Update README.md
Browse files
README.md
CHANGED
@@ -54,28 +54,37 @@ Our models are not specifically designed or evaluated for all downstream purpose
|
|
54 |
|
55 |
## Usage
|
56 |
|
57 |
-
### Fine-tuning
|
58 |
|
59 |
-
|
60 |
|
61 |
-
To
|
62 |
```bash
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
```
|
67 |
|
68 |
-
###
|
69 |
|
70 |
-
|
71 |
-
|
|
|
72 |
```bash
|
73 |
-
|
74 |
-
pip install -r requirements.txt
|
75 |
-
./scripts/inference.sh
|
76 |
```
|
77 |
|
78 |
-
|
|
|
|
|
|
|
|
|
79 |
|
80 |
## Benchmarks
|
81 |
|
|
|
54 |
|
55 |
## Usage
|
56 |
|
|
|
57 |
|
58 |
+
### Latent Inference
|
59 |
|
60 |
+
To analyze the output of the model, which is a sequence of latent actions (8^4), run the following command:
|
61 |
```bash
|
62 |
+
conda create -n lapa python=3.10 -y
|
63 |
+
conda activate lapa
|
64 |
+
git clone https://github.com/LatentActionPretraining/LAPA.git
|
65 |
+
pip install -r requirements.txt
|
66 |
+
mkdir lapa_checkpoints && cd lapa_checkpoints
|
67 |
+
wget https://huggingface.co/latent-action-pretraining/LAPA-7B-openx/resolve/main/tokenizer.model
|
68 |
+
wget https://huggingface.co/latent-action-pretraining/LAPA-7B-openx/resolve/main/vqgan
|
69 |
+
wget https://huggingface.co/latent-action-pretraining/LAPA-7B-openx/resolve/main/params
|
70 |
+
cd ..
|
71 |
+
python -m latent_pretraining.inference
|
72 |
```
|
73 |
|
74 |
+
### Fine-tuning
|
75 |
|
76 |
+
Since the released checkpoint is trained with latent pretraining objective, **the outputs are not real actions that are executable in the real world**. To make the model output executable actions, fine-tuning on a small set of trajectories that contain ground-truth actions (~150 trajs) to map the latent action space to the actual action space.
|
77 |
+
|
78 |
+
To finetune the model on SIMPLER, run the following command:
|
79 |
```bash
|
80 |
+
./scripts/finetune_simpler.sh
|
|
|
|
|
81 |
```
|
82 |
|
83 |
+
To finetune the model on a custom dataset, run the following command:
|
84 |
+
```bash
|
85 |
+
python data/finetune_preprocess.py --input_path "/path_to_json_file" --output_filename "data/real_finetune.jsonl" --csv_filename "data/real_finetune.csv"
|
86 |
+
./scripts/finetune_real.sh
|
87 |
+
```
|
88 |
|
89 |
## Benchmarks
|
90 |
|