layoric commited on
Commit
2655d40
1 Parent(s): b18b7a1

Upload lunar lander

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 263.30 +/- 10.08
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3c16535ee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3c16535f70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3c16539040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3c165390d0>", "_build": "<function ActorCriticPolicy._build at 0x7f3c16539160>", "forward": "<function ActorCriticPolicy.forward at 0x7f3c165391f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3c16539280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3c16539310>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3c165393a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3c16539430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3c165394c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3c16539550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3c16521cc0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1048576, "_total_timesteps": 1048576, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675823646930401132, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADxfL5mtrU/mrAdv/n81b5oAaW+xscEvgAAAAAAAAAAsyUpvXY8Hz9iPtg9xAzCvhjJPz26ObU9AAAAAAAAAACak7g9XvemP8ljtD55P9C+hCcFPoV6Dj4AAAAAAAAAAJpwKr2ALIU/PSvNvR7Unr70Q3m99sShvAAAAAAAAAAAwHKTPWAIrT+Gv4g+fY7DvrVygj11Zt49AAAAAAAAAAAzecW9vyUTPv6uBT5wFGG+M47jPPJUFT0AAAAAAAAAADOiiry1DBw/QrqcPYOmmr5uti28rzBMPQAAAAAAAAAAwHaAvd0+Sj7KxoC9dO+CvhLvDb0Hsb29AAAAAAAAAACA46K93qmgP+PD0L5Vns2+Wg0BvsLQPr4AAAAAAAAAAEBoiT1IO5S6Xh6fNfymMzAugxg6MVmqtAAAgD8AAIA/PRVwvnnlWz/K6m098Au4vrbRGb6I2Ew9AAAAAAAAAADNy0U92KFBP/Lvaj1eCri+iaytPMuWkzwAAAAAAAAAAA2g8b3BK489w/cfPlXKUb4AqxK95y0oPQAAAAAAAAAAigeRPt28BT8rlHi9nh+bvtgtCT6a1vS9AAAAAAAAAADzm6A9e4aDuuBRbTMigl2upbqxObuBsrMAAIA/AACAP6rqe75pvoQ/O2Hqvr4WBL/ozJ++FkTyvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVahAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIX5fhPx1MckCUhpRSlIwBbJRL+YwBdJRHQJR9FkQPI4l1fZQoaAZoCWgPQwgnpDUGnftuQJSGlFKUaBVNJAFoFkdAlH2wAEMb33V9lChoBmgJaA9DCEVkWMUbfXFAlIaUUpRoFU1BAWgWR0CUfo4bCJoCdX2UKGgGaAloD0MIcjPcgM/ocECUhpRSlGgVTSMBaBZHQJR+5CHARCh1fZQoaAZoCWgPQwjJ6ev5WshxQJSGlFKUaBVNAgFoFkdAlH7xVENOM3V9lChoBmgJaA9DCJFGBU42unJAlIaUUpRoFU0JAWgWR0CUfyMlTm4idX2UKGgGaAloD0MIgSTs20nAcUCUhpRSlGgVTXEBaBZHQJSArTlT3qR1fZQoaAZoCWgPQwjYKVYNwgZAQJSGlFKUaBVLzGgWR0CUgSnscABDdX2UKGgGaAloD0MISUvl7UjacUCUhpRSlGgVS+9oFkdAlIKmd/axo3V9lChoBmgJaA9DCHBbW3ge4XBAlIaUUpRoFU0GAWgWR0CUgrWd3B55dX2UKGgGaAloD0MI4GbxYmFXckCUhpRSlGgVTb0BaBZHQJSDHbh3qzJ1fZQoaAZoCWgPQwivmBHeHqQ5QJSGlFKUaBVLz2gWR0CUg4TjNpuddX2UKGgGaAloD0MIfuAqT2CTcECUhpRSlGgVTRYBaBZHQJSEMfYBeX11fZQoaAZoCWgPQwj8/Pfgdb5wQJSGlFKUaBVL7WgWR0CUhIeHzpX7dX2UKGgGaAloD0MIpwaaz7lmckCUhpRSlGgVTSkBaBZHQJSFeyt3fQ91fZQoaAZoCWgPQwjgufdwydFsQJSGlFKUaBVNDgFoFkdAlIYP4VRDTnV9lChoBmgJaA9DCP1JfO6EhXFAlIaUUpRoFU05AWgWR0CUhqn/1g6VdX2UKGgGaAloD0MIBFjk149McECUhpRSlGgVTQkBaBZHQJSG0AwPAfx1fZQoaAZoCWgPQwiCkCxgwixxQJSGlFKUaBVNBAFoFkdAlIcB6nivPnV9lChoBmgJaA9DCBugNNQoE2BAlIaUUpRoFU3oA2gWR0CUiMG2kSEldX2UKGgGaAloD0MII6KYvAGNbECUhpRSlGgVS/toFkdAlIlRnOB193V9lChoBmgJaA9DCEZ55uUwO29AlIaUUpRoFU1NAWgWR0CUiXd1uBMBdX2UKGgGaAloD0MItfzAVR6pcUCUhpRSlGgVTRgBaBZHQJSJr4dp7C11fZQoaAZoCWgPQwgJUFPLVoFwQJSGlFKUaBVL82gWR0CUipCKrJbMdX2UKGgGaAloD0MIrmad8T2kcECUhpRSlGgVTXYBaBZHQJSK+s+3Yth1fZQoaAZoCWgPQwj2RNeF345xQJSGlFKUaBVNGgFoFkdAlIxERWcSXnV9lChoBmgJaA9DCLwgIjXt7G9AlIaUUpRoFU0gAWgWR0CUjPNXHR1HdX2UKGgGaAloD0MIA83n3C3HcUCUhpRSlGgVTUEBaBZHQJSNKeDnNgV1fZQoaAZoCWgPQwiN7iB2JgZyQJSGlFKUaBVNGQFoFkdAlI1r9ycTanV9lChoBmgJaA9DCKvq5Xfa2nFAlIaUUpRoFU03AWgWR0CUjqA9FF2FdX2UKGgGaAloD0MI+l5DcFz/ckCUhpRSlGgVTSkBaBZHQJSQPLA57w91fZQoaAZoCWgPQwjuQJ3yKD1yQJSGlFKUaBVNGwFoFkdAlJBaB/Zuh3V9lChoBmgJaA9DCNDv+zevZG1AlIaUUpRoFU0aAWgWR0CUkIDh99c9dX2UKGgGaAloD0MICyqqfqUPQUCUhpRSlGgVS6xoFkdAlJE0eMhounV9lChoBmgJaA9DCBQi4BCqoWxAlIaUUpRoFUv4aBZHQJSSTAZbY9R1fZQoaAZoCWgPQwhQjCyZ46lxQJSGlFKUaBVNQAFoFkdAlJJ++7Dl5nV9lChoBmgJaA9DCLOyfchbY3BAlIaUUpRoFUv+aBZHQJSSxUn5SFZ1fZQoaAZoCWgPQwh8ndSXpelOQJSGlFKUaBVL42gWR0CUkyl4TsY3dX2UKGgGaAloD0MIFFysqAHScECUhpRSlGgVTSIBaBZHQJSUmevpyIZ1fZQoaAZoCWgPQwh4l4v4znNsQJSGlFKUaBVNPwFoFkdAlJSu0kWyknV9lChoBmgJaA9DCF6CUx+ISHFAlIaUUpRoFU2yAWgWR0CUlXWM0gr6dX2UKGgGaAloD0MI9zk+WpyjckCUhpRSlGgVTRYBaBZHQJSv5RaX8fp1fZQoaAZoCWgPQwhftMcLqbByQJSGlFKUaBVNVwFoFkdAlLG/XPJJXnV9lChoBmgJaA9DCOTaUDEOZnBAlIaUUpRoFU1QAWgWR0CUso1DjR2KdX2UKGgGaAloD0MIfsnGg22XcUCUhpRSlGgVS/1oFkdAlLLG2oegc3V9lChoBmgJaA9DCOF/K9mxa0VAlIaUUpRoFUvXaBZHQJSy9rwe/6B1fZQoaAZoCWgPQwgdVyO7kjxxQJSGlFKUaBVNWAFoFkdAlLMv0mMOw3V9lChoBmgJaA9DCAahvI+j2ShAlIaUUpRoFUvgaBZHQJSzfSw4bS91fZQoaAZoCWgPQwhtOZfiagdzQJSGlFKUaBVNLwFoFkdAlLRh9G7SRnV9lChoBmgJaA9DCNi61Aj9kXFAlIaUUpRoFU1TAWgWR0CUtG4bjtG/dX2UKGgGaAloD0MIjPZ4IZ1Pb0CUhpRSlGgVTTkBaBZHQJS0xA7gbZR1fZQoaAZoCWgPQwjwp8ZLt3xwQJSGlFKUaBVNEQFoFkdAlLVgIIF/x3V9lChoBmgJaA9DCPuw3qiV8HJAlIaUUpRoFU08AWgWR0CUtgdyksSTdX2UKGgGaAloD0MIUMb4MHudcECUhpRSlGgVTRUBaBZHQJS3JDu0CzV1fZQoaAZoCWgPQwjp1mt60HxtQJSGlFKUaBVNKQFoFkdAlLckcS5AhXV9lChoBmgJaA9DCGl0B7FzXHJAlIaUUpRoFU0vAWgWR0CUt0Iyj59FdX2UKGgGaAloD0MIXtpwWJo5ckCUhpRSlGgVTZEBaBZHQJS33lEJBxB1fZQoaAZoCWgPQwgj2o6pOzNuQJSGlFKUaBVL/mgWR0CUudmKZUkwdX2UKGgGaAloD0MIuqKUECxicUCUhpRSlGgVTQQBaBZHQJS6u1twaR91fZQoaAZoCWgPQwj6muWykbxxQJSGlFKUaBVNTgFoFkdAlLsMaXKKYXV9lChoBmgJaA9DCNdP/1mzWnJAlIaUUpRoFU0FAWgWR0CUu1GdZq20dX2UKGgGaAloD0MIz6J3KiDmcECUhpRSlGgVTRABaBZHQJS7efzz3AV1fZQoaAZoCWgPQwjxZDczeotwQJSGlFKUaBVNAgFoFkdAlLt/vSc9XHV9lChoBmgJaA9DCGxc/65PYW5AlIaUUpRoFUv4aBZHQJS78IY3vQZ1fZQoaAZoCWgPQwj5hy09WntxQJSGlFKUaBVNLAFoFkdAlLwesT37DXV9lChoBmgJaA9DCFfMCG/PC3FAlIaUUpRoFU0jAWgWR0CUvYhnJ1aGdX2UKGgGaAloD0MIYASNmcQ2cUCUhpRSlGgVTQ4BaBZHQJS+ZCu2ZzB1fZQoaAZoCWgPQwjHSPYItXdxQJSGlFKUaBVNSAFoFkdAlL6MR+SbIHV9lChoBmgJaA9DCGEW2jnNlHBAlIaUUpRoFU0fAWgWR0CUwTWl/H5rdX2UKGgGaAloD0MIW7QAbaslb0CUhpRSlGgVTSQBaBZHQJTBfuWrwOR1fZQoaAZoCWgPQwgPRuwTwHdwQJSGlFKUaBVNLQFoFkdAlMNsXenAI3V9lChoBmgJaA9DCBRf7SjOQ0xAlIaUUpRoFUvOaBZHQJTEI+V1Oj91fZQoaAZoCWgPQwiuLTwvFbRuQJSGlFKUaBVNUQFoFkdAlMQy7GvOhXV9lChoBmgJaA9DCLe28LxU3G9AlIaUUpRoFUv+aBZHQJTGURPGhmJ1fZQoaAZoCWgPQwhxAWiU7gFxQJSGlFKUaBVNIwFoFkdAlMZwK8cuJ3V9lChoBmgJaA9DCNffEoD/2m9AlIaUUpRoFU3aAWgWR0CUyC+W4Vh1dX2UKGgGaAloD0MIhnE3iBZOcUCUhpRSlGgVTQABaBZHQJTIYN5MURF1fZQoaAZoCWgPQwhinSrfM0dxQJSGlFKUaBVNJQFoFkdAlMkUL+glGHV9lChoBmgJaA9DCD8AqU2cLXBAlIaUUpRoFU08AWgWR0CUyRzGPxQSdX2UKGgGaAloD0MIJJpAEYuQS0CUhpRSlGgVS9RoFkdAlMndN8E3bXV9lChoBmgJaA9DCFFsBU3LlXFAlIaUUpRoFU1DAWgWR0CUyogyuZCwdX2UKGgGaAloD0MIvajdr4L1b0CUhpRSlGgVTTsBaBZHQJTK5Wp6yB11fZQoaAZoCWgPQwjYZfhP9/lyQJSGlFKUaBVNBgFoFkdAlMr9u+AVf3V9lChoBmgJaA9DCPuytFOzTnFAlIaUUpRoFUv+aBZHQJTLtBfKISF1fZQoaAZoCWgPQwiPxTapaNpPQJSGlFKUaBVLyGgWR0CUy+cmShaldX2UKGgGaAloD0MIO+C6YkZIL0CUhpRSlGgVS+NoFkdAlMzORgZ0jnV9lChoBmgJaA9DCDqRYKoZeHBAlIaUUpRoFU0lAWgWR0CU0+xdIGyHdX2UKGgGaAloD0MItf8B1qr1cECUhpRSlGgVS/xoFkdAlNSzfvWpZXV9lChoBmgJaA9DCHJqZ5hav3FAlIaUUpRoFU0zAWgWR0CU1WOgQHzIdX2UKGgGaAloD0MIHjf8broLbECUhpRSlGgVTRsBaBZHQJTYNg5R0lt1fZQoaAZoCWgPQwjh7NYyWc5xQJSGlFKUaBVNFAFoFkdAlNjLHAAQx3V9lChoBmgJaA9DCNR+aydKtnFAlIaUUpRoFU1vAWgWR0CU2M4Kx9ofdX2UKGgGaAloD0MI7fFCOvwdcECUhpRSlGgVTRUBaBZHQJTZxhttQ9B1fZQoaAZoCWgPQwhvLCgMyiRxQJSGlFKUaBVNYgFoFkdAlNo1mz0HyHV9lChoBmgJaA9DCG10zk9xgXFAlIaUUpRoFU0iAWgWR0CU27u/DcdpdX2UKGgGaAloD0MIV3cstgmpcUCUhpRSlGgVTUkBaBZHQJTbublRxcV1fZQoaAZoCWgPQwhgIt46vzBwQJSGlFKUaBVNJgFoFkdAlNvY287IUHV9lChoBmgJaA9DCIqPT8gOUHJAlIaUUpRoFU0GAWgWR0CU3GKvmozfdX2UKGgGaAloD0MIMbH5uHYNcECUhpRSlGgVTWgBaBZHQJTcfJOnEVF1fZQoaAZoCWgPQwhaETXRZ9pvQJSGlFKUaBVNIwFoFkdAlNyuBg/kenVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 256, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
layoric/ppo-LunarLander-v2-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a2ced8e951e03ba13623914e218ae5b767057bc0bfdf6c48cd2a63c1668599c
3
+ size 147378
layoric/ppo-LunarLander-v2-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
layoric/ppo-LunarLander-v2-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3c16535ee0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3c16535f70>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3c16539040>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3c165390d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f3c16539160>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f3c165391f0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3c16539280>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3c16539310>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f3c165393a0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3c16539430>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3c165394c0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3c16539550>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f3c16521cc0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1048576,
47
+ "_total_timesteps": 1048576,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1675823646930401132,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADxfL5mtrU/mrAdv/n81b5oAaW+xscEvgAAAAAAAAAAsyUpvXY8Hz9iPtg9xAzCvhjJPz26ObU9AAAAAAAAAACak7g9XvemP8ljtD55P9C+hCcFPoV6Dj4AAAAAAAAAAJpwKr2ALIU/PSvNvR7Unr70Q3m99sShvAAAAAAAAAAAwHKTPWAIrT+Gv4g+fY7DvrVygj11Zt49AAAAAAAAAAAzecW9vyUTPv6uBT5wFGG+M47jPPJUFT0AAAAAAAAAADOiiry1DBw/QrqcPYOmmr5uti28rzBMPQAAAAAAAAAAwHaAvd0+Sj7KxoC9dO+CvhLvDb0Hsb29AAAAAAAAAACA46K93qmgP+PD0L5Vns2+Wg0BvsLQPr4AAAAAAAAAAEBoiT1IO5S6Xh6fNfymMzAugxg6MVmqtAAAgD8AAIA/PRVwvnnlWz/K6m098Au4vrbRGb6I2Ew9AAAAAAAAAADNy0U92KFBP/Lvaj1eCri+iaytPMuWkzwAAAAAAAAAAA2g8b3BK489w/cfPlXKUb4AqxK95y0oPQAAAAAAAAAAigeRPt28BT8rlHi9nh+bvtgtCT6a1vS9AAAAAAAAAADzm6A9e4aDuuBRbTMigl2upbqxObuBsrMAAIA/AACAP6rqe75pvoQ/O2Hqvr4WBL/ozJ++FkTyvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": 0.0,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVahAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIX5fhPx1MckCUhpRSlIwBbJRL+YwBdJRHQJR9FkQPI4l1fZQoaAZoCWgPQwgnpDUGnftuQJSGlFKUaBVNJAFoFkdAlH2wAEMb33V9lChoBmgJaA9DCEVkWMUbfXFAlIaUUpRoFU1BAWgWR0CUfo4bCJoCdX2UKGgGaAloD0MIcjPcgM/ocECUhpRSlGgVTSMBaBZHQJR+5CHARCh1fZQoaAZoCWgPQwjJ6ev5WshxQJSGlFKUaBVNAgFoFkdAlH7xVENOM3V9lChoBmgJaA9DCJFGBU42unJAlIaUUpRoFU0JAWgWR0CUfyMlTm4idX2UKGgGaAloD0MIgSTs20nAcUCUhpRSlGgVTXEBaBZHQJSArTlT3qR1fZQoaAZoCWgPQwjYKVYNwgZAQJSGlFKUaBVLzGgWR0CUgSnscABDdX2UKGgGaAloD0MISUvl7UjacUCUhpRSlGgVS+9oFkdAlIKmd/axo3V9lChoBmgJaA9DCHBbW3ge4XBAlIaUUpRoFU0GAWgWR0CUgrWd3B55dX2UKGgGaAloD0MI4GbxYmFXckCUhpRSlGgVTb0BaBZHQJSDHbh3qzJ1fZQoaAZoCWgPQwivmBHeHqQ5QJSGlFKUaBVLz2gWR0CUg4TjNpuddX2UKGgGaAloD0MIfuAqT2CTcECUhpRSlGgVTRYBaBZHQJSEMfYBeX11fZQoaAZoCWgPQwj8/Pfgdb5wQJSGlFKUaBVL7WgWR0CUhIeHzpX7dX2UKGgGaAloD0MIpwaaz7lmckCUhpRSlGgVTSkBaBZHQJSFeyt3fQ91fZQoaAZoCWgPQwjgufdwydFsQJSGlFKUaBVNDgFoFkdAlIYP4VRDTnV9lChoBmgJaA9DCP1JfO6EhXFAlIaUUpRoFU05AWgWR0CUhqn/1g6VdX2UKGgGaAloD0MIBFjk149McECUhpRSlGgVTQkBaBZHQJSG0AwPAfx1fZQoaAZoCWgPQwiCkCxgwixxQJSGlFKUaBVNBAFoFkdAlIcB6nivPnV9lChoBmgJaA9DCBugNNQoE2BAlIaUUpRoFU3oA2gWR0CUiMG2kSEldX2UKGgGaAloD0MII6KYvAGNbECUhpRSlGgVS/toFkdAlIlRnOB193V9lChoBmgJaA9DCEZ55uUwO29AlIaUUpRoFU1NAWgWR0CUiXd1uBMBdX2UKGgGaAloD0MItfzAVR6pcUCUhpRSlGgVTRgBaBZHQJSJr4dp7C11fZQoaAZoCWgPQwgJUFPLVoFwQJSGlFKUaBVL82gWR0CUipCKrJbMdX2UKGgGaAloD0MIrmad8T2kcECUhpRSlGgVTXYBaBZHQJSK+s+3Yth1fZQoaAZoCWgPQwj2RNeF345xQJSGlFKUaBVNGgFoFkdAlIxERWcSXnV9lChoBmgJaA9DCLwgIjXt7G9AlIaUUpRoFU0gAWgWR0CUjPNXHR1HdX2UKGgGaAloD0MIA83n3C3HcUCUhpRSlGgVTUEBaBZHQJSNKeDnNgV1fZQoaAZoCWgPQwiN7iB2JgZyQJSGlFKUaBVNGQFoFkdAlI1r9ycTanV9lChoBmgJaA9DCKvq5Xfa2nFAlIaUUpRoFU03AWgWR0CUjqA9FF2FdX2UKGgGaAloD0MI+l5DcFz/ckCUhpRSlGgVTSkBaBZHQJSQPLA57w91fZQoaAZoCWgPQwjuQJ3yKD1yQJSGlFKUaBVNGwFoFkdAlJBaB/Zuh3V9lChoBmgJaA9DCNDv+zevZG1AlIaUUpRoFU0aAWgWR0CUkIDh99c9dX2UKGgGaAloD0MICyqqfqUPQUCUhpRSlGgVS6xoFkdAlJE0eMhounV9lChoBmgJaA9DCBQi4BCqoWxAlIaUUpRoFUv4aBZHQJSSTAZbY9R1fZQoaAZoCWgPQwhQjCyZ46lxQJSGlFKUaBVNQAFoFkdAlJJ++7Dl5nV9lChoBmgJaA9DCLOyfchbY3BAlIaUUpRoFUv+aBZHQJSSxUn5SFZ1fZQoaAZoCWgPQwh8ndSXpelOQJSGlFKUaBVL42gWR0CUkyl4TsY3dX2UKGgGaAloD0MIFFysqAHScECUhpRSlGgVTSIBaBZHQJSUmevpyIZ1fZQoaAZoCWgPQwh4l4v4znNsQJSGlFKUaBVNPwFoFkdAlJSu0kWyknV9lChoBmgJaA9DCF6CUx+ISHFAlIaUUpRoFU2yAWgWR0CUlXWM0gr6dX2UKGgGaAloD0MI9zk+WpyjckCUhpRSlGgVTRYBaBZHQJSv5RaX8fp1fZQoaAZoCWgPQwhftMcLqbByQJSGlFKUaBVNVwFoFkdAlLG/XPJJXnV9lChoBmgJaA9DCOTaUDEOZnBAlIaUUpRoFU1QAWgWR0CUso1DjR2KdX2UKGgGaAloD0MIfsnGg22XcUCUhpRSlGgVS/1oFkdAlLLG2oegc3V9lChoBmgJaA9DCOF/K9mxa0VAlIaUUpRoFUvXaBZHQJSy9rwe/6B1fZQoaAZoCWgPQwgdVyO7kjxxQJSGlFKUaBVNWAFoFkdAlLMv0mMOw3V9lChoBmgJaA9DCAahvI+j2ShAlIaUUpRoFUvgaBZHQJSzfSw4bS91fZQoaAZoCWgPQwhtOZfiagdzQJSGlFKUaBVNLwFoFkdAlLRh9G7SRnV9lChoBmgJaA9DCNi61Aj9kXFAlIaUUpRoFU1TAWgWR0CUtG4bjtG/dX2UKGgGaAloD0MIjPZ4IZ1Pb0CUhpRSlGgVTTkBaBZHQJS0xA7gbZR1fZQoaAZoCWgPQwjwp8ZLt3xwQJSGlFKUaBVNEQFoFkdAlLVgIIF/x3V9lChoBmgJaA9DCPuw3qiV8HJAlIaUUpRoFU08AWgWR0CUtgdyksSTdX2UKGgGaAloD0MIUMb4MHudcECUhpRSlGgVTRUBaBZHQJS3JDu0CzV1fZQoaAZoCWgPQwjp1mt60HxtQJSGlFKUaBVNKQFoFkdAlLckcS5AhXV9lChoBmgJaA9DCGl0B7FzXHJAlIaUUpRoFU0vAWgWR0CUt0Iyj59FdX2UKGgGaAloD0MIXtpwWJo5ckCUhpRSlGgVTZEBaBZHQJS33lEJBxB1fZQoaAZoCWgPQwgj2o6pOzNuQJSGlFKUaBVL/mgWR0CUudmKZUkwdX2UKGgGaAloD0MIuqKUECxicUCUhpRSlGgVTQQBaBZHQJS6u1twaR91fZQoaAZoCWgPQwj6muWykbxxQJSGlFKUaBVNTgFoFkdAlLsMaXKKYXV9lChoBmgJaA9DCNdP/1mzWnJAlIaUUpRoFU0FAWgWR0CUu1GdZq20dX2UKGgGaAloD0MIz6J3KiDmcECUhpRSlGgVTRABaBZHQJS7efzz3AV1fZQoaAZoCWgPQwjxZDczeotwQJSGlFKUaBVNAgFoFkdAlLt/vSc9XHV9lChoBmgJaA9DCGxc/65PYW5AlIaUUpRoFUv4aBZHQJS78IY3vQZ1fZQoaAZoCWgPQwj5hy09WntxQJSGlFKUaBVNLAFoFkdAlLwesT37DXV9lChoBmgJaA9DCFfMCG/PC3FAlIaUUpRoFU0jAWgWR0CUvYhnJ1aGdX2UKGgGaAloD0MIYASNmcQ2cUCUhpRSlGgVTQ4BaBZHQJS+ZCu2ZzB1fZQoaAZoCWgPQwjHSPYItXdxQJSGlFKUaBVNSAFoFkdAlL6MR+SbIHV9lChoBmgJaA9DCGEW2jnNlHBAlIaUUpRoFU0fAWgWR0CUwTWl/H5rdX2UKGgGaAloD0MIW7QAbaslb0CUhpRSlGgVTSQBaBZHQJTBfuWrwOR1fZQoaAZoCWgPQwgPRuwTwHdwQJSGlFKUaBVNLQFoFkdAlMNsXenAI3V9lChoBmgJaA9DCBRf7SjOQ0xAlIaUUpRoFUvOaBZHQJTEI+V1Oj91fZQoaAZoCWgPQwiuLTwvFbRuQJSGlFKUaBVNUQFoFkdAlMQy7GvOhXV9lChoBmgJaA9DCLe28LxU3G9AlIaUUpRoFUv+aBZHQJTGURPGhmJ1fZQoaAZoCWgPQwhxAWiU7gFxQJSGlFKUaBVNIwFoFkdAlMZwK8cuJ3V9lChoBmgJaA9DCNffEoD/2m9AlIaUUpRoFU3aAWgWR0CUyC+W4Vh1dX2UKGgGaAloD0MIhnE3iBZOcUCUhpRSlGgVTQABaBZHQJTIYN5MURF1fZQoaAZoCWgPQwhinSrfM0dxQJSGlFKUaBVNJQFoFkdAlMkUL+glGHV9lChoBmgJaA9DCD8AqU2cLXBAlIaUUpRoFU08AWgWR0CUyRzGPxQSdX2UKGgGaAloD0MIJJpAEYuQS0CUhpRSlGgVS9RoFkdAlMndN8E3bXV9lChoBmgJaA9DCFFsBU3LlXFAlIaUUpRoFU1DAWgWR0CUyogyuZCwdX2UKGgGaAloD0MIvajdr4L1b0CUhpRSlGgVTTsBaBZHQJTK5Wp6yB11fZQoaAZoCWgPQwjYZfhP9/lyQJSGlFKUaBVNBgFoFkdAlMr9u+AVf3V9lChoBmgJaA9DCPuytFOzTnFAlIaUUpRoFUv+aBZHQJTLtBfKISF1fZQoaAZoCWgPQwiPxTapaNpPQJSGlFKUaBVLyGgWR0CUy+cmShaldX2UKGgGaAloD0MIO+C6YkZIL0CUhpRSlGgVS+NoFkdAlMzORgZ0jnV9lChoBmgJaA9DCDqRYKoZeHBAlIaUUpRoFU0lAWgWR0CU0+xdIGyHdX2UKGgGaAloD0MItf8B1qr1cECUhpRSlGgVS/xoFkdAlNSzfvWpZXV9lChoBmgJaA9DCHJqZ5hav3FAlIaUUpRoFU0zAWgWR0CU1WOgQHzIdX2UKGgGaAloD0MIHjf8broLbECUhpRSlGgVTRsBaBZHQJTYNg5R0lt1fZQoaAZoCWgPQwjh7NYyWc5xQJSGlFKUaBVNFAFoFkdAlNjLHAAQx3V9lChoBmgJaA9DCNR+aydKtnFAlIaUUpRoFU1vAWgWR0CU2M4Kx9ofdX2UKGgGaAloD0MI7fFCOvwdcECUhpRSlGgVTRUBaBZHQJTZxhttQ9B1fZQoaAZoCWgPQwhvLCgMyiRxQJSGlFKUaBVNYgFoFkdAlNo1mz0HyHV9lChoBmgJaA9DCG10zk9xgXFAlIaUUpRoFU0iAWgWR0CU27u/DcdpdX2UKGgGaAloD0MIV3cstgmpcUCUhpRSlGgVTUkBaBZHQJTbublRxcV1fZQoaAZoCWgPQwhgIt46vzBwQJSGlFKUaBVNJgFoFkdAlNvY287IUHV9lChoBmgJaA9DCIqPT8gOUHJAlIaUUpRoFU0GAWgWR0CU3GKvmozfdX2UKGgGaAloD0MIMbH5uHYNcECUhpRSlGgVTWgBaBZHQJTcfJOnEVF1fZQoaAZoCWgPQwhaETXRZ9pvQJSGlFKUaBVNIwFoFkdAlNyuBg/kenVlLg=="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 256,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
layoric/ppo-LunarLander-v2-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:440af924df2def2d0c1f72084a43f18315b7a58a67223556d7eba7fc0533a815
3
+ size 87929
layoric/ppo-LunarLander-v2-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68029aeca4a17c5ca09c125f291b30dea6e6953b6569d2e863075712dffc6a68
3
+ size 43393
layoric/ppo-LunarLander-v2-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
layoric/ppo-LunarLander-v2-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (220 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 263.29539444752857, "std_reward": 10.07763552812848, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-08T02:57:12.744272"}