ALE-Pacman-v5 / agents /dqn_v2 /watch_agent.py
ledmands
Added the a2c notebook and the latest dqn run notebook
e3b737c
raw
history blame
1.89 kB
from stable_baselines3 import DQN
from stable_baselines3.common.evaluation import evaluate_policy
from stable_baselines3.common.monitor import Monitor
import gymnasium as gym
import argparse
MODEL_NAME = "ALE-Pacman-v5"
loaded_model = DQN.load(MODEL_NAME)
# This script should have some options
# 1. Turn off the stochasticity as determined by the ALEv5
# Even if deterministic is set to true in evaluate policy, the environment will ignore this 25% of the time
# To compensate for this, we can set the repeat action probability to 0
# DONE
# 2. Print out the evaluation metrics or save to file
# 3. Render in the ALE or not
# DONE
# 4. Print the keyword args for the environment? I think this might be helpful...
# IN PROGRESS
# 5.
parser = argparse.ArgumentParser()
parser.add_argument("-r", "--repeat_action_probability", help="repeat action probability", type=float, default=0.25)
parser.add_argument("-f", "--frameskip", help="frameskip", type=int, default=4)
parser.add_argument("-o", "--observe", help="observe agent", action="store_const", const=True)
parser.add_argument("-p", "--print", help="print environment information", action="store_const", const=True)
args = parser.parse_args()
# Toggle the render mode based on the -o flag
if args.observe == True:
mode = "human"
else:
mode = "rgb_array"
# Retrieve the environment
eval_env = Monitor(gym.make("ALE/Pacman-v5",
render_mode=mode,
repeat_action_probability=args.repeat_action_probability,
frameskip=args.frameskip,))
if args.print == True:
env_info = str(eval_env.spec).split(", ")
for item in env_info:
print(item)
# Evaluate the policy
mean_rwd, std_rwd = evaluate_policy(loaded_model.policy, eval_env, n_eval_episodes=1)
print("mean rwd: ", mean_rwd)
print("std rwd: ", std_rwd)