File size: 14,179 Bytes
56811f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
# Copyright Lightning AI. Licensed under the Apache License 2.0, see LICENSE file.
# Derivated from https://github.com/Lightning-AI/litgpt/blob/main/litgpt/model.py

import math
from typing import Optional, Tuple

import torch
import torch.nn as nn


from dataclasses import dataclass


from pathlib import Path
from typing import Optional, Union
from sentencepiece import SentencePieceProcessor
import torch


@dataclass
class ItaliaConfig:
    block_size: int = 4096
    vocab_size: int = 50_000
    padding_multiple: int = 512
    padded_vocab_size: int = 50176
    head_size: int = 160
    n_layer: int = 34
    n_head: int = 32
    n_embd: int = 5120
    rotary_percentage: float = 0.4
    parallel_residual: bool = True
    bias: bool = True
    lm_head_bias: bool = True
    n_query_groups: int = 32
    shared_attention_norm: bool = True
    norm_eps: float = 1e-5
    intermediate_size: int = 12800
    rope_condense_ratio: int = 1
    rope_n_elem: int = 64
    rope_base: int = 10000


class Tokenizer:
    def __init__(self, checkpoint_dir: Union[Path, str]) -> None:
        checkpoint_dir = Path(checkpoint_dir)
        if not checkpoint_dir.exists():
            raise NotADirectoryError(
                f"The checkpoint directory does not exist: {str(checkpoint_dir)}"
            )

        self.use_bos = True
        self.bos_id = None
        self.eos_id = None

        if (vocabulary_path := checkpoint_dir / "tokenizer.model").is_file():
            self.processor = SentencePieceProcessor(model_file=str(vocabulary_path))
            self.backend = "sentencepiece"
            self.bos_id = self.processor.bos_id()
            self.eos_id = self.processor.eos_id()
        else:
            raise FileNotFoundError(
                f"tokenizer.model not found in {str(checkpoint_dir)}"
            )

    @property
    def vocab_size(self) -> int:
        return self.processor.vocab_size()

    def token_to_id(self, token: str) -> int:
        return self.processor.piece_to_id(token)

    def encode(
        self,
        string: str,
        device: Optional[torch.device] = None,
        max_length: int = -1,
    ) -> torch.Tensor:

        tokens = self.processor.encode(string)
        tokens = [self.bos_id] + tokens

        if max_length > 0:
            tokens = tokens[:max_length]
        return torch.tensor(tokens, dtype=torch.int, device=device)

    def decode(self, tensor: torch.Tensor) -> str:
        tokens = [tensor.item()] if tensor.ndim == 0 else tensor.tolist()
        return self.processor.decode(tokens).strip()


class Italia(nn.Module):
    def __init__(self, config: ItaliaConfig) -> None:
        super().__init__()
        assert config.padded_vocab_size is not None
        self.config = config

        self.lm_head = nn.Linear(
            config.n_embd, config.padded_vocab_size, bias=config.lm_head_bias
        )
        self.transformer = nn.ModuleDict(
            dict(
                wte=nn.Embedding(config.padded_vocab_size, config.n_embd),
                h=nn.ModuleList(Block(config) for _ in range(config.n_layer)),
                ln_f=nn.LayerNorm(config.n_embd, eps=config.norm_eps),
            )
        )
        self.max_seq_length = self.config.block_size
        self.mask_cache: Optional[torch.Tensor] = None

    @property
    def max_seq_length(self) -> int:
        return self._max_seq_length

    @max_seq_length.setter
    def max_seq_length(self, value: int) -> None:
        """
        When doing inference, the sequences used might be shorter than the model's context length.
        This allows setting a smaller number to avoid allocating unused memory
        """
        if value > self.config.block_size:
            raise ValueError(
                f"Cannot attend to {value}, block size is only {self.config.block_size}"
            )
        self._max_seq_length = value
        if not hasattr(self, "cos"):
            cos, sin = self.rope_cache()
            self.register_buffer("cos", cos, persistent=False)
            self.register_buffer("sin", sin, persistent=False)

        elif value != self.cos.size(0):
            self.cos, self.sin = self.rope_cache(device=self.cos.device)

    def reset_parameters(self) -> None:
        self.cos, self.sin = self.rope_cache()

    def forward(
        self, idx: torch.Tensor, input_pos: Optional[torch.Tensor] = None
    ) -> torch.Tensor:
        T = idx.size(1)
        if self.max_seq_length < T:
            raise ValueError(
                f"Cannot forward sequence of length {T}, max seq length is only {self.max_seq_length}."
            )

        if input_pos is not None:  # use the kv cache
            cos = self.cos.index_select(0, input_pos)
            sin = self.sin.index_select(0, input_pos)
            if self.mask_cache is None:
                raise TypeError("You need to call `gpt.set_kv_cache()`")
            mask = self.mask_cache.index_select(2, input_pos)
        else:
            cos = self.cos[:T]
            sin = self.sin[:T]
            mask = None

        x = self.transformer.wte(idx)  # token embeddings of shape (b, t, n_embd)
        for block in self.transformer.h:
            x = block(x, cos, sin, mask, input_pos)
        x = self.transformer.ln_f(x)
        return self.lm_head(x)  # (b, t, vocab_size)

    def rope_cache(
        self, device: Optional[torch.device] = None
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        return build_rope_cache(
            seq_len=self.max_seq_length,
            n_elem=self.config.rope_n_elem,
            device=device,
            condense_ratio=self.config.rope_condense_ratio,
            base=self.config.rope_base,
        )

    def set_kv_cache(
        self,
        batch_size: int,
        rope_cache_length: Optional[int] = None,
        device: Optional[torch.device] = None,
        dtype: Optional[torch.dtype] = None,
    ) -> None:
        if rope_cache_length is None:
            rope_cache_length = self.cos.size(-1)
        max_seq_length = self.max_seq_length

        for block in self.transformer.h:
            block.attn.kv_cache = block.attn.build_kv_cache(
                batch_size, max_seq_length, rope_cache_length, device, dtype
            )

        if self.mask_cache is None or self.mask_cache.size(3) != max_seq_length:
            self.mask_cache = build_mask_cache(max_seq_length, device)

    def clear_kv_cache(self) -> None:
        self.mask_cache = None
        for block in self.transformer.h:
            block.attn.kv_cache = None


class Block(nn.Module):
    def __init__(self, config: ItaliaConfig) -> None:
        super().__init__()
        self.norm_1 = nn.LayerNorm(config.n_embd, eps=config.norm_eps)
        self.attn = CausalSelfAttention(config)
        self.mlp = MLP(config)
        self.config = config

    def forward(
        self,
        x: torch.Tensor,
        cos: torch.Tensor,
        sin: torch.Tensor,
        mask: Optional[torch.Tensor] = None,
        input_pos: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        n_1 = self.norm_1(x)
        h = self.attn(n_1, cos, sin, mask, input_pos)
        n_2 = n_1 if self.config.shared_attention_norm else self.norm_2(x)
        x = self.mlp(n_2) + h + x
        return x


class CausalSelfAttention(nn.Module):
    def __init__(self, config: ItaliaConfig) -> None:
        super().__init__()
        shape = (config.n_head + 2 * config.n_query_groups) * config.head_size
        linear_module = nn.Linear
        self.attn = linear_module(config.n_embd, shape, bias=config.bias)
        self.proj = linear_module(config.n_embd, config.n_embd, bias=config.bias)
        self.kv_cache: Optional[KVCache] = None

        self.config = config

    def forward(
        self,
        x: torch.Tensor,
        cos: torch.Tensor,
        sin: torch.Tensor,
        mask: Optional[torch.Tensor] = None,
        input_pos: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        B, T, _ = (
            x.size()
        )  # batch size, sequence length, embedding dimensionality (n_embd)

        qkv = self.attn(x)

        # assemble into a number of query groups to support MHA, MQA and GQA together (see `config.n_query_groups`)
        q_per_kv = self.config.n_head // self.config.n_query_groups
        total_qkv = q_per_kv + 2  # each group has 1+ queries, 1 key, and 1 value
        qkv = qkv.view(
            B, T, self.config.n_query_groups, total_qkv, self.config.head_size
        )
        qkv = qkv.permute(0, 2, 3, 1, 4)  # (B, n_query_groups, total_qkv, T, hs)

        # split batched computation into three
        q, k, v = qkv.split((q_per_kv, 1, 1), dim=2)

        q = q.reshape(B, -1, T, self.config.head_size)  # (B, nh_q, T, hs)
        k = k.reshape(B, -1, T, self.config.head_size)  # (B, nh_k, T, hs)
        v = v.reshape(B, -1, T, self.config.head_size)  # (B, nh_v, T, hs)

        q_roped = apply_rope(q[..., : self.config.rope_n_elem], cos, sin)
        k_roped = apply_rope(k[..., : self.config.rope_n_elem], cos, sin)
        q = torch.cat((q_roped, q[..., self.config.rope_n_elem :]), dim=-1)
        k = torch.cat((k_roped, k[..., self.config.rope_n_elem :]), dim=-1)

        if input_pos is not None:
            if not isinstance(self.kv_cache, KVCache):
                raise TypeError("You need to call `gpt.set_kv_cache()`")
            k, v = self.kv_cache(input_pos, k, v)

        y = self.scaled_dot_product_attention(q, k, v, mask)

        y = y.reshape(
            B, T, self.config.n_embd
        )  # re-assemble all head outputs side by side

        # output projection
        return self.proj(y)

    def scaled_dot_product_attention(
        self,
        q: torch.Tensor,
        k: torch.Tensor,
        v: torch.Tensor,
        mask: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        scale = 1.0 / math.sqrt(self.config.head_size)
        y = torch.nn.functional.scaled_dot_product_attention(
            q, k, v, attn_mask=mask, dropout_p=0.0, scale=scale, is_causal=mask is None
        )
        return y.transpose(1, 2)

    def build_kv_cache(
        self,
        batch_size: int,
        max_seq_length: int,
        rope_cache_length: Optional[int] = None,
        device: Optional[torch.device] = None,
        dtype: Optional[torch.dtype] = None,
    ) -> "KVCache":
        heads = 1 if self.config.n_query_groups == 1 else self.config.n_head
        v_shape = (batch_size, heads, max_seq_length, self.config.head_size)
        if rope_cache_length is None:
            if self.config.rotary_percentage != 1.0:
                raise TypeError(
                    "Please pass the `rope_cache_length=gpt.cos.size(-1)` value"
                )
            k_shape = v_shape
        else:
            k_shape = (
                batch_size,
                heads,
                max_seq_length,
                rope_cache_length + self.config.head_size - self.config.rope_n_elem,
            )
        return KVCache(k_shape, v_shape, device=device, dtype=dtype)


class MLP(nn.Module):
    def __init__(self, config: ItaliaConfig) -> None:
        super().__init__()
        self.fc = nn.Linear(config.n_embd, config.intermediate_size, bias=config.bias)
        self.proj = nn.Linear(config.intermediate_size, config.n_embd, bias=config.bias)

        self.config = config

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.fc(x)
        x = torch.nn.functional.gelu(x, approximate="tanh")
        return self.proj(x)


def build_rope_cache(
    seq_len: int,
    n_elem: int,
    device: Optional[torch.device] = None,
    base: int = 10000,
    condense_ratio: int = 1,
) -> Tuple[torch.Tensor, torch.Tensor]:
    """Enhanced Transformer with Rotary Position Embedding.

    Derived from: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/
    transformers/rope/__init__.py. MIT License:
    https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/license.
    """
    # $\Theta = {\theta_i = 10000^{\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$
    theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, device=device).float() / n_elem))

    # Create position indexes `[0, 1, ..., seq_len - 1]`
    seq_idx = torch.arange(seq_len, device=device) / condense_ratio

    # Calculate the product of position index and $\theta_i$
    idx_theta = torch.outer(seq_idx, theta).repeat(1, 2)

    return torch.cos(idx_theta), torch.sin(idx_theta)


def apply_rope(x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor) -> torch.Tensor:
    head_size = x.size(-1)
    x1 = x[..., : head_size // 2]  # (B, nh, T, hs/2)
    x2 = x[..., head_size // 2 :]  # (B, nh, T, hs/2)
    rotated = torch.cat((-x2, x1), dim=-1)  # (B, nh, T, hs)
    roped = (x * cos) + (rotated * sin)
    return roped.to(dtype=x.dtype)


class KVCache(nn.Module):
    def __init__(
        self,
        k_shape: Tuple[int, int, int, int],
        v_shape: Tuple[int, int, int, int],
        device: Optional[torch.device] = None,
        dtype: Optional[torch.dtype] = None,
    ) -> None:
        super().__init__()
        self.register_buffer(
            "k", torch.zeros(k_shape, device=device, dtype=dtype), persistent=False
        )
        self.register_buffer(
            "v", torch.zeros(v_shape, device=device, dtype=dtype), persistent=False
        )

    def forward(
        self, input_pos: torch.Tensor, k: torch.Tensor, v: torch.Tensor
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        # move the buffer to the activation dtype for when AMP is used
        self.k = self.k.to(k.dtype)
        self.v = self.v.to(v.dtype)
        # update the cache
        k = self.k.index_copy_(2, input_pos, k)
        v = self.v.index_copy_(2, input_pos, v)
        return k, v

    def reset_parameters(self) -> None:
        torch.nn.init.zeros_(self.k)
        torch.nn.init.zeros_(self.v)


def build_mask_cache(
    max_seq_length: int, device: Optional[torch.device] = None
) -> torch.Tensor:
    ones = torch.ones((max_seq_length, max_seq_length), device=device, dtype=torch.bool)
    return torch.tril(ones).unsqueeze(0).unsqueeze(0)