File size: 1,747 Bytes
3a58e69 ea1bcbd 3a58e69 ea1bcbd 3a58e69 ea1bcbd 3a58e69 ea1bcbd 3a58e69 ea1bcbd 3a58e69 ea1bcbd 3a58e69 ea1bcbd 3a58e69 ea1bcbd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
---
license: other
license_name: tongyi-qianwen
license_link: https://huggingface.co/Qwen/Qwen2-72B-Instruct/blob/main/LICENSE
pipeline_tag: text-generation
language:
- en
- zh
library_name: transformers
tags:
- mergekit
- llama
---
# IridiumLlama-72B-v0.1
## Model Description
FeatherLlama is a 72B parameter language model created through a merge of Qwen2-72B-Instruct, calme2.1-72b, and magnum-72b-v1 using `model_stock`.
This is converted from [leafspark/Iridium-72B-v0.1](https://huggingface.co/leafspark/Iridium-72B-v0.1)
## Features
- 72 billion parameters
- Sharded in 31 files (unlike Iridium, which has 963 shards due to the merging process)
- Combines Magnum prose with Calam smarts
- Llamaified for easy use
## Technical Specifications
### Architecture
- `LlamaForCasualLM`
- Models: Qwen2-72B-Instruct (base), calme2.1-72b, magnum-72b-v1
- Merged layers: 80
- Total tensors: 1,043
- Context length: 32k
### Tensor Distribution
- Attention layers: 560 files
- MLP layers: 240 files
- Layer norms: 160 files
- Miscellaneous (embeddings, output): 83 files
### Merging
Custom script utilizing safetensors library.
## Usage
### Loading the Model
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model = AutoModelForCausalLM.from_pretrained("leafspark/IridiumLlama-72B-v0.1",
device_map="auto",
torch_dtype=torch.float16)
tokenizer = AutoTokenizer.from_pretrained("leafspark/IridiumLlama-72B-v0.1")
```
### GGUFs
Find them here: [leafspark/IridiumLlama-72B-v0.1-GGUF](https://huggingface.co/leafspark/IridiumLlama-72B-v0.1-GGUF)
### Hardware Requirements
- At least ~150GB of free space
- ~150GB VRAM |