import gymnasium as gym | |
from stable_baselines3 import DQN | |
# from stable_baselines3.common.monitor import Monitor | |
from stable_baselines3.common.vec_env import VecVideoRecorder, DummyVecEnv, VecEnv | |
model_name = "agents/dqn_v2-8/best_model" # path to model, should be an argument | |
env_id = "ALE/Pacman-v5" | |
video_folder = "videos/" | |
video_length = 10000 #steps by hard coding this, I can almost ensure only one episode is recorded... | |
vec_env = DummyVecEnv([lambda: gym.make(env_id, render_mode="rgb_array")]) | |
model = DQN.load(model_name) | |
# output: <stable_baselines3.common.vec_env.dummy_vec_env.DummyVecEnv object at 0x0000029974DC6550> | |
# vec_env = gym.make(env_id, render_mode="rgb_array") | |
# output <OrderEnforcing<PassiveEnvChecker<AtariEnv<ALE/Pacman-v5>>>> | |
# vec_env = Monitor(gym.make(env_id, render_mode="rgb_array")) | |
print("\n\n\n") | |
print(vec_env) | |
print("\n\n\n") | |
obs = vec_env.reset() | |
# Record the video starting at the first step | |
vec_env = VecVideoRecorder(vec_env, | |
video_folder, | |
record_video_trigger=lambda x: x == 0, | |
video_length=video_length, | |
name_prefix="one-episode_v2-8_bestmodel" | |
) | |
# Once I make the environment, now I need to walk through it...??? | |
# I want to act according to the policy that has been trained | |
vec_env.reset() | |
print(vec_env) | |
# for _ in range(video_length + 1): | |
# action, states = model.predict(obs) | |
# obs, _, _, _ = vec_env.step(action) | |
# Instead of using the specified steps in a for loop | |
# use a while loop to check if the episode has terminated | |
# Stop recording when the episode ends | |
end = True | |
while end == True: | |
action, states = model.predict(obs) | |
obs, _, done, _ = vec_env.step(action) | |
if done == True: | |
print("exiting loop") | |
end = False | |
# # Save the video | |
vec_env.close() |