File size: 3,434 Bytes
c906102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48c3ac3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c906102
 
 
48c3ac3
 
c906102
 
 
1e19b6b
c906102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
---
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
- generated_from_trainer
model-index:
- name: bin
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bin

This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1729
- Mse: 0.1729

## Model description

This is a modernbert model with a regression head designed to predict the Content score of a summary.

The input should be the summary + [sep] + source.

```
from transformers import AutoTokenizer, AutoModelForSequenceClassification

model = AutoModelForSequenceClassification.from_pretrained("wesleymorris/modernbert-content", num_labels=1)
tokenizer = AutoTokenizer.from_pretrained("wesleymorris/modernbert-content")

def get_score(summary: str,
              source: str):
    text = summary+tokenizer.sep_token+source
    inputs = tokenizer(text, return_tensors = 'pt')
    return float(model(**inputs).logits[0])
```


### Corpus
It was trained on a corpus of 4,233 summaries of 101 sources compiled by Botarleanu et al. (2022). 
The summaries were graded by expert raters on 6 criteria: Details, Main Point, Cohesion, Paraphrasing, Objective Language, and Language Beyond the Text. 
A principle component analyis was used to reduce the dimensionality of the outcome variables to two.

Content includes Details, Main Point, Paraphrasing and Cohesion

### Contact
This model was developed by LEAR Lab at Vanderbilt University. For questions or comments about this model, please contact [email protected].

## Intended uses & limitations

This model can be used to predict human scores of content for a summary.
The scores are normalized such that 0 is the mean of the training data and 1 is one standard deviation from the mean.

## Training and evaluation data

Before the finetuning step, the model was pretrained on a very large synthetic dataset.

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Mse    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log        | 1.0   | 411  | 0.3181          | 0.3181 |
| 0.5319        | 2.0   | 822  | 0.2884          | 0.2884 |
| 0.2343        | 3.0   | 1233 | 0.2395          | 0.2395 |
| 0.1366        | 4.0   | 1644 | 0.1885          | 0.1885 |
| 0.0688        | 5.0   | 2055 | 0.1896          | 0.1896 |
| 0.0688        | 6.0   | 2466 | 0.1854          | 0.1854 |
| 0.0417        | 7.0   | 2877 | 0.1738          | 0.1738 |
| 0.0201        | 8.0   | 3288 | 0.1759          | 0.1759 |
| 0.0086        | 9.0   | 3699 | 0.1800          | 0.1800 |
| 0.0037        | 10.0  | 4110 | 0.1729          | 0.1729 |


### Framework versions

- Transformers 4.48.3
- Pytorch 2.6.0+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0