|
{ |
|
"policy_class": { |
|
":type:": "<class 'abc.ABCMeta'>", |
|
"__module__": "stable_baselines3.dqn.policies", |
|
"__doc__": "\n Policy class for DQN when using images as input.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", |
|
"__init__": "<function CnnPolicy.__init__ at 0x7d6123a05cf0>", |
|
"__abstractmethods__": "frozenset()", |
|
"_abc_impl": "<_abc._abc_data object at 0x7d6123a18580>" |
|
}, |
|
"verbose": 1, |
|
"policy_kwargs": {}, |
|
"num_timesteps": 10000000, |
|
"_total_timesteps": 10000000, |
|
"_num_timesteps_at_start": 9000000, |
|
"seed": null, |
|
"action_noise": null, |
|
"start_time": 1715963247524276127, |
|
"learning_rate": 5e-05, |
|
"tensorboard_log": "./", |
|
"_last_obs": { |
|
":type:": "<class 'numpy.ndarray'>" |
|
}, |
|
"_last_episode_starts": { |
|
":type:": "<class 'numpy.ndarray'>" |
|
}, |
|
"_last_original_obs": { |
|
":type:": "<class 'numpy.ndarray'>" |
|
}, |
|
"_episode_num": 8626, |
|
"use_sde": false, |
|
"sde_sample_freq": -1, |
|
"_current_progress_remaining": 0.0, |
|
"_stats_window_size": 100, |
|
"ep_info_buffer": { |
|
":type:": "<class 'collections.deque'>" |
|
}, |
|
"ep_success_buffer": { |
|
":type:": "<class 'collections.deque'>" |
|
}, |
|
"_n_updates": 2487500, |
|
"observation_space": { |
|
":type:": "<class 'gymnasium.spaces.box.Box'>", |
|
"dtype": "uint8", |
|
"bounded_below": "[[[ True True True ... True True True]\n [ True True True ... True True True]\n [ True True True ... True True True]\n ...\n [ True True True ... True True True]\n [ True True True ... True True True]\n [ True True True ... True True True]]\n\n [[ True True True ... True True True]\n [ True True True ... True True True]\n [ True True True ... True True True]\n ...\n [ True True True ... True True True]\n [ True True True ... True True True]\n [ True True True ... True True True]]\n\n [[ True True True ... True True True]\n [ True True True ... True True True]\n [ True True True ... True True True]\n ...\n [ True True True ... True True True]\n [ True True True ... True True True]\n [ True True True ... True True True]]]", |
|
"bounded_above": "[[[ True True True ... True True True]\n [ True True True ... True True True]\n [ True True True ... True True True]\n ...\n [ True True True ... True True True]\n [ True True True ... True True True]\n [ True True True ... True True True]]\n\n [[ True True True ... True True True]\n [ True True True ... True True True]\n [ True True True ... True True True]\n ...\n [ True True True ... True True True]\n [ True True True ... True True True]\n [ True True True ... True True True]]\n\n [[ True True True ... True True True]\n [ True True True ... True True True]\n [ True True True ... True True True]\n ...\n [ True True True ... True True True]\n [ True True True ... True True True]\n [ True True True ... True True True]]]", |
|
"_shape": [ |
|
3, |
|
250, |
|
160 |
|
], |
|
"low": "[[[0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n ...\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]]\n\n [[0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n ...\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]]\n\n [[0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n ...\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]]]", |
|
"high": "[[[255 255 255 ... 255 255 255]\n [255 255 255 ... 255 255 255]\n [255 255 255 ... 255 255 255]\n ...\n [255 255 255 ... 255 255 255]\n [255 255 255 ... 255 255 255]\n [255 255 255 ... 255 255 255]]\n\n [[255 255 255 ... 255 255 255]\n [255 255 255 ... 255 255 255]\n [255 255 255 ... 255 255 255]\n ...\n [255 255 255 ... 255 255 255]\n [255 255 255 ... 255 255 255]\n [255 255 255 ... 255 255 255]]\n\n [[255 255 255 ... 255 255 255]\n [255 255 255 ... 255 255 255]\n [255 255 255 ... 255 255 255]\n ...\n [255 255 255 ... 255 255 255]\n [255 255 255 ... 255 255 255]\n [255 255 255 ... 255 255 255]]]", |
|
"low_repr": "0", |
|
"high_repr": "255", |
|
"_np_random": "Generator(PCG64)" |
|
}, |
|
"action_space": { |
|
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", |
|
"n": "5", |
|
"start": "0", |
|
"_shape": [], |
|
"dtype": "int64", |
|
"_np_random": "Generator(PCG64)" |
|
}, |
|
"n_envs": 1, |
|
"buffer_size": 70000, |
|
"batch_size": 64, |
|
"learning_starts": 100000, |
|
"tau": 1.0, |
|
"gamma": 0.999, |
|
"gradient_steps": 1, |
|
"optimize_memory_usage": false, |
|
"replay_buffer_class": { |
|
":type:": "<class 'abc.ABCMeta'>", |
|
"__module__": "stable_baselines3.common.buffers", |
|
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", |
|
"__init__": "<function ReplayBuffer.__init__ at 0x7d61239e1cf0>", |
|
"add": "<function ReplayBuffer.add at 0x7d61239e1d80>", |
|
"sample": "<function ReplayBuffer.sample at 0x7d61239e1e10>", |
|
"_get_samples": "<function ReplayBuffer._get_samples at 0x7d61239e1ea0>", |
|
"_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x7d61239e1f30>)>", |
|
"__abstractmethods__": "frozenset()", |
|
"_abc_impl": "<_abc._abc_data object at 0x7d61239e61c0>" |
|
}, |
|
"replay_buffer_kwargs": {}, |
|
"train_freq": { |
|
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>" |
|
}, |
|
"use_sde_at_warmup": false, |
|
"exploration_initial_eps": 1.0, |
|
"exploration_final_eps": 0.005, |
|
"exploration_fraction": 0.3, |
|
"target_update_interval": 1000, |
|
"_n_calls": 10000000, |
|
"max_grad_norm": 10, |
|
"exploration_rate": 0.005, |
|
"lr_schedule": { |
|
":type:": "<class 'function'>" |
|
}, |
|
"batch_norm_stats": [], |
|
"batch_norm_stats_target": [], |
|
"exploration_schedule": { |
|
":type:": "<class 'function'>" |
|
} |
|
} |