ppo-LunarLander-v2 / config.json
lbtutor's picture
commit 2
6df3ae4
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b8267c19120>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b8267c191b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b8267c19240>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b8267c192d0>", "_build": "<function ActorCriticPolicy._build at 0x7b8267c19360>", "forward": "<function ActorCriticPolicy.forward at 0x7b8267c193f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b8267c19480>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b8267c19510>", "_predict": "<function ActorCriticPolicy._predict at 0x7b8267c195a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b8267c19630>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b8267c196c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b8267c19750>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b8267bbde80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1701092916148279874, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1r5zz08bE/kwtDPhVgfb5yzRI97Y3uPAAAAAAAAAAAmq+2PHSqRz6Wk5c9ezNEvuDd8jzvKJe8AAAAAAAAAABzXHY+eClQP39dFT60Cgi/KaNgPnGbSbwAAAAAAAAAADqHC769IY8+g/86PvOcmr5U6508ueIlvQAAAAAAAAAAWifePdgHKj9du/I9M6nGvgVUxD3Lcb49AAAAAAAAAABm0Dy9JPF9PppnND7KQ3y+vsbHPf7XAD0AAAAAAAAAAGYwMz3olpM/akeqO0vhFL9190E9UQ2wuwAAAAAAAAAAzagKPPbgB7r17Ck4MyRkMuluNrskCUS3AACAPwAAgD+anVu99eSfP6wBlL4d+BG/koGrveZ+vL0AAAAAAAAAAJrFq7zhAJO6ZL6OuYJ1hLQcotc6V3ilOAAAgD8AAIA/mh9KvY8yULo6Yi+68jrrtW3ENruAc0o5AACAPwAAgD/GZjc+OkRKPx1AMj4h+w6/7pZDPs6pa70AAAAAAAAAAGa2Rz50IZu8qvasPJNov7rWOwa+Ls+XuwAAAAAAAIA/uhwjPmMCjj5a/3C+o8JBvp5WTLz6Ifg8AAAAAAAAAAANrWQ+dGbAPnlHgL5gPIe+vWBHOeCX7b0AAAAAAAAAADOpGD5+CZI/thXwPpw5Fr+G30w+fFW6PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJPydjG1hOMAWyUS/mMAXSUR0CU9VHRCx/vdX2UKGgGR0ByY8RTS9dvaAdNhAFoCEdAlPXKy0KJEnV9lChoBkdAcVGJFb3XZ2gHTQUBaAhHQJT2cxWT5ft1fZQoaAZHQHJb/+jua4NoB0v/aAhHQJT2lfzBhx51fZQoaAZHQHKiOBxxT85oB00YAWgIR0CU9uXpW3jNdX2UKGgGR0BzFqGJvYOEaAdNEAFoCEdAlPbivs7dSHV9lChoBkdAcvNzGxUvPGgHTRABaAhHQJT3YTg2qDN1fZQoaAZHQG2Skg4ffXRoB01IAWgIR0CU+AZJkGzKdX2UKGgGR0BmUhGjKxLTaAdN6ANoCEdAlPhjtCzC13V9lChoBkdAcTU3SKFZgWgHS/9oCEdAlPiIYJmdy3V9lChoBkdAccUOUdJaq2gHTS8BaAhHQJT5G2x6fJ51fZQoaAZHQHCMo0qH449oB0vmaAhHQJT6Fa6jFhp1fZQoaAZHQHBhet8uzyBoB00tAWgIR0CU+hu5z5oHdX2UKGgGR0BxZi704BFNaAdNDgFoCEdAlP0UZ3s5XHV9lChoBkdAb+FJ2+wkgWgHTQgBaAhHQJT9OSX+l0p1fZQoaAZHQHBriGSIP9VoB00GAWgIR0CU/aq+ajN7dX2UKGgGR0BwpxJQLux9aAdL7mgIR0CU/gVo6CDmdX2UKGgGR0BuuuyHEdeZaAdNAQFoCEdAlP4thd+ocnV9lChoBkdAcPOZCv5gxGgHTXABaAhHQJT+YMXrMTx1fZQoaAZHQHDmjL4etCBoB0v8aAhHQJT+czKs+3Z1fZQoaAZHQHCrHt8eCCloB00JAWgIR0CU/oqWC2+gdX2UKGgGR0Bx+gdyT6i1aAdNDgFoCEdAlP9dKh+OO3V9lChoBkdAcskyHVPN3WgHS/VoCEdAlP+siGFi8XV9lChoBkdAcWWl2eQMhGgHS/BoCEdAlQBN92HLzXV9lChoBkdAcD/QwsXizmgHTRkBaAhHQJUAVYnv2Gt1fZQoaAZHQHGb9nf2saNoB00KAWgIR0CVAG4DcM3IdX2UKGgGR0Bx9L4sVclgaAdNAAFoCEdAlQGexOclPnV9lChoBkdAWuENayKNymgHTegDaAhHQJUCiC2+fyx1fZQoaAZHQHB6U1EVnEloB00fAWgIR0CVAoe+Eh7mdX2UKGgGR0Bxw8DaGpMpaAdL2WgIR0CVA+ta6jFidX2UKGgGR0Bwxd42S+xoaAdL9GgIR0CVBGogFHJ+dX2UKGgGR0Bx4MLjPv8ZaAdNBgFoCEdAlQWJBsyi23V9lChoBkdAcbRVsUIsy2gHTTYBaAhHQJUGC3gDRtx1fZQoaAZHQHJ3IbKifxtoB004AWgIR0CVBj1XvH94dX2UKGgGR0Bwh+IqLCN0aAdNGQFoCEdAlQZeSW7e23V9lChoBkdAcKyMUypJgGgHS/doCEdAlQbFPva11HV9lChoBkdAcltVzp5eJGgHTSIBaAhHQJUGynzg/C91fZQoaAZHQHAocw+MZP5oB0vraAhHQJUHDgCOmzl1fZQoaAZHQHMVjfaYeDFoB00OAWgIR0CVBxg9/z8QdX2UKGgGR0By4/oFFDv3aAdL72gIR0CVByMyJsO5dX2UKGgGR0Bw/VIOH310aAdNUAFoCEdAlQfTrZ8KHHV9lChoBkdAcUzm+0w8GWgHTRoBaAhHQJUIP49HMEB1fZQoaAZHQGyjfUONHYpoB0vvaAhHQJUIVkxyn1p1fZQoaAZHQHO6K37UG3ZoB0vuaAhHQJUJAzpHI6t1fZQoaAZHQHIssy31BdFoB00CAWgIR0CVCXnssxwidX2UKGgGR0BvTPGff4yoaAdL/GgIR0CVHdu/1xsEdX2UKGgGR0BzYxgG8mKJaAdL72gIR0CVHrfCQ9zPdX2UKGgGR0ByvcR3/xUeaAdL3WgIR0CVH6rgOz6adX2UKGgGR0BxCPQQcxTLaAdL32gIR0CVIE/J/5LzdX2UKGgGR0BxhVFDv3JxaAdNEQFoCEdAlSGABcRlH3V9lChoBkdAcNe/fO2RaGgHTSsBaAhHQJUixnkDIR11fZQoaAZHQG2sTcZccENoB00cAWgIR0CVI491U2k0dX2UKGgGR0BwnmQRwqAjaAdNKQFoCEdAlSOdxAB1cXV9lChoBkdAbtWTyJ9Ao2gHS/ZoCEdAlSQVmOEM9nV9lChoBkdAb3y6J66as2gHTSkBaAhHQJUkH7DVH4J1fZQoaAZHQHGWseXAuZloB00LAWgIR0CVJD3wkPc0dX2UKGgGR0BxNS5wwTM8aAdNEAFoCEdAlSVY+B6KL3V9lChoBkdAcVpjEehf0GgHTRABaAhHQJUnih8IAwR1fZQoaAZHQG6KaJZW7vpoB03DAWgIR0CVKVDbJwKjdX2UKGgGR0BxQ4zj3mFKaAdNWAFoCEdAlSnxEnb7CXV9lChoBkdAceD0+TvAoGgHTRkBaAhHQJUqv9Hc1wZ1fZQoaAZHQHAm/yPMjeNoB00HAWgIR0CVK+SAYpDvdX2UKGgGR0BwIPKdQO4HaAdL+mgIR0CVK/Wv8qFzdX2UKGgGR0BzPoTzundgaAdNJQFoCEdAlSwuLrHEM3V9lChoBkdAb1S/wiJO32gHS+9oCEdAlSxTbzshPnV9lChoBkdAcSnJcPe54GgHTXkCaAhHQJUtqW9lEql1fZQoaAZHQHH1uv+wTuhoB0v0aAhHQJUt47V8Ti91fZQoaAZHQHETDIFNcnpoB00CAWgIR0CVLmhg3LmqdX2UKGgGR0BtbS5VfeDWaAdNawFoCEdAlTDkCaJAMXV9lChoBkdAcrSqZML4OGgHTV4BaAhHQJUxAgJTl1d1fZQoaAZHQG7Nhqj8DSxoB01ZAWgIR0CVMSxFy7wsdX2UKGgGR0Bw2qjKxLTQaAdNbgFoCEdAlTF5gw482nV9lChoBkdAcREvg3tKI2gHS/9oCEdAlTKNPLxI8XV9lChoBkdAbPB8Aq/dqWgHS/VoCEdAlTP2UbDMvHV9lChoBkdAcSS5xiobXGgHTRoBaAhHQJU0Ha37UG51fZQoaAZHQHFvnG0eEIxoB01qAWgIR0CVNGmh/RVqdX2UKGgGR0Bymu2jO9nLaAdNHQFoCEdAlTUF2aDwpnV9lChoBkdAcGmXjlxOtWgHTVoBaAhHQJU1HkJa7mN1fZQoaAZHQHJSzcZccENoB023AWgIR0CVNTkGiYb9dX2UKGgGR0Bw4la+vhZRaAdNOwFoCEdAlTY9lEqlQHV9lChoBkdAchBDvE0iyWgHTVkBaAhHQJU2xC8e0Xx1fZQoaAZHQHBoIczZYgdoB00jAWgIR0CVNxDxb0OFdX2UKGgGR0BxeNtm+TNdaAdNMwFoCEdAlTdK+nIhhnV9lChoBkdAcbu4Glhw2mgHS/BoCEdAlThd2C/XXnV9lChoBkdAcVguYhMaj2gHTQYBaAhHQJU42Y0EX+F1fZQoaAZHQHIjf1pTMq1oB01cAWgIR0CVOQr9ETg3dX2UKGgGR0BxKdNtZV4paAdL+2gIR0CVOdm6oVEedX2UKGgGR0BwYzY/Vy3kaAdNKwFoCEdAlTpJFLFn7HV9lChoBkdAcxeD3/Pw/mgHTTgBaAhHQJU9IolUp/h1fZQoaAZHQG6TzEBKcutoB00WAWgIR0CVPVC5EtuldX2UKGgGR0BxGSONo8ISaAdNOwFoCEdAlT1lQMx46nV9lChoBkdAcIR3yZrpJWgHTZ4BaAhHQJU9bEGZ/kN1fZQoaAZHQHLejvVmSQpoB00pAWgIR0CVPa/jKgZkdX2UKGgGR0BuZic3EQ5FaAdNDAFoCEdAlT9dOh0yQHV9lChoBkdAcdTHtnf2smgHTXcBaAhHQJU/l90A93d1fZQoaAZHQHKFMkD6nBNoB00tAWgIR0CVP9CHRCyAdX2UKGgGR0Bt3Ti++M6zaAdNQgFoCEdAlT/k9dNWVHV9lChoBkdAc56xLCemN2gHS9RoCEdAlUCRREWqLnV9lChoBkdAbqh43WFvh2gHTQABaAhHQJVA+7lJYkp1fZQoaAZHQHA50iliz9loB00cAWgIR0CVQRnV5KODdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}