ldos commited on
Commit
3db1951
·
1 Parent(s): 060d0f1

End of training

Browse files
Files changed (3) hide show
  1. README.md +89 -0
  2. generation_config.json +13 -0
  3. pytorch_model.bin +1 -1
README.md ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: facebook/bart-large-xsum
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - rouge
8
+ model-index:
9
+ - name: text_shortening_model_v43
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # text_shortening_model_v43
17
+
18
+ This model is a fine-tuned version of [facebook/bart-large-xsum](https://huggingface.co/facebook/bart-large-xsum) on the None dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 2.8362
21
+ - Rouge1: 0.4977
22
+ - Rouge2: 0.2645
23
+ - Rougel: 0.4429
24
+ - Rougelsum: 0.4422
25
+ - Bert precision: 0.8744
26
+ - Bert recall: 0.8788
27
+ - Average word count: 8.5344
28
+ - Max word count: 18
29
+ - Min word count: 4
30
+ - Average token count: 15.9365
31
+ - % shortened texts with length > 12: 8.4656
32
+
33
+ ## Model description
34
+
35
+ More information needed
36
+
37
+ ## Intended uses & limitations
38
+
39
+ More information needed
40
+
41
+ ## Training and evaluation data
42
+
43
+ More information needed
44
+
45
+ ## Training procedure
46
+
47
+ ### Training hyperparameters
48
+
49
+ The following hyperparameters were used during training:
50
+ - learning_rate: 0.0001
51
+ - train_batch_size: 16
52
+ - eval_batch_size: 16
53
+ - seed: 42
54
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
55
+ - lr_scheduler_type: linear
56
+ - num_epochs: 20
57
+
58
+ ### Training results
59
+
60
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bert precision | Bert recall | Average word count | Max word count | Min word count | Average token count | % shortened texts with length > 12 |
61
+ |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:--------------:|:-----------:|:------------------:|:--------------:|:--------------:|:-------------------:|:----------------------------------:|
62
+ | 0.5902 | 1.0 | 83 | 1.5909 | 0.4855 | 0.2475 | 0.4202 | 0.4201 | 0.8682 | 0.8736 | 8.5661 | 15 | 4 | 16.0635 | 3.9683 |
63
+ | 0.383 | 2.0 | 166 | 1.4957 | 0.516 | 0.2977 | 0.4569 | 0.4567 | 0.8751 | 0.881 | 8.8016 | 17 | 4 | 16.3519 | 8.4656 |
64
+ | 0.3301 | 3.0 | 249 | 1.6999 | 0.5073 | 0.2678 | 0.4401 | 0.4402 | 0.8662 | 0.8856 | 10.4233 | 22 | 5 | 17.9286 | 24.6032 |
65
+ | 0.3264 | 4.0 | 332 | 1.5703 | 0.5121 | 0.2818 | 0.4525 | 0.4527 | 0.8716 | 0.8844 | 9.1561 | 19 | 4 | 15.8704 | 12.4339 |
66
+ | 0.3901 | 5.0 | 415 | 1.6559 | 0.4875 | 0.2629 | 0.4362 | 0.4365 | 0.8661 | 0.8772 | 9.1111 | 16 | 5 | 15.2275 | 5.0265 |
67
+ | 0.2982 | 6.0 | 498 | 1.8927 | 0.499 | 0.267 | 0.4479 | 0.4476 | 0.8724 | 0.8824 | 9.0185 | 17 | 5 | 16.6376 | 10.0529 |
68
+ | 0.2864 | 7.0 | 581 | 1.8092 | 0.4961 | 0.2673 | 0.4377 | 0.4372 | 0.8705 | 0.8789 | 8.6614 | 17 | 5 | 14.4656 | 5.291 |
69
+ | 0.2059 | 8.0 | 664 | 2.0127 | 0.4921 | 0.2652 | 0.4408 | 0.4408 | 0.8729 | 0.8778 | 8.5899 | 16 | 4 | 15.2725 | 6.8783 |
70
+ | 0.1655 | 9.0 | 747 | 2.1199 | 0.4886 | 0.2697 | 0.4392 | 0.4391 | 0.8713 | 0.8777 | 8.7011 | 16 | 4 | 16.0132 | 7.4074 |
71
+ | 0.2361 | 10.0 | 830 | 2.0002 | 0.4814 | 0.2536 | 0.427 | 0.4257 | 0.8666 | 0.8769 | 8.9921 | 19 | 4 | 15.037 | 6.0847 |
72
+ | 0.2329 | 11.0 | 913 | 2.3033 | 0.4961 | 0.2725 | 0.4441 | 0.4426 | 0.8722 | 0.8775 | 8.6958 | 17 | 5 | 16.2619 | 10.582 |
73
+ | 0.1743 | 12.0 | 996 | 2.4562 | 0.499 | 0.275 | 0.4474 | 0.4477 | 0.8745 | 0.878 | 8.4127 | 17 | 4 | 15.873 | 9.2593 |
74
+ | 0.1716 | 13.0 | 1079 | 2.4160 | 0.4811 | 0.2528 | 0.4299 | 0.4297 | 0.8708 | 0.8751 | 8.4735 | 16 | 4 | 16.0873 | 6.0847 |
75
+ | 0.1394 | 14.0 | 1162 | 2.3996 | 0.4783 | 0.2445 | 0.4214 | 0.4205 | 0.8686 | 0.8735 | 8.6587 | 19 | 5 | 15.6376 | 8.9947 |
76
+ | 0.0769 | 15.0 | 1245 | 2.8364 | 0.4902 | 0.258 | 0.4369 | 0.4362 | 0.8697 | 0.8767 | 8.7222 | 18 | 4 | 16.4286 | 9.5238 |
77
+ | 0.1039 | 16.0 | 1328 | 2.5845 | 0.5009 | 0.267 | 0.4473 | 0.4464 | 0.8757 | 0.88 | 8.5291 | 18 | 4 | 16.0688 | 8.7302 |
78
+ | 0.098 | 17.0 | 1411 | 2.7602 | 0.491 | 0.2628 | 0.4379 | 0.4377 | 0.8711 | 0.8779 | 8.6587 | 18 | 4 | 16.2249 | 9.7884 |
79
+ | 0.0879 | 18.0 | 1494 | 2.6813 | 0.4987 | 0.2679 | 0.4468 | 0.4471 | 0.8761 | 0.8793 | 8.3862 | 18 | 4 | 15.4735 | 7.9365 |
80
+ | 0.0945 | 19.0 | 1577 | 2.8612 | 0.5034 | 0.2703 | 0.4489 | 0.449 | 0.8762 | 0.8806 | 8.5582 | 19 | 4 | 16.0873 | 8.4656 |
81
+ | 0.0702 | 20.0 | 1660 | 2.8362 | 0.4977 | 0.2645 | 0.4429 | 0.4422 | 0.8744 | 0.8788 | 8.5344 | 18 | 4 | 15.9365 | 8.4656 |
82
+
83
+
84
+ ### Framework versions
85
+
86
+ - Transformers 4.33.1
87
+ - Pytorch 2.0.1+cu118
88
+ - Datasets 2.14.5
89
+ - Tokenizers 0.13.3
generation_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 0,
3
+ "decoder_start_token_id": 2,
4
+ "early_stopping": true,
5
+ "eos_token_id": 2,
6
+ "forced_eos_token_id": 2,
7
+ "max_length": 62,
8
+ "min_length": 11,
9
+ "no_repeat_ngram_size": 3,
10
+ "num_beams": 6,
11
+ "pad_token_id": 1,
12
+ "transformers_version": "4.33.1"
13
+ }
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:67ac0e95ed33f5e1a774fa1c98d238fcc995b1d09b1dd60992cd21508422820e
3
  size 1625537293
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36267104e298f92081427a4f4279a3e3fd49da420c890a1f1f4e7c585ead3995
3
  size 1625537293