "step": 303 + }, + { + "epoch": 0.51, + "learning_rate": 1.0502889818261075e-05, + "loss": 0.3198, + "step": 304 + }, + { + "epoch": 0.52, + "learning_rate": 1.044705275672266e-05, + "loss": 0.3473, + "step": 305 + }, + { + "epoch": 0.52, + "learning_rate": 1.0391201725558842e-05, + "loss": 0.164, + "step": 306 + }, + { + "epoch": 0.52, + "learning_rate": 1.0335338470017742e-05, + "loss": 0.2804, + "step": 307 + }, + { + "epoch": 0.52, + "learning_rate": 1.0279464735729472e-05, + "loss": 0.1787, + "step": 308 + }, + { + "epoch": 0.52, + "learning_rate": 1.0223582268651585e-05, + "loss": 0.174, + "step": 309 + }, + { + "epoch": 0.52, + "learning_rate": 1.0167692815014527e-05, + "loss": 0.204, + "step": 310 + }, + { + "epoch": 0.53, + "learning_rate": 1.0111798121267047e-05, + "loss": 0.1659, + "step": 311 + }, + { + "epoch": 0.53, + "learning_rate": 1.0055899934021649e-05, + "loss": 0.0851, + "step": 312 + }, + { + "epoch": 0.53, + "learning_rate": 1e-05, + "loss": 0.125, + "step": 313 + }, + { + "epoch": 0.53, + "learning_rate": 9.944100065978351e-06, + "loss": 0.1399, + "step": 314 + }, + { + "epoch": 0.53, + "learning_rate": 9.888201878732956e-06, + "loss": 0.1191, + "step": 315 + }, + { + "epoch": 0.53, + "learning_rate": 9.832307184985475e-06, + "loss": 0.2573, + "step": 316 + }, + { + "epoch": 0.54, + "learning_rate": 9.776417731348416e-06, + "loss": 0.1156, + "step": 317 + }, + { + "epoch": 0.54, + "learning_rate": 9.720535264270529e-06, + "loss": 0.2918, + "step": 318 + }, + { + "epoch": 0.54, + "learning_rate": 9.664661529982261e-06, + "loss": 0.5064, + "step": 319 + }, + { + "epoch": 0.54, + "learning_rate": 9.60879827444116e-06, + "loss": 0.1789, + "step": 320 + }, + { + "epoch": 0.54, + "learning_rate": 9.552947243277346e-06, + "loss": 0.2524, + "step": 321 + }, + { + "epoch": 0.54, + "learning_rate": 9.497110181738928e-06, + "loss": 0.1238, + "step": 322 + }, + { + "epoch": 0.55, + "learning_rate": 9.44128883463751e-06, + "loss": 0.3283, + "step": 323 + }, + { + "epoch": 0.55, + "learning_rate": 9.385484946293636e-06, + "loss": 0.2177, + "step": 324 + }, + { + "epoch": 0.55, + "learning_rate": 9.329700260482292e-06, + "loss": 0.2896, + "step": 325 + }, + { + "epoch": 0.55, + "learning_rate": 9.273936520378428e-06, + "loss": 0.4432, + "step": 326 + }, + { + "epoch": 0.55, + "learning_rate": 9.218195468502462e-06, + "loss": 0.1969, + "step": 327 + }, + { + "epoch": 0.55, + "learning_rate": 9.16247884666586e-06, + "loss": 0.1486, + "step": 328 + }, + { + "epoch": 0.56, + "learning_rate": 9.106788395916679e-06, + "loss": 0.3046, + "step": 329 + }, + { + "epoch": 0.56, + "learning_rate": 9.051125856485183e-06, + "loss": 0.1931, + "step": 330 + }, + { + "epoch": 0.56, + "learning_rate": 8.99549296772945e-06, + "loss": 0.1927, + "step": 331 + }, + { + "epoch": 0.56, + "learning_rate": 8.939891468081033e-06, + "loss": 0.2417, + "step": 332 + }, + { + "epoch": 0.56, + "learning_rate": 8.884323094990619e-06, + "loss": 0.2002, + "step": 333 + }, + { + "epoch": 0.56, + "learning_rate": 8.828789584873754e-06, + "loss": 0.1437, + "step": 334 + }, + { + "epoch": 0.57, + "learning_rate": 8.773292673056582e-06, + "loss": 0.2163, + "step": 335 + }, + { + "epoch": 0.57, + "learning_rate": 8.717834093721598e-06, + "loss": 0.0948, + "step": 336 + }, + { + "epoch": 0.57, + "learning_rate": 8.662415579853492e-06, + "loss": 0.1959, + "step": 337 + }, + { + "epoch": 0.57, + "learning_rate": 8.607038863184957e-06, + "loss": 0.1448, + "step": 338 + }, + { + "epoch": 0.57, + "learning_rate": 8.551705674142618e-06, + "loss": 0.1835, + "step": 339 + }, + { + "epoch": 0.57, + "learning_rate": 8.496417741792912e-06, + "loss": 0.1655, + "step": 340 + }, + { + "epoch": 0.58, + "learning_rate": 8.44117679378811e-06, + "loss": 0.1666, + "step": 341 + }, + { + "epoch": 0.58, + "learning_rate": 8.385984556312282e-06, + "loss": 0.1771, + "step": 342 + }, + { + "epoch": 0.58, + "learning_rate": 8.330842754027383e-06, + "loss": 0.1141, + "step": 343 + }, + { + "epoch": 0.58, + "learning_rate": 8.275753110019367e-06, + "loss": 0.3248, + "step": 344 + }, + { + "epoch": 0.58, + "learning_rate": 8.220717345744316e-06, + "loss": 0.2598, + "step": 345 + }, + { + "epoch": 0.58, + "learning_rate": 8.165737180974678e-06, + "loss": 0.1587, + "step": 346 + }, + { + "epoch": 0.59, + "learning_rate": 8.110814333745496e-06, + "loss": 0.1711, + "step": 347 + }, + { + "epoch": 0.59, + "learning_rate": 8.05595052030076e-06, + "loss": 0.1615, + "step": 348 + }, + { + "epoch": 0.59, + "learning_rate": 8.001147455039735e-06, + "loss": 0.1857, + "step": 349 + }, + { + "epoch": 0.59, + "learning_rate": 7.94640685046343e-06, + "loss": 0.1025, + "step": 350 + }, + { + "epoch": 0.59, + "learning_rate": 7.891730417121044e-06, + "loss": 0.1696, + "step": 351 + }, + { + "epoch": 0.59, + "learning_rate": 7.837119863556554e-06, + "loss": 0.1765, + "step": 352 + }, + { + "epoch": 0.6, + "learning_rate": 7.782576896255307e-06, + "loss": 0.3, + "step": 353 + }, + { + "epoch": 0.6, + "learning_rate": 7.72810321959068e-06, + "loss": 0.1344, + "step": 354 + }, + { + "epoch": 0.6, + "learning_rate": 7.673700535770859e-06, + "loss": 0.3158, + "step": 355 + }, + { + "epoch": 0.6, + "learning_rate": 7.619370544785608e-06, + "loss": 0.1455, + "step": 356 + }, + { + "epoch": 0.6, + "learning_rate": 7.56511494435318e-06, + "loss": 0.2933, + "step": 357 + }, + { + "epoch": 0.6, + "learning_rate": 7.510935429867237e-06, + "loss": 0.0901, + "step": 358 + }, + { + "epoch": 0.61, + "learning_rate": 7.4568336943439055e-06, + "loss": 0.2275, + "step": 359 + }, + { + "epoch": 0.61, + "learning_rate": 7.402811428368832e-06, + "loss": 0.1897, + "step": 360 + }, + { + "epoch": 0.61, + "learning_rate": 7.348870320044399e-06, + "loss": 0.2391, + "step": 361 + }, + { + "epoch": 0.61, + "learning_rate": 7.295012054936934e-06, + "loss": 0.1899, + "step": 362 + }, + { + "epoch": 0.61, + "learning_rate": 7.241238316024069e-06, + "loss": 0.1385, + "step": 363 + }, + { + "epoch": 0.61, + "learning_rate": 7.187550783642141e-06, + "loss": 0.0762, + "step": 364 + }, + { + "epoch": 0.62, + "learning_rate": 7.133951135433666e-06, + "loss": 0.2305, + "step": 365 + }, + { + "epoch": 0.62, + "learning_rate": 7.080441046294948e-06, + "loss": 0.1229, + "step": 366 + }, + { + "epoch": 0.62, + "learning_rate": 7.027022188323716e-06, + "loss": 0.1246, + "step": 367 + }, + { + "epoch": 0.62, + "learning_rate": 6.973696230766891e-06, + "loss": 0.2491, + "step": 368 + }, + { + "epoch": 0.62, + "learning_rate": 6.920464839968405e-06, + "loss": 0.1749, + "step": 369 + }, + { + "epoch": 0.62, + "learning_rate": 6.8673296793171555e-06, + "loss": 0.1952, + "step": 370 + }, + { + "epoch": 0.63, + "learning_rate": 6.814292409194998e-06, + "loss": 0.115, + "step": 371 + }, + { + "epoch": 0.63, + "learning_rate": 6.761354686924895e-06, + "loss": 0.1391, + "step": 372 + }, + { + "epoch": 0.63, + "learning_rate": 6.708518166719107e-06, + "loss": 0.209, + "step": 373 + }, + { + "epoch": 0.63, + "learning_rate": 6.655784499627491e-06, + "loss": 0.4016, + "step": 374 + }, + { + "epoch": 0.63, + "learning_rate": 6.603155333485945e-06, + "loss": 0.1919, + "step": 375 + }, + { + "epoch": 0.64, + "learning_rate": 6.550632312864869e-06, + "loss": 0.2142, + "step": 376 + }, + { + "epoch": 0.64, + "learning_rate": 6.498217079017818e-06, + "loss": 0.1622, + "step": 377 + }, + { + "epoch": 0.64, + "learning_rate": 6.445911269830189e-06, + "loss": 0.1669, + "step": 378 + }, + { + "epoch": 0.64, + "learning_rate": 6.393716519768047e-06, + "loss": 0.3306, + "step": 379 + }, + { + "epoch": 0.64, + "learning_rate": 6.341634459827053e-06, + "loss": 0.0774, + "step": 380 + }, + { + "epoch": 0.64, + "learning_rate": 6.289666717481497e-06, + "loss": 0.2361, + "step": 381 + }, + { + "epoch": 0.65, + "learning_rate": 6.237814916633444e-06, + "loss": 0.2916, + "step": 382 + }, + { + "epoch": 0.65, + "learning_rate": 6.1860806775619785e-06, + "loss": 0.2664, + "step": 383 + }, + { + "epoch": 0.65, + "learning_rate": 6.134465616872598e-06, + "loss": 0.4905, + "step": 384 + }, + { + "epoch": 0.65, + "learning_rate": 6.082971347446662e-06, + "loss": 0.1202, + "step": 385 + }, + { + "epoch": 0.65, + "learning_rate": 6.0315994783910345e-06, + "loss": 0.2228, + "step": 386 + }, + { + "epoch": 0.65, + "learning_rate": 5.980351614987759e-06, + "loss": 0.1403, + "step": 387 + }, + { + "epoch": 0.66, + "learning_rate": 5.929229358643932e-06, + "loss": 0.3658, + "step": 388 + }, + { + "epoch": 0.66, + "learning_rate": 5.878234306841637e-06, + "loss": 0.121, + "step": 389 + }, + { + "epoch": 0.66, + "learning_rate": 5.827368053088043e-06, + "loss": 0.2419, + "step": 390 + }, + { + "epoch": 0.66, + "learning_rate": 5.7766321868655935e-06, + "loss": 0.1211, + "step": 391 + }, + { + "epoch": 0.66, + "learning_rate": 5.726028293582355e-06, + "loss": 0.419, + "step": 392 + }, + { + "epoch": 0.66, + "learning_rate": 5.67555795452247e-06, + "loss": 0.2181, + "step": 393 + }, + { + "epoch": 0.67, + "learning_rate": 5.62522274679673e-06, + "loss": 0.1513, + "step": 394 + }, + { + "epoch": 0.67, + "learning_rate": 5.575024243293319e-06, + "loss": 0.1522, + "step": 395 + }, + { + "epoch": 0.67, + "learning_rate": 5.524964012628648e-06, + "loss": 0.1583, + "step": 396 + }, + { + "epoch": 0.67, + "learning_rate": 5.475043619098334e-06, + "loss": 0.1475, + "step": 397 + }, + { + "epoch": 0.67, + "learning_rate": 5.42526462262833e-06, + "loss": 0.1265, + "step": 398 + }, + { + "epoch": 0.67, + "learning_rate": 5.375628578726181e-06, + "loss": 0.0715, + "step": 399 + }, + { + "epoch": 0.68, + "learning_rate": 5.326137038432399e-06, + "loss": 0.1164, + "step": 400 + }, + { + "epoch": 0.68, + "learning_rate": 5.276791548272018e-06, + "loss": 0.3881, + "step": 401 + }, + { + "epoch": 0.68, + "learning_rate": 5.227593650206258e-06, + "loss": 0.1464, + "step": 402 + }, + { + "epoch": 0.68, + "learning_rate": 5.1785448815843334e-06, + "loss": 0.2286, + "step": 403 + }, + { + "epoch": 0.68, + "learning_rate": 5.129646775095432e-06, + "loss": 0.1454, + "step": 404 + }, + { + "epoch": 0.68, + "learning_rate": 5.0809008587207965e-06, + "loss": 0.1155, + "step": 405 + }, + { + "epoch": 0.69, + "learning_rate": 5.032308655686011e-06, + "loss": 0.1199, + "step": 406 + }, + { + "epoch": 0.69, + "learning_rate": 4.983871684413363e-06, + "loss": 0.3385, + "step": 407 + }, + { + "epoch": 0.69, + "learning_rate": 4.935591458474433e-06, + "loss": 0.2083, + "step": 408 + }, + { + "epoch": 0.69, + "learning_rate": 4.8874694865427676e-06, + "loss": 0.1057, + "step": 409 + }, + { + "epoch": 0.69, + "learning_rate": 4.8395072723467585e-06, + "loss": 0.1584, + "step": 410 + }, + { + "epoch": 0.69, + "learning_rate": 4.791706314622645e-06, + "loss": 0.2643, + "step": 411 + }, + { + "epoch": 0.7, + "learning_rate": 4.74406810706767e-06, + "loss": 0.1302, + "step": 412 + }, + { + "epoch": 0.7, + "learning_rate": 4.69659413829343e-06, + "loss": 0.2024, + "step": 413 + }, + { + "epoch": 0.7, + "learning_rate": 4.649285891779327e-06, + "loss": 0.1177, + "step": 414 + }, + { + "epoch": 0.7, + "learning_rate": 4.602144845826246e-06, + "loss": 0.1947, + "step": 415 + }, + { + "epoch": 0.7, + "learning_rate": 4.5551724735103285e-06, + "loss": 0.1209, + "step": 416 + }, + { + "epoch": 0.7, + "learning_rate": 4.508370242636968e-06, + "loss": 0.2273, + "step": 417 + }, + { + "epoch": 0.71, + "learning_rate": 4.461739615694929e-06, + "loss": 0.3131, + "step": 418 + }, + { + "epoch": 0.71, + "learning_rate": 4.415282049810644e-06, + "loss": 0.41, + "step": 419 + }, + { + "epoch": 0.71, + "learning_rate": 4.368998996702694e-06, + "loss": 0.218, + "step": 420 + }, + { + "epoch": 0.71, + "learning_rate": 4.3228919026364345e-06, + "loss": 0.1857, + "step": 421 + }, + { + "epoch": 0.71, + "learning_rate": 4.276962208378811e-06, + "loss": 0.1159, + "step": 422 + }, + { + "epoch": 0.71, + "learning_rate": 4.231211349153319e-06, + "loss": 0.1981, + "step": 423 + }, + { + "epoch": 0.72, + "learning_rate": 4.185640754595183e-06, + "loss": 0.2907, + "step": 424 + }, + { + "epoch": 0.72, + "learning_rate": 4.140251848706656e-06, + "loss": 0.1582, + "step": 425 + }, + { + "epoch": 0.72, + "learning_rate": 4.095046049812545e-06, + "loss": 0.1264, + "step": 426 + }, + { + "epoch": 0.72, + "learning_rate": 4.050024770515869e-06, + "loss": 0.1817, + "step": 427 + }, + { + "epoch": 0.72, + "learning_rate": 4.005189417653743e-06, + "loss": 0.1073, + "step": 428 + }, + { + "epoch": 0.72, + "learning_rate": 3.960541392253387e-06, + "loss": 0.3221, + "step": 429 + }, + { + "epoch": 0.73, + "learning_rate": 3.916082089488372e-06, + "loss": 0.2237, + "step": 430 + }, + { + "epoch": 0.73, + "learning_rate": 3.8718128986350154e-06, + "loss": 0.3927, + "step": 431 + }, + { + "epoch": 0.73, + "learning_rate": 3.827735203028953e-06, + "loss": 0.1443, + "step": 432 + }, + { + "epoch": 0.73, + "learning_rate": 3.7838503800219393e-06, + "loss": 0.1289, + "step": 433 + }, + { + "epoch": 0.73, + "learning_rate": 3.740159800938784e-06, + "loss": 0.1407, + "step": 434 + }, + { + "epoch": 0.73, + "learning_rate": 3.696664831034519e-06, + "loss": 0.4103, + "step": 435 + }, + { + "epoch": 0.74, + "learning_rate": 3.6533668294517154e-06, + "loss": 0.1538, + "step": 436 + }, + { + "epoch": 0.74, + "learning_rate": 3.6102671491780393e-06, + "loss": 0.4277, + "step": 437 + }, + { + "epoch": 0.74, + "learning_rate": 3.5673671370039464e-06, + "loss": 0.1458, + "step": 438 + }, + { + "epoch": 0.74, + "learning_rate": 3.5246681334806177e-06, + "loss": 0.1699, + "step": 439 + }, + { + "epoch": 0.74, + "learning_rate": 3.482171472878062e-06, + "loss": 0.2724, + "step": 440 + }, + { + "epoch": 0.74, + "learning_rate": 3.4398784831434127e-06, + "loss": 0.2037, + "step": 441 + }, + { + "epoch": 0.75, + "learning_rate": 3.39779048585945e-06, + "loss": 0.3123, + "step": 442 + }, + { + "epoch": 0.75, + "learning_rate": 3.3559087962032956e-06, + "loss": 0.2008, + "step": 443 + }, + { + "epoch": 0.75, + "learning_rate": 3.314234722905302e-06, + "loss": 0.253, + "step": 444 + }, + { + "epoch": 0.75, + "learning_rate": 3.272769568208183e-06, + "loss": 0.1709, + "step": 445 + }, + { + "epoch": 0.75, + "learning_rate": 3.2315146278263053e-06, + "loss": 0.2399, + "step": 446 + }, + { + "epoch": 0.76, + "learning_rate": 3.1904711909051933e-06, + "loss": 0.1039, + "step": 447 + }, + { + "epoch": 0.76, + "learning_rate": 3.149640539981267e-06, + "loss": 0.2212, + "step": 448 + }, + { + "epoch": 0.76, + "learning_rate": 3.1090239509417364e-06, + "loss": 0.2057, + "step": 449 + }, + { + "epoch": 0.76, + "learning_rate": 3.0686226929847617e-06, + "loss": 0.1692, + "step": 450 + }, + { + "epoch": 0.76, + "learning_rate": 3.0284380285797767e-06, + "loss": 0.1658, + "step": 451 + }, + { + "epoch": 0.76, + "learning_rate": 2.9884712134280324e-06, + "loss": 0.1372, + "step": 452 + }, + { + "epoch": 0.77, + "learning_rate": 2.948723496423379e-06, + "loss": 0.1991, + "step": 453 + }, + { + "epoch": 0.77, + "learning_rate": 2.909196119613218e-06, + "loss": 0.1983, + "step": 454 + }, + { + "epoch": 0.77, + "learning_rate": 2.869890318159713e-06, + "loss": 0.4125, + "step": 455 + }, + { + "epoch": 0.77, + "learning_rate": 2.8308073203011667e-06, + "loss": 0.4987, + "step": 456 + }, + { + "epoch": 0.77, + "learning_rate": 2.7919483473136678e-06, + "loss": 0.1212, + "step": 457 + }, + { + "epoch": 0.77, + "learning_rate": 2.753314613472906e-06, + "loss": 0.2399, + "step": 458 + }, + { + "epoch": 0.78, + "learning_rate": 2.7149073260162416e-06, + "loss": 0.1534, + "step": 459 + }, + { + "epoch": 0.78, + "learning_rate": 2.6767276851049818e-06, + "loss": 0.2789, + "step": 460 + }, + { + "epoch": 0.78, + "learning_rate": 2.63877688378686e-06, + "loss": 0.1404, + "step": 461 + }, + { + "epoch": 0.78, + "learning_rate": 2.6010561079587817e-06, + "loss": 0.1757, + "step": 462 + }, + { + "epoch": 0.78, + "learning_rate": 2.5635665363297424e-06, + "loss": 0.1194, + "step": 463 + }, + { + "epoch": 0.78, + "learning_rate": 2.5263093403840145e-06, + "loss": 0.1268, + "step": 464 + }, + { + "epoch": 0.79, + "learning_rate": 2.489285684344532e-06, + "loss": 0.1493, + "step": 465 + }, + { + "epoch": 0.79, + "learning_rate": 2.452496725136503e-06, + "loss": 0.2272, + "step": 466 + }, + { + "epoch": 0.79, + "learning_rate": 2.4159436123512737e-06, + "loss": 0.1863, + "step": 467 + }, + { + "epoch": 0.79, + "learning_rate": 2.3796274882103964e-06, + "loss": 0.1783, + "step": 468 + }, + { + "epoch": 0.79, + "learning_rate": 2.3435494875299315e-06, + "loss": 0.1379, + "step": 469 + }, + { + "epoch": 0.79, + "learning_rate": 2.3077107376850005e-06, + "loss": 0.4607, + "step": 470 + }, + { + "epoch": 0.8, + "learning_rate": 2.272112358574551e-06, + "loss": 0.078, + "step": 471 + }, + { + "epoch": 0.8, + "learning_rate": 2.2367554625863496e-06, + "loss": 0.2215, + "step": 472 + }, + { + "epoch": 0.8, + "learning_rate": 2.2016411545622497e-06, + "loss": 0.1333, + "step": 473 + }, + { + "epoch": 0.8, + "learning_rate": 2.1667705317636333e-06, + "loss": 0.1098, + "step": 474 + }, + { + "epoch": 0.8, + "learning_rate": 2.132144683837155e-06, + "loss": 0.1947, + "step": 475 + }, + { + "epoch": 0.8, + "learning_rate": 2.0977646927806682e-06, + "loss": 0.1148, + "step": 476 + }, + { + "epoch": 0.81, + "learning_rate": 2.0636316329094317e-06, + "loss": 0.2097, + "step": 477 + }, + { + "epoch": 0.81, + "learning_rate": 2.029746570822524e-06, + "loss": 0.127, + "step": 478 + }, + { + "epoch": 0.81, + "learning_rate": 1.996110565369527e-06, + "loss": 0.2963, + "step": 479 + }, + { + "epoch": 0.81, + "learning_rate": 1.9627246676174363e-06, + "loss": 0.172, + "step": 480 + }, + { + "epoch": 0.81, + "learning_rate": 1.929589920817806e-06, + "loss": 0.2083, + "step": 481 + }, + { + "epoch": 0.81, + "learning_rate": 1.896707360374167e-06, + "loss": 0.1132, + "step": 482 + }, + { + "epoch": 0.82, + "learning_rate": 1.8640780138096515e-06, + "loss": 0.2204, + "step": 483 + }, + { + "epoch": 0.82, + "learning_rate": 1.8317029007349086e-06, + "loss": 0.2599, + "step": 484 + }, + { + "epoch": 0.82, + "learning_rate": 1.799583032816219e-06, + "loss": 0.2668, + "step": 485 + }, + { + "epoch": 0.82, + "learning_rate": 1.7677194137439036e-06, + "loss": 0.1575, + "step": 486 + }, + { + "epoch": 0.82, + "learning_rate": 1.7361130392009407e-06, + "loss": 0.2251, + "step": 487 + }, + { + "epoch": 0.82, + "learning_rate": 1.7047648968318697e-06, + "loss": 0.2407, + "step": 488 + }, + { + "epoch": 0.83, + "learning_rate": 1.6736759662119183e-06, + "loss": 0.1042, + "step": 489 + }, + { + "epoch": 0.83, + "learning_rate": 1.642847218816398e-06, + "loss": 0.2138, + "step": 490 + }, + { + "epoch": 0.83, + "learning_rate": 1.6122796179903355e-06, + "loss": 0.185, + "step": 491 + }, + { + "epoch": 0.83, + "learning_rate": 1.5819741189183902e-06, + "loss": 0.1251, + "step": 492 + }, + { + "epoch": 0.83, + "learning_rate": 1.5519316685949903e-06, + "loss": 0.1887, + "step": 493 + }, + { + "epoch": 0.83, + "learning_rate": 1.522153205794742e-06, + "loss": 0.1527, + "step": 494 + }, + { + "epoch": 0.84, + "learning_rate": 1.492639661043106e-06, + "loss": 0.3192, + "step": 495 + }, + { + "epoch": 0.84, + "learning_rate": 1.4633919565873033e-06, + "loss": 0.2173, + "step": 496 + }, + { + "epoch": 0.84, + "learning_rate": 1.4344110063675143e-06, + "loss": 0.1351, + "step": 497 + }, + { + "epoch": 0.84, + "learning_rate": 1.4056977159883011e-06, + "loss": 0.1096, + "step": 498 + }, + { + "epoch": 0.84, + "learning_rate": 1.377252982690327e-06, + "loss": 0.2903, + "step": 499 + }, + { + "epoch": 0.84, + "learning_rate": 1.3490776953223107e-06, + "loss": 0.1286, + "step": 500 + }, + { + "epoch": 0.85, + "learning_rate": 1.3211727343132441e-06, + "loss": 0.2258, + "step": 501 + }, + { + "epoch": 0.85, + "learning_rate": 1.2935389716448976e-06, + "loss": 0.1646, + "step": 502 + }, + { + "epoch": 0.85, + "learning_rate": 1.2661772708245535e-06, + "loss": 0.2163, + "step": 503 + }, + { + "epoch": 0.85, + "learning_rate": 1.23908848685804e-06, + "loss": 0.2114, + "step": 504 + }, + { + "epoch": 0.85, + "learning_rate": 1.2122734662229985e-06, + "loss": 0.0903, + "step": 505 + }, + { + "epoch": 0.85, + "learning_rate": 1.1857330468424466e-06, + "loss": 0.0616, + "step": 506 + }, + { + "epoch": 0.86, + "learning_rate": 1.1594680580585815e-06, + "loss": 0.1434, + "step": 507 + }, + { + "epoch": 0.86, + "learning_rate": 1.1334793206068739e-06, + "loss": 0.1386, + "step": 508 + }, + { + "epoch": 0.86, + "learning_rate": 1.1077676465904209e-06, + "loss": 0.1691, + "step": 509 + }, + { + "epoch": 0.86, + "learning_rate": 1.082333839454559e-06, + "loss": 0.1445, + "step": 510 + }, + { + "epoch": 0.86, + "learning_rate": 1.057178693961771e-06, + "loss": 0.2405, + "step": 511 + }, + { + "epoch": 0.86, + "learning_rate": 1.0323029961668463e-06, + "loss": 0.5961, + "step": 512 + }, + { + "epoch": 0.87, + "learning_rate": 1.0077075233923118e-06, + "loss": 0.1181, + "step": 513 + }, + { + "epoch": 0.87, + "learning_rate": 9.833930442041506e-07, + "loss": 0.2651, + "step": 514 + }, + { + "epoch": 0.87, + "learning_rate": 9.593603183877843e-07, + "loss": 0.1735, + "step": 515 + }, + { + "epoch": 0.87, + "learning_rate": 9.356100969243231e-07, + "loss": 0.1939, + "step": 516 + }, + { + "epoch": 0.87, + "learning_rate": 9.121431219671096e-07, + "loss": 0.2992, + "step": 517 + }, + { + "epoch": 0.88, + "learning_rate": 8.889601268185233e-07, + "loss": 0.1875, + "step": 518 + }, + { + "epoch": 0.88, + "learning_rate": 8.660618359070605e-07, + "loss": 0.119, + "step": 519 + }, + { + "epoch": 0.88, + "learning_rate": 8.434489647647093e-07, + "loss": 0.1525, + "step": 520 + }, + { + "epoch": 0.88, + "learning_rate": 8.211222200045787e-07, + "loss": 0.228, + "step": 521 + }, + { + "epoch": 0.88, + "learning_rate": 7.990822992988267e-07, + "loss": 0.2455, + "step": 522 + }, + { + "epoch": 0.88, + "learning_rate": 7.773298913568506e-07, + "loss": 0.1871, + "step": 523 + }, + { + "epoch": 0.89, + "learning_rate": 7.558656759037796e-07, + "loss": 0.3385, + "step": 524 + }, + { + "epoch": 0.89, + "learning_rate": 7.346903236592162e-07, + "loss": 0.1667, + "step": 525 + }, + { + "epoch": 0.89, + "learning_rate": 7.13804496316296e-07, + "loss": 0.1244, + "step": 526 + }, + { + "epoch": 0.89, + "learning_rate": 6.932088465209941e-07, + "loss": 0.2674, + "step": 527 + }, + { + "epoch": 0.89, + "learning_rate": 6.729040178517454e-07, + "loss": 0.2326, + "step": 528 + }, + { + "epoch": 0.89, + "learning_rate": 6.528906447993289e-07, + "loss": 0.2116, + "step": 529 + }, + { + "epoch": 0.9, + "learning_rate": 6.331693527470306e-07, + "loss": 0.3147, + "step": 530 + }, + { + "epoch": 0.9, + "learning_rate": 6.137407579511212e-07, + "loss": 0.2206, + "step": 531 + }, + { + "epoch": 0.9, + "learning_rate": 5.946054675215785e-07, + "loss": 0.113, + "step": 532 + }, + { + "epoch": 0.9, + "learning_rate": 5.757640794031361e-07, + "loss": 0.2499, + "step": 533 + }, + { + "epoch": 0.9, + "learning_rate": 5.572171823565797e-07, + "loss": 0.392, + "step": 534 + }, + { + "epoch": 0.9, + "learning_rate": 5.389653559403629e-07, + "loss": 0.1796, + "step": 535 + }, + { + "epoch": 0.91, + "learning_rate": 5.210091704924947e-07, + "loss": 0.1849, + "step": 536 + }, + { + "epoch": 0.91, + "learning_rate": 5.033491871127105e-07, + "loss": 0.1075, + "step": 537 + }, + { + "epoch": 0.91, + "learning_rate": 4.859859576449444e-07, + "loss": 0.0891, + "step": 538 + }, + { + "epoch": 0.91, + "learning_rate": 4.6892002466008666e-07, + "loss": 0.3812, + "step": 539 + }, + { + "epoch": 0.91, + "learning_rate": 4.5215192143902577e-07, + "loss": 0.2431, + "step": 540 + }, + { + "epoch": 0.91, + "learning_rate": 4.3568217195598117e-07, + "loss": 0.1961, + "step": 541 + }, + { + "epoch": 0.92, + "learning_rate": 4.1951129086214015e-07, + "loss": 0.2062, + "step": 542 + }, + { + "epoch": 0.92, + "learning_rate": 4.03639783469566e-07, + "loss": 0.0653, + "step": 543 + }, + { + "epoch": 0.92, + "learning_rate": 3.8806814573541185e-07, + "loss": 0.221, + "step": 544 + }, + { + "epoch": 0.92, + "learning_rate": 3.7279686424642413e-07, + "loss": 0.1787, + "step": 545 + }, + { + "epoch": 0.92, + "learning_rate": 3.578264162037348e-07, + "loss": 0.1328, + "step": 546 + }, + { + "epoch": 0.92, + "learning_rate": 3.4315726940795436e-07, + "loss": 0.0782, + "step": 547 + }, + { + "epoch": 0.93, + "learning_rate": 3.2878988224454346e-07, + "loss": 0.22, + "step": 548 + }, + { + "epoch": 0.93, + "learning_rate": 3.147247036695034e-07, + "loss": 0.2186, + "step": 549 + }, + { + "epoch": 0.93, + "learning_rate": 3.0096217319533386e-07, + "loss": 0.2259, + "step": 550 + }, + { + "epoch": 0.93, + "learning_rate": 2.875027208773118e-07, + "loss": 0.291, + "step": 551 + }, + { + "epoch": 0.93, + "learning_rate": 2.7434676730003886e-07, + "loss": 0.1645, + "step": 552 + }, + { + "epoch": 0.93, + "learning_rate": 2.614947235643106e-07, + "loss": 0.2621, + "step": 553 + }, + { + "epoch": 0.94, + "learning_rate": 2.489469912742637e-07, + "loss": 0.3108, + "step": 554 + }, + { + "epoch": 0.94, + "learning_rate": 2.3670396252483018e-07, + "loss": 0.3828, + "step": 555 + }, + { + "epoch": 0.94, + "learning_rate": 2.2476601988947965e-07, + "loss": 0.1785, + "step": 556 + }, + { + "epoch": 0.94, + "learning_rate": 2.1313353640827207e-07, + "loss": 0.1605, + "step": 557 + }, + { + "epoch": 0.94, + "learning_rate": 2.0180687557619816e-07, + "loss": 0.2059, + "step": 558 + }, + { + "epoch": 0.94, + "learning_rate": 1.9078639133181532e-07, + "loss": 0.1236, + "step": 559 + }, + { + "epoch": 0.95, + "learning_rate": 1.800724280461963e-07, + "loss": 0.4072, + "step": 560 + }, + { + "epoch": 0.95, + "learning_rate": 1.6966532051216122e-07, + "loss": 0.0857, + "step": 561 + }, + { + "epoch": 0.95, + "learning_rate": 1.5956539393382043e-07, + "loss": 0.0805, + "step": 562 + }, + { + "epoch": 0.95, + "learning_rate": 1.4977296391641026e-07, + "loss": 0.1157, + "step": 563 + }, + { + "epoch": 0.95, + "learning_rate": 1.4028833645643113e-07, + "loss": 0.3035, + "step": 564 + }, + { + "epoch": 0.95, + "learning_rate": 1.31111807932085e-07, + "loss": 0.0902, + "step": 565 + }, + { + "epoch": 0.96, + "learning_rate": 1.2224366509401732e-07, + "loss": 0.097, + "step": 566 + }, + { + "epoch": 0.96, + "learning_rate": 1.1368418505635303e-07, + "loss": 0.2516, + "step": 567 + }, + { + "epoch": 0.96, + "learning_rate": 1.0543363528803696e-07, + "loss": 0.13, + "step": 568 + }, + { + "epoch": 0.96, + "learning_rate": 9.749227360448143e-08, + "loss": 0.1561, + "step": 569 + }, + { + "epoch": 0.96, + "learning_rate": 8.986034815950173e-08, + "loss": 0.2111, + "step": 570 + }, + { + "epoch": 0.96, + "learning_rate": 8.253809743756669e-08, + "loss": 0.1692, + "step": 571 + }, + { + "epoch": 0.97, + "learning_rate": 7.55257502463469e-08, + "loss": 0.1259, + "step": 572 + }, + { + "epoch": 0.97, + "learning_rate": 6.882352570956485e-08, + "loss": 0.3749, + "step": 573 + }, + { + "epoch": 0.97, + "learning_rate": 6.243163326014268e-08, + "loss": 0.1758, + "step": 574 + }, + { + "epoch": 0.97, + "learning_rate": 5.6350272633664e-08, + "loss": 0.2633, + "step": 575 + }, + { + "epoch": 0.97, + "learning_rate": 5.057963386213116e-08, + "loss": 0.2307, + "step": 576 + }, + { + "epoch": 0.97, + "learning_rate": 4.5119897268023347e-08, + "loss": 0.2843, + "step": 577 + }, + { + "epoch": 0.98, + "learning_rate": 3.9971233458665495e-08, + "loss": 0.1782, + "step": 578 + }, + { + "epoch": 0.98, + "learning_rate": 3.5133803320897e-08, + "loss": 0.2064, + "step": 579 + }, + { + "epoch": 0.98, + "learning_rate": 3.0607758016043546e-08, + "loss": 0.0771, + "step": 580 + }, + { + "epoch": 0.98, + "learning_rate": 2.639323897518975e-08, + "loss": 0.4028, + "step": 581 + }, + { + "epoch": 0.98, + "learning_rate": 2.2490377894768266e-08, + "loss": 0.2803, + "step": 582 + }, + { + "epoch": 0.98, + "learning_rate": 1.889929673243529e-08, + "loss": 0.3806, + "step": 583 + }, + { + "epoch": 0.99, + "learning_rate": 1.562010770326916e-08, + "loss": 0.1015, + "step": 584 + }, + { + "epoch": 0.99, + "learning_rate": 1.2652913276250956e-08, + "loss": 0.1817, + "step": 585 + }, + { + "epoch": 0.99, + "learning_rate": 1.2652913276250956e-08, + "loss": 0.1556, + "step": 586 + }, + { + "epoch": 0.99, + "learning_rate": 9.99780617107815e-09, + "loss": 0.1861, + "step": 587 + }, + { + "epoch": 0.99, + "learning_rate": 7.654869355252503e-09, + "loss": 0.1602, + "step": 588 + }, + { + "epoch": 0.99, + "learning_rate": 5.6241760414987856e-09, + "loss": 0.0909, + "step": 589 + }, + { + "epoch": 1.0, + "learning_rate": 3.905789685471062e-09, + "loss": 0.3967, + "step": 590 + }, + { + "epoch": 1.0, + "learning_rate": 2.4997639837687217e-09, + "loss": 0.1172, + "step": 591 + }, + { + "epoch": 1.0, + "learning_rate": 1.406142872263372e-09, + "loss": 0.0301, + "step": 592 + }, + { + "epoch": 1.0, + "step": 592, + "total_flos": 1850959245312.0, + "train_loss": 0.23161595452551706, + "train_runtime": 4403.6215, + "train_samples_per_second": 1.342, + "train_steps_per_second": 0.134 + } + ], + "logging_steps": 1.0, + "max_steps": 592, + "num_input_tokens_seen": 0, + "num_train_epochs": 1, + "save_steps": 500, + "total_flos": 1850959245312.0, + "train_batch_size": 10, + "trial_name": null, + "trial_params": null +} diff --git a/CheckGuard Models/wholeimage/payee/finetune_lora_llava_mistral.sh b/CheckGuard Models/wholeimage/payee/finetune_lora_llava_mistral.sh new file mode 100644 index 0000000000000000000000000000000000000000..821a1002cc463e565cdbd5fe12f2156d6e2b5004 --- /dev/null +++ b/CheckGuard Models/wholeimage/payee/finetune_lora_llava_mistral.sh @@ -0,0 +1,39 @@ +#!/bin/bash + +deepspeed llava/train/train_mem.py \ + --lora_enable True --lora_r 128 --lora_alpha 256 --mm_projector_lr 2e-5 \ + --deepspeed ./scripts/zero3.json \ + --model_name_or_path liuhaotian/llava-v1.6-mistral-7b \ + --version mistral_instruct \ + --data_path /home/larry5/project/LLaVA-1.6-ft/data/peft/payee/csv_gt/payee_modified_path_to_train_val_human-gpt-whole-check.json \ + --image_folder /home/larry5/project/LLaVA-1.6-ft/data/data/ \ + --vision_tower openai/clip-vit-large-patch14-336 \ + --mm_projector_type mlp2x_gelu \ + --mm_vision_select_layer -2 \ + --mm_use_im_start_end False \ + --mm_use_im_patch_token False \ + --mm_patch_merge_type spatial_unpad \ + --image_aspect_ratio anyres \ + --group_by_modality_length False \ + --bf16 False \ + --fp16 True \ + --output_dir /home/larry5/project/LLaVA-1.6-ft/scripts_peft/mistral/lora/llava-lora-mistral-r128a256/wholeimage/payee/llava-lora-mistral-r128a256-10BS-model \ + --num_train_epochs 1 \ + --per_device_train_batch_size 10 \ + --per_device_eval_batch_size 1 \ + --gradient_accumulation_steps 1 \ + --evaluation_strategy "no" \ + --save_strategy "steps" \ + --save_steps 500 \ + --save_total_limit 5 \ + --learning_rate 2e-5 \ + --weight_decay 0. \ + --warmup_ratio 0.05 \ + --lr_scheduler_type "cosine" \ + --logging_steps 1 \ + --tf32 True \ + --model_max_length 4096 \ + --gradient_checkpointing True \ + --dataloader_num_workers 4 \ + --lazy_preprocess True \ + --report_to wandb \ \ No newline at end of file diff --git a/CheckGuard Models/wholeimage/payee/llava-lora-mistral-r128a256-10BS-model/README.md b/CheckGuard Models/wholeimage/payee/llava-lora-mistral-r128a256-10BS-model/README.md new file mode 100644 index 0000000000000000000000000000000000000000..bdb138eee6972419f6d60676388b52fd99ec478e --- /dev/null +++ b/CheckGuard Models/wholeimage/payee/llava-lora-mistral-r128a256-10BS-model/README.md @@ -0,0 +1,202 @@ +--- +library_name: peft +base_model: liuhaotian/llava-v1.6-mistral-7b +--- + +# Model Card for Model ID + + + + + +## Model Details + +### Model Description + + + + + +- **Developed by:** [More Information Needed] +- **Funded by [optional]:** [More Information Needed] +- **Shared by [optional]:** [More Information Needed] +- **Model type:** [More Information Needed] +- **Language(s) (NLP):** [More Information Needed] +- **License:** [More Information Needed] +- **Finetuned from model [optional]:** [More Information Needed] + +### Model Sources [optional] + + + +- **Repository:** [More Information Needed] +- **Paper [optional]:** [More Information Needed] +- **Demo [optional]:** [More Information Needed] + +## Uses + + + +### Direct Use + + + +[More Information Needed] + +### Downstream Use [optional] + + + +[More Information Needed] + +### Out-of-Scope Use + + + +[More Information Needed] + +## Bias, Risks, and Limitations + + + +[More Information Needed] + +### Recommendations + + + +Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. + +## How to Get Started with the Model + +Use the code below to get started with the model. + +[More Information Needed] + +## Training Details + +### Training Data + + + +[More Information Needed] + +### Training Procedure + + + +#### Preprocessing [optional] + +[More Information Needed] + + +#### Training Hyperparameters + +- **Training regime:** [More Information Needed] + +#### Speeds, Sizes, Times [optional] + + + +[More Information Needed] + +## Evaluation + + + +### Testing Data, Factors & Metrics + +#### Testing Data + + + +[More Information Needed] + +#### Factors + + + +[More Information Needed] + +#### Metrics + + + +[More Information Needed] + +### Results + +[More Information Needed] + +#### Summary + + + +## Model Examination [optional] + + + +[More Information Needed] + +## Environmental Impact + + + +Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). + +- **Hardware Type:** [More Information Needed] +- **Hours used:** [More Information Needed] +- **Cloud Provider:** [More Information Needed] +- **Compute Region:** [More Information Needed] +- **Carbon Emitted:** [More Information Needed] + +## Technical Specifications [optional] + +### Model Architecture and Objective + +[More Information Needed] + +### Compute Infrastructure + +[More Information Needed] + +#### Hardware + +[More Information Needed] + +#### Software + +[More Information Needed] + +## Citation [optional] + + + +**BibTeX:** + +[More Information Needed] + +**APA:** + +[More Information Needed] + +## Glossary [optional] + + + +[More Information Needed] + +## More Information [optional] + +[More Information Needed] + +## Model Card Authors [optional] + +[More Information Needed] + +## Model Card Contact + +[More Information Needed] +### Framework versions + +- PEFT 0.10.0 \ No newline at end of file diff --git a/CheckGuard Models/wholeimage/payee/llava-lora-mistral-r128a256-10BS-model/adapter_config.json b/CheckGuard Models/wholeimage/payee/llava-lora-mistral-r128a256-10BS-model/adapter_config.json new file mode 100644 index 0000000000000000000000000000000000000000..2546d7f5c4c0e793d197d4a8310446465b4d2ede --- /dev/null +++ b/CheckGuard Models/wholeimage/payee/llava-lora-mistral-r128a256-10BS-model/adapter_config.json @@ -0,0 +1,34 @@ +{ + "alpha_pattern": {}, + "auto_mapping": null, + "base_model_name_or_path": "liuhaotian/llava-v1.6-mistral-7b", + "bias": "none", + "fan_in_fan_out": false, + "inference_mode": true, + "init_lora_weights": true, + "layer_replication": null, + "layers_pattern": null, + "layers_to_transform": null, + "loftq_config": {}, + "lora_alpha": 256, + "lora_dropout": 0.05, + "megatron_config": null, + "megatron_core": "megatron.core", + "modules_to_save": null, + "peft_type": "LORA", + "r": 128, + "rank_pattern": {}, + "revision": null, + "target_modules": [ + "down_proj", + "k_proj", + "gate_proj", + "q_proj", + "o_proj", + "up_proj", + "v_proj" + ], + "task_type": "CAUSAL_LM", + "use_dora": false, + "use_rslora": false +} \ No newline at end of file diff --git a/CheckGuard Models/wholeimage/payee/llava-lora-mistral-r128a256-10BS-model/adapter_model.safetensors b/CheckGuard Models/wholeimage/payee/llava-lora-mistral-r128a256-10BS-model/adapter_model.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..c281d5fb191e9098c81b6c3cc868cff0e9bef2fb --- /dev/null +++ b/CheckGuard Models/wholeimage/payee/llava-lora-mistral-r128a256-10BS-model/adapter_model.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:096bc4369107bb2bdfe3944bf8bb696866e306494b750e810cc8938769bb6d30 +size 708924928 diff --git a/CheckGuard Models/wholeimage/payee/llava-lora-mistral-r128a256-10BS-model/config.json b/CheckGuard Models/wholeimage/payee/llava-lora-mistral-r128a256-10BS-model/config.json new file mode 100644 index 0000000000000000000000000000000000000000..93e133af45036a778791b5679a8953a4f6a35a33 --- /dev/null +++ b/CheckGuard Models/wholeimage/payee/llava-lora-mistral-r128a256-10BS-model/config.json @@ -0,0 +1,70 @@ +{ + "_name_or_path": "liuhaotian/llava-v1.6-mistral-7b", + "architectures": [ + "LlavaMistralForCausalLM" + ], + "attention_dropout": 0.0, + "bos_token_id": 1, + "eos_token_id": 2, + "freeze_mm_mlp_adapter": false, + "freeze_mm_vision_resampler": false, + "hidden_act": "silu", + "hidden_size": 4096, + "image_aspect_ratio": "anyres", + "image_crop_resolution": 224, + "image_grid_pinpoints": [ + [ + 336, + 672 + ], + [ + 672, + 336 + ], + [ + 672, + 672 + ], + [ + 1008, + 336 + ], + [ + 336, + 1008 + ] + ], + "image_split_resolution": 224, + "initializer_range": 0.02, + "intermediate_size": 14336, + "max_position_embeddings": 32768, + "mm_hidden_size": 1024, + "mm_patch_merge_type": "spatial_unpad", + "mm_projector_lr": 2e-05, + "mm_projector_type": "mlp2x_gelu", + "mm_resampler_type": null, + "mm_use_im_patch_token": false, + "mm_use_im_start_end": false, + "mm_vision_select_feature": "patch", + "mm_vision_select_layer": -2, + "mm_vision_tower": "openai/clip-vit-large-patch14-336", + "mm_vision_tower_lr": 2e-06, + "model_type": "llava_mistral", + "num_attention_heads": 32, + "num_hidden_layers": 32, + "num_key_value_heads": 8, + "rms_norm_eps": 1e-05, + "rope_theta": 1000000.0, + "sliding_window": null, + "tie_word_embeddings": false, + "tokenizer_model_max_length": 4096, + "tokenizer_padding_side": "right", + "torch_dtype": "bfloat16", + "transformers_version": "4.37.2", + "tune_mm_mlp_adapter": false, + "tune_mm_vision_resampler": false, + "unfreeze_mm_vision_tower": true, + "use_cache": true, + "use_mm_proj": true, + "vocab_size": 32000 +} diff --git a/CheckGuard Models/wholeimage/payee/llava-lora-mistral-r128a256-10BS-model/non_lora_trainables.bin b/CheckGuard Models/wholeimage/payee/llava-lora-mistral-r128a256-10BS-model/non_lora_trainables.bin new file mode 100644 index 0000000000000000000000000000000000000000..c01cafb9f483f66c0580ed9d7da872b5a496d30f --- /dev/null +++ b/CheckGuard Models/wholeimage/payee/llava-lora-mistral-r128a256-10BS-model/non_lora_trainables.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d9b47307b2d9b9d9badc01bd4896752d30223bbf3544b4b45ee1e1cc0af81440 +size 41961648 diff --git a/CheckGuard Models/wholeimage/payee/llava-lora-mistral-r128a256-10BS-model/trainer_state.json b/CheckGuard Models/wholeimage/payee/llava-lora-mistral-r128a256-10BS-model/trainer_state.json new file mode 100644 index 0000000000000000000000000000000000000000..740af236ce258382066f2145ae6f37bf04139722 --- /dev/null +++ b/CheckGuard Models/wholeimage/payee/llava-lora-mistral-r128a256-10BS-model/trainer_state.json @@ -0,0 +1,684 @@ +{ + "best_metric": null, + "best_model_checkpoint": null, + "epoch": 1.0, + "eval_steps": 500, + "global_step": 109, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "epoch": 0.01, + "learning_rate": 3.3333333333333333e-06, + "loss": 0.7809, + "step": 1 + }, + { + "epoch": 0.02, + "learning_rate": 6.666666666666667e-06, + "loss": 0.7122, + "step": 2 + }, + { + "epoch": 0.03, + "learning_rate": 1e-05, + "loss": 0.65, + "step": 3 + }, + { + "epoch": 0.04, + "learning_rate": 1.3333333333333333e-05, + "loss": 0.6036, + "step": 4 + }, + { + "epoch": 0.05, + "learning_rate": 1.6666666666666667e-05, + "loss": 0.5032, + "step": 5 + }, + { + "epoch": 0.06, + "learning_rate": 2e-05, + "loss": 0.5093, + "step": 6 + }, + { + "epoch": 0.06, + "learning_rate": 1.9995348836233517e-05, + "loss": 0.3085, + "step": 7 + }, + { + "epoch": 0.07, + "learning_rate": 1.998139967159894e-05, + "loss": 0.4182, + "step": 8 + }, + { + "epoch": 0.08, + "learning_rate": 1.9958165482066094e-05, + "loss": 0.2635, + "step": 9 + }, + { + "epoch": 0.09, + "learning_rate": 1.992566788083908e-05, + "loss": 0.2694, + "step": 10 + }, + { + "epoch": 0.1, + "learning_rate": 1.9883937098250962e-05, + "loss": 0.4074, + "step": 11 + }, + { + "epoch": 0.11, + "learning_rate": 1.9833011953642525e-05, + "loss": 0.5041, + "step": 12 + }, + { + "epoch": 0.12, + "learning_rate": 1.9772939819251247e-05, + "loss": 0.3813, + "step": 13 + }, + { + "epoch": 0.13, + "learning_rate": 1.9703776576144106e-05, + "loss": 0.3196, + "step": 14 + }, + { + "epoch": 0.14, + "learning_rate": 1.962558656223516e-05, + "loss": 0.3915, + "step": 15 + }, + { + "epoch": 0.15, + "learning_rate": 1.953844251243633e-05, + "loss": 0.4946, + "step": 16 + }, + { + "epoch": 0.16, + "learning_rate": 1.9442425490996987e-05, + "loss": 0.2764, + "step": 17 + }, + { + "epoch": 0.17, + "learning_rate": 1.933762481609536e-05, + "loss": 0.197, + "step": 18 + }, + { + "epoch": 0.17, + "learning_rate": 1.9224137976751797e-05, + "loss": 0.7322, + "step": 19 + }, + { + "epoch": 0.18, + "learning_rate": 1.910207054214133e-05, + "loss": 0.3586, + "step": 20 + }, + { + "epoch": 0.19, + "learning_rate": 1.8971536063389745e-05, + "loss": 0.5291, + "step": 21 + }, + { + "epoch": 0.2, + "learning_rate": 1.8832655967944607e-05, + "loss": 0.3152, + "step": 22 + }, + { + "epoch": 0.21, + "learning_rate": 1.868555944661949e-05, + "loss": 0.3683, + "step": 23 + }, + { + "epoch": 0.22, + "learning_rate": 1.853038333341642e-05, + "loss": 0.5445, + "step": 24 + }, + { + "epoch": 0.23, + "learning_rate": 1.8367271978238422e-05, + "loss": 0.5318, + "step": 25 + }, + { + "epoch": 0.24, + "learning_rate": 1.8196377112610524e-05, + "loss": 0.4471, + "step": 26 + }, + { + "epoch": 0.25, + "learning_rate": 1.8017857708534107e-05, + "loss": 0.4027, + "step": 27 + }, + { + "epoch": 0.26, + "learning_rate": 1.783187983060594e-05, + "loss": 0.3362, + "step": 28 + }, + { + "epoch": 0.27, + "learning_rate": 1.763861648153945e-05, + "loss": 0.6705, + "step": 29 + }, + { + "epoch": 0.28, + "learning_rate": 1.743824744123196e-05, + "loss": 0.3705, + "step": 30 + }, + { + "epoch": 0.28, + "learning_rate": 1.7230959099527512e-05, + "loss": 0.3289, + "step": 31 + }, + { + "epoch": 0.29, + "learning_rate": 1.7016944282830935e-05, + "loss": 0.4026, + "step": 32 + }, + { + "epoch": 0.3, + "learning_rate": 1.6796402074734404e-05, + "loss": 0.3437, + "step": 33 + }, + { + "epoch": 0.31, + "learning_rate": 1.6569537630823385e-05, + "loss": 0.367, + "step": 34 + }, + { + "epoch": 0.32, + "learning_rate": 1.6336561987834155e-05, + "loss": 0.2763, + "step": 35 + }, + { + "epoch": 0.33, + "learning_rate": 1.6097691867340547e-05, + "loss": 0.309, + "step": 36 + }, + { + "epoch": 0.34, + "learning_rate": 1.585314947415242e-05, + "loss": 0.3304, + "step": 37 + }, + { + "epoch": 0.35, + "learning_rate": 1.5603162289613503e-05, + "loss": 0.3243, + "step": 38 + }, + { + "epoch": 0.36, + "learning_rate": 1.5347962859990744e-05, + "loss": 0.3459, + "step": 39 + }, + { + "epoch": 0.37, + "learning_rate": 1.5087788580152207e-05, + "loss": 0.3876, + "step": 40 + }, + { + "epoch": 0.38, + "learning_rate": 1.4822881472734563e-05, + "loss": 0.2243, + "step": 41 + }, + { + "epoch": 0.39, + "learning_rate": 1.4553487963005712e-05, + "loss": 0.4515, + "step": 42 + }, + { + "epoch": 0.39, + "learning_rate": 1.427985864963193e-05, + "loss": 0.3135, + "step": 43 + }, + { + "epoch": 0.4, + "learning_rate": 1.400224807156278e-05, + "loss": 0.3343, + "step": 44 + }, + { + "epoch": 0.41, + "learning_rate": 1.3720914471250644e-05, + "loss": 0.4998, + "step": 45 + }, + { + "epoch": 0.42, + "learning_rate": 1.3720914471250644e-05, + "loss": 0.3234, + "step": 46 + }, + { + "epoch": 0.43, + "learning_rate": 1.3436119554425133e-05, + "loss": 0.2812, + "step": 47 + }, + { + "epoch": 0.44, + "learning_rate": 1.314812824664585e-05, + "loss": 0.1462, + "step": 48 + }, + { + "epoch": 0.45, + "learning_rate": 1.285720844685996e-05, + "loss": 0.3018, + "step": 49 + }, + { + "epoch": 0.46, + "learning_rate": 1.2563630778193805e-05, + "loss": 0.7224, + "step": 50 + }, + { + "epoch": 0.47, + "learning_rate": 1.2563630778193805e-05, + "loss": 0.5369, + "step": 51 + }, + { + "epoch": 0.48, + "learning_rate": 1.2267668336210411e-05, + "loss": 0.5186, + "step": 52 + }, + { + "epoch": 0.49, + "learning_rate": 1.1969596434867063e-05, + "loss": 0.6036, + "step": 53 + }, + { + "epoch": 0.5, + "learning_rate": 1.1669692350409223e-05, + "loss": 0.3408, + "step": 54 + }, + { + "epoch": 0.5, + "learning_rate": 1.1368235063439103e-05, + "loss": 0.1877, + "step": 55 + }, + { + "epoch": 0.51, + "learning_rate": 1.1065504999398762e-05, + "loss": 0.3792, + "step": 56 + }, + { + "epoch": 0.52, + "learning_rate": 1.0761783767709182e-05, + "loss": 0.3529, + "step": 57 + }, + { + "epoch": 0.53, + "learning_rate": 1.0457353899807947e-05, + "loss": 0.1392, + "step": 58 + }, + { + "epoch": 0.54, + "learning_rate": 1.015249858632926e-05, + "loss": 0.4194, + "step": 59 + }, + { + "epoch": 0.55, + "learning_rate": 9.847501413670742e-06, + "loss": 0.4476, + "step": 60 + }, + { + "epoch": 0.56, + "learning_rate": 9.542646100192056e-06, + "loss": 0.501, + "step": 61 + }, + { + "epoch": 0.57, + "learning_rate": 9.238216232290821e-06, + "loss": 0.5975, + "step": 62 + }, + { + "epoch": 0.58, + "learning_rate": 8.934495000601241e-06, + "loss": 0.3509, + "step": 63 + }, + { + "epoch": 0.59, + "learning_rate": 8.6317649365609e-06, + "loss": 0.1972, + "step": 64 + }, + { + "epoch": 0.6, + "learning_rate": 8.330307649590782e-06, + "loss": 0.3311, + "step": 65 + }, + { + "epoch": 0.61, + "learning_rate": 8.030403565132942e-06, + "loss": 0.4667, + "step": 66 + }, + { + "epoch": 0.61, + "learning_rate": 7.732331663789592e-06, + "loss": 0.2561, + "step": 67 + }, + { + "epoch": 0.62, + "learning_rate": 7.436369221806201e-06, + "loss": 0.2634, + "step": 68 + }, + { + "epoch": 0.63, + "learning_rate": 7.142791553140045e-06, + "loss": 0.2677, + "step": 69 + }, + { + "epoch": 0.64, + "learning_rate": 6.851871753354154e-06, + "loss": 0.3111, + "step": 70 + }, + { + "epoch": 0.65, + "learning_rate": 6.563880445574873e-06, + "loss": 0.6517, + "step": 71 + }, + { + "epoch": 0.66, + "learning_rate": 6.2790855287493605e-06, + "loss": 0.2516, + "step": 72 + }, + { + "epoch": 0.67, + "learning_rate": 5.99775192843722e-06, + "loss": 0.3525, + "step": 73 + }, + { + "epoch": 0.68, + "learning_rate": 5.720141350368072e-06, + "loss": 0.5402, + "step": 74 + }, + { + "epoch": 0.69, + "learning_rate": 5.446512036994287e-06, + "loss": 0.3389, + "step": 75 + }, + { + "epoch": 0.7, + "learning_rate": 5.177118527265438e-06, + "loss": 0.2144, + "step": 76 + }, + { + "epoch": 0.71, + "learning_rate": 4.912211419847795e-06, + "loss": 0.6116, + "step": 77 + }, + { + "epoch": 0.72, + "learning_rate": 4.652037140009259e-06, + "loss": 0.3376, + "step": 78 + }, + { + "epoch": 0.72, + "learning_rate": 4.396837710386503e-06, + "loss": 0.36, + "step": 79 + }, + { + "epoch": 0.73, + "learning_rate": 4.1468505258475785e-06, + "loss": 0.4222, + "step": 80 + }, + { + "epoch": 0.74, + "learning_rate": 3.902308132659457e-06, + "loss": 0.2264, + "step": 81 + }, + { + "epoch": 0.75, + "learning_rate": 3.6634380121658484e-06, + "loss": 0.2858, + "step": 82 + }, + { + "epoch": 0.76, + "learning_rate": 3.4304623691766193e-06, + "loss": 0.3124, + "step": 83 + }, + { + "epoch": 0.77, + "learning_rate": 3.203597925265598e-06, + "loss": 0.124, + "step": 84 + }, + { + "epoch": 0.78, + "learning_rate": 2.98305571716907e-06, + "loss": 0.4321, + "step": 85 + }, + { + "epoch": 0.79, + "learning_rate": 2.7690409004724883e-06, + "loss": 0.4045, + "step": 86 + }, + { + "epoch": 0.8, + "learning_rate": 2.56175255876804e-06, + "loss": 0.4559, + "step": 87 + }, + { + "epoch": 0.81, + "learning_rate": 2.3613835184605527e-06, + "loss": 0.1838, + "step": 88 + }, + { + "epoch": 0.82, + "learning_rate": 2.1681201693940667e-06, + "loss": 0.4033, + "step": 89 + }, + { + "epoch": 0.83, + "learning_rate": 1.982142291465896e-06, + "loss": 0.3051, + "step": 90 + }, + { + "epoch": 0.83, + "learning_rate": 1.8036228873894745e-06, + "loss": 0.2386, + "step": 91 + }, + { + "epoch": 0.84, + "learning_rate": 1.6327280217615793e-06, + "loss": 0.3897, + "step": 92 + }, + { + "epoch": 0.85, + "learning_rate": 1.4696166665835853e-06, + "loss": 0.3724, + "step": 93 + }, + { + "epoch": 0.86, + "learning_rate": 1.3144405533805138e-06, + "loss": 0.4102, + "step": 94 + }, + { + "epoch": 0.87, + "learning_rate": 1.1673440320553941e-06, + "loss": 0.2726, + "step": 95 + }, + { + "epoch": 0.88, + "learning_rate": 1.02846393661026e-06, + "loss": 0.4034, + "step": 96 + }, + { + "epoch": 0.89, + "learning_rate": 8.979294578586739e-07, + "loss": 0.6888, + "step": 97 + }, + { + "epoch": 0.9, + "learning_rate": 7.758620232482083e-07, + "loss": 0.3449, + "step": 98 + }, + { + "epoch": 0.91, + "learning_rate": 6.623751839046455e-07, + "loss": 0.5181, + "step": 99 + }, + { + "epoch": 0.92, + "learning_rate": 5.575745090030138e-07, + "loss": 0.7589, + "step": 100 + }, + { + "epoch": 0.93, + "learning_rate": 4.61557487563673e-07, + "loss": 0.3506, + "step": 101 + }, + { + "epoch": 0.94, + "learning_rate": 3.7441343776484116e-07, + "loss": 0.5096, + "step": 102 + }, + { + "epoch": 0.94, + "learning_rate": 2.9622342385589256e-07, + "loss": 0.2922, + "step": 103 + }, + { + "epoch": 0.95, + "learning_rate": 2.2706018074875046e-07, + "loss": 0.223, + "step": 104 + }, + { + "epoch": 0.96, + "learning_rate": 1.669880463574758e-07, + "loss": 0.1446, + "step": 105 + }, + { + "epoch": 0.97, + "learning_rate": 1.160629017490389e-07, + "loss": 0.3283, + "step": 106 + }, + { + "epoch": 0.98, + "learning_rate": 7.433211916092143e-08, + "loss": 0.2504, + "step": 107 + }, + { + "epoch": 0.99, + "learning_rate": 4.183451793390747e-08, + "loss": 0.4626, + "step": 108 + }, + { + "epoch": 1.0, + "learning_rate": 1.860032840106163e-08, + "loss": 0.161, + "step": 109 + }, + { + "epoch": 1.0, + "step": 109, + "total_flos": 394052874240.0, + "train_loss": 0.3891204473895764, + "train_runtime": 831.1939, + "train_samples_per_second": 2.62, + "train_steps_per_second": 0.131 + } + ], + "logging_steps": 1.0, + "max_steps": 109, + "num_input_tokens_seen": 0, + "num_train_epochs": 1, + "save_steps": 500, + "total_flos": 394052874240.0, + "train_batch_size": 10, + "trial_name": null, + "trial_params": null +}