import gymnasium as gym from stable_baselines3 import DQN # from stable_baselines3.common.monitor import Monitor from stable_baselines3.common.vec_env import VecVideoRecorder, DummyVecEnv, VecEnv model_name = "agents/dqn_v2-8/best_model" # path to model, should be an argument env_id = "ALE/Pacman-v5" video_folder = "videos/" video_length = 10000 #steps by hard coding this, I can almost ensure only one episode is recorded... vec_env = DummyVecEnv([lambda: gym.make(env_id, render_mode="rgb_array")]) model = DQN.load(model_name) # output: # vec_env = gym.make(env_id, render_mode="rgb_array") # output >>> # vec_env = Monitor(gym.make(env_id, render_mode="rgb_array")) print("\n\n\n") print(vec_env) print("\n\n\n") obs = vec_env.reset() # Record the video starting at the first step vec_env = VecVideoRecorder(vec_env, video_folder, record_video_trigger=lambda x: x == 0, video_length=video_length, name_prefix="one-episode_v2-8_bestmodel" ) # Once I make the environment, now I need to walk through it...??? # I want to act according to the policy that has been trained vec_env.reset() print(vec_env) # for _ in range(video_length + 1): # action, states = model.predict(obs) # obs, _, _, _ = vec_env.step(action) # Instead of using the specified steps in a for loop # use a while loop to check if the episode has terminated # Stop recording when the episode ends end = True while end == True: action, states = model.predict(obs) obs, _, done, _ = vec_env.step(action) if done == True: print("exiting loop") end = False # # Save the video vec_env.close()