File size: 1,339 Bytes
94c3490 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
import argparse
from numpy import load, ndarray
parser = argparse.ArgumentParser()
parser.add_argument("-f", "--filepath", required=True, help="Specify the file path to the agent.", type=str)
args = parser.parse_args()
filepath = args.filepath
npdata = load(filepath)
print(type(npdata['results']))
evaluations = ndarray.tolist(npdata['results'])
print(type(evaluations))
print(len(evaluations))
# print(evaluations)
sorted_evals = []
for eval in evaluations:
sorted_evals.append(sorted(eval))
# Now I have a sorted list.
# Now just pop the first and last elements of each eval
for eval in sorted_evals:
eval.pop(0)
eval.pop()
print()
# print(sorted_evals)
# Now that I have my sorted evaluations, I can calculate the mean episode reward for each eval
mean_eval_rewards = []
for eval in sorted_evals:
mean_eval_rewards.append(sum(eval) / len(eval))
# Now I should have a list with the mean evaluation reward with the highest and lowest score tossed out
print(mean_eval_rewards)
print("num evals: " + str(len(mean_eval_rewards)))
# I'm dealing with a 2D array. Each element contains an array of ten data points
# The number of elements is going to vary for each training run
# The number of evaluation episodes will be constant, 10.
# I need to convert to a regular list first
# I could iterate over each element |