legraphista
commited on
Upload imatrix.log with huggingface_hub
Browse files- imatrix.log +152 -0
imatrix.log
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
llama_model_loader: loaded meta data with 33 key-value pairs and 724 tensors from Hermes-3-Llama-3.1-70B-IMat-GGUF/Hermes-3-Llama-3.1-70B.Q8_0.gguf.hardlink.gguf (version GGUF V3 (latest))
|
2 |
+
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
|
3 |
+
llama_model_loader: - kv 0: general.architecture str = llama
|
4 |
+
llama_model_loader: - kv 1: general.type str = model
|
5 |
+
llama_model_loader: - kv 2: general.name str = Hermes 3 Llama 3.1 70B
|
6 |
+
llama_model_loader: - kv 3: general.basename str = Hermes-3-Llama-3.1
|
7 |
+
llama_model_loader: - kv 4: general.size_label str = 70B
|
8 |
+
llama_model_loader: - kv 5: general.license str = llama3
|
9 |
+
llama_model_loader: - kv 6: general.base_model.count u32 = 1
|
10 |
+
llama_model_loader: - kv 7: general.base_model.0.name str = Meta Llama 3.1 70B
|
11 |
+
llama_model_loader: - kv 8: general.base_model.0.organization str = Meta Llama
|
12 |
+
llama_model_loader: - kv 9: general.base_model.0.repo_url str = https://huggingface.co/meta-llama/Met...
|
13 |
+
llama_model_loader: - kv 10: general.tags arr[str,12] = ["Llama-3", "instruct", "finetune", "...
|
14 |
+
llama_model_loader: - kv 11: general.languages arr[str,1] = ["en"]
|
15 |
+
llama_model_loader: - kv 12: llama.block_count u32 = 80
|
16 |
+
llama_model_loader: - kv 13: llama.context_length u32 = 131072
|
17 |
+
llama_model_loader: - kv 14: llama.embedding_length u32 = 8192
|
18 |
+
llama_model_loader: - kv 15: llama.feed_forward_length u32 = 28672
|
19 |
+
llama_model_loader: - kv 16: llama.attention.head_count u32 = 64
|
20 |
+
llama_model_loader: - kv 17: llama.attention.head_count_kv u32 = 8
|
21 |
+
llama_model_loader: - kv 18: llama.rope.freq_base f32 = 500000.000000
|
22 |
+
llama_model_loader: - kv 19: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
|
23 |
+
llama_model_loader: - kv 20: general.file_type u32 = 7
|
24 |
+
llama_model_loader: - kv 21: llama.vocab_size u32 = 128256
|
25 |
+
llama_model_loader: - kv 22: llama.rope.dimension_count u32 = 128
|
26 |
+
llama_model_loader: - kv 23: tokenizer.ggml.model str = gpt2
|
27 |
+
llama_model_loader: - kv 24: tokenizer.ggml.pre str = llama-bpe
|
28 |
+
llama_model_loader: - kv 25: tokenizer.ggml.tokens arr[str,128256] = ["!", "\"", "#", "$", "%", "&", "'", ...
|
29 |
+
llama_model_loader: - kv 26: tokenizer.ggml.token_type arr[i32,128256] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
|
30 |
+
llama_model_loader: - kv 27: tokenizer.ggml.merges arr[str,280147] = ["Ġ Ġ", "Ġ ĠĠĠ", "ĠĠ ĠĠ", "...
|
31 |
+
llama_model_loader: - kv 28: tokenizer.ggml.bos_token_id u32 = 128000
|
32 |
+
llama_model_loader: - kv 29: tokenizer.ggml.eos_token_id u32 = 128039
|
33 |
+
llama_model_loader: - kv 30: tokenizer.ggml.padding_token_id u32 = 128001
|
34 |
+
llama_model_loader: - kv 31: tokenizer.chat_template str = {{bos_token}}{% for message in messag...
|
35 |
+
llama_model_loader: - kv 32: general.quantization_version u32 = 2
|
36 |
+
llama_model_loader: - type f32: 162 tensors
|
37 |
+
llama_model_loader: - type q8_0: 562 tensors
|
38 |
+
llm_load_vocab: special tokens cache size = 256
|
39 |
+
llm_load_vocab: token to piece cache size = 0.7994 MB
|
40 |
+
llm_load_print_meta: format = GGUF V3 (latest)
|
41 |
+
llm_load_print_meta: arch = llama
|
42 |
+
llm_load_print_meta: vocab type = BPE
|
43 |
+
llm_load_print_meta: n_vocab = 128256
|
44 |
+
llm_load_print_meta: n_merges = 280147
|
45 |
+
llm_load_print_meta: vocab_only = 0
|
46 |
+
llm_load_print_meta: n_ctx_train = 131072
|
47 |
+
llm_load_print_meta: n_embd = 8192
|
48 |
+
llm_load_print_meta: n_layer = 80
|
49 |
+
llm_load_print_meta: n_head = 64
|
50 |
+
llm_load_print_meta: n_head_kv = 8
|
51 |
+
llm_load_print_meta: n_rot = 128
|
52 |
+
llm_load_print_meta: n_swa = 0
|
53 |
+
llm_load_print_meta: n_embd_head_k = 128
|
54 |
+
llm_load_print_meta: n_embd_head_v = 128
|
55 |
+
llm_load_print_meta: n_gqa = 8
|
56 |
+
llm_load_print_meta: n_embd_k_gqa = 1024
|
57 |
+
llm_load_print_meta: n_embd_v_gqa = 1024
|
58 |
+
llm_load_print_meta: f_norm_eps = 0.0e+00
|
59 |
+
llm_load_print_meta: f_norm_rms_eps = 1.0e-05
|
60 |
+
llm_load_print_meta: f_clamp_kqv = 0.0e+00
|
61 |
+
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
|
62 |
+
llm_load_print_meta: f_logit_scale = 0.0e+00
|
63 |
+
llm_load_print_meta: n_ff = 28672
|
64 |
+
llm_load_print_meta: n_expert = 0
|
65 |
+
llm_load_print_meta: n_expert_used = 0
|
66 |
+
llm_load_print_meta: causal attn = 1
|
67 |
+
llm_load_print_meta: pooling type = 0
|
68 |
+
llm_load_print_meta: rope type = 0
|
69 |
+
llm_load_print_meta: rope scaling = linear
|
70 |
+
llm_load_print_meta: freq_base_train = 500000.0
|
71 |
+
llm_load_print_meta: freq_scale_train = 1
|
72 |
+
llm_load_print_meta: n_ctx_orig_yarn = 131072
|
73 |
+
llm_load_print_meta: rope_finetuned = unknown
|
74 |
+
llm_load_print_meta: ssm_d_conv = 0
|
75 |
+
llm_load_print_meta: ssm_d_inner = 0
|
76 |
+
llm_load_print_meta: ssm_d_state = 0
|
77 |
+
llm_load_print_meta: ssm_dt_rank = 0
|
78 |
+
llm_load_print_meta: model type = 70B
|
79 |
+
llm_load_print_meta: model ftype = Q8_0
|
80 |
+
llm_load_print_meta: model params = 70.55 B
|
81 |
+
llm_load_print_meta: model size = 69.82 GiB (8.50 BPW)
|
82 |
+
llm_load_print_meta: general.name = Hermes 3 Llama 3.1 70B
|
83 |
+
llm_load_print_meta: BOS token = 128000 '<|begin_of_text|>'
|
84 |
+
llm_load_print_meta: EOS token = 128039 '<|im_end|>'
|
85 |
+
llm_load_print_meta: PAD token = 128001 '<|end_of_text|>'
|
86 |
+
llm_load_print_meta: LF token = 128 'Ä'
|
87 |
+
llm_load_print_meta: EOT token = 128039 '<|im_end|>'
|
88 |
+
llm_load_print_meta: max token length = 256
|
89 |
+
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
|
90 |
+
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
|
91 |
+
ggml_cuda_init: found 1 CUDA devices:
|
92 |
+
Device 0: NVIDIA GeForce RTX 4090, compute capability 8.9, VMM: yes
|
93 |
+
llm_load_tensors: ggml ctx size = 0.68 MiB
|
94 |
+
llm_load_tensors: offloading 25 repeating layers to GPU
|
95 |
+
llm_load_tensors: offloaded 25/81 layers to GPU
|
96 |
+
llm_load_tensors: CPU buffer size = 71494.28 MiB
|
97 |
+
llm_load_tensors: CUDA0 buffer size = 21676.57 MiB
|
98 |
+
....................................................................................................
|
99 |
+
llama_new_context_with_model: n_ctx = 512
|
100 |
+
llama_new_context_with_model: n_batch = 512
|
101 |
+
llama_new_context_with_model: n_ubatch = 512
|
102 |
+
llama_new_context_with_model: flash_attn = 0
|
103 |
+
llama_new_context_with_model: freq_base = 500000.0
|
104 |
+
llama_new_context_with_model: freq_scale = 1
|
105 |
+
llama_kv_cache_init: CUDA_Host KV buffer size = 110.00 MiB
|
106 |
+
llama_kv_cache_init: CUDA0 KV buffer size = 50.00 MiB
|
107 |
+
llama_new_context_with_model: KV self size = 160.00 MiB, K (f16): 80.00 MiB, V (f16): 80.00 MiB
|
108 |
+
llama_new_context_with_model: CUDA_Host output buffer size = 0.49 MiB
|
109 |
+
llama_new_context_with_model: CUDA0 compute buffer size = 1331.12 MiB
|
110 |
+
llama_new_context_with_model: CUDA_Host compute buffer size = 17.01 MiB
|
111 |
+
llama_new_context_with_model: graph nodes = 2566
|
112 |
+
llama_new_context_with_model: graph splits = 719
|
113 |
+
|
114 |
+
system_info: n_threads = 25 / 32 | AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 |
|
115 |
+
compute_imatrix: tokenizing the input ..
|
116 |
+
compute_imatrix: tokenization took 42.062 ms
|
117 |
+
compute_imatrix: computing over 125 chunks with batch_size 512
|
118 |
+
compute_imatrix: 6.17 seconds per pass - ETA 12.85 minutes
|
119 |
+
[1]5.5350,[2]4.3772,[3]3.8197,[4]4.6004,[5]4.6317,[6]3.9145,[7]3.8311,[8]4.2072,[9]4.4117,
|
120 |
+
save_imatrix: stored collected data after 10 chunks in Hermes-3-Llama-3.1-70B-IMat-GGUF/imatrix.dat
|
121 |
+
[10]4.0759,[11]4.4896,[12]4.9017,[13]5.2563,[14]5.6161,[15]5.8285,[16]6.1324,[17]6.2960,[18]6.0750,[19]5.8143,
|
122 |
+
save_imatrix: stored collected data after 20 chunks in Hermes-3-Llama-3.1-70B-IMat-GGUF/imatrix.dat
|
123 |
+
[20]5.8144,[21]5.8849,[22]5.8756,[23]6.0320,[24]6.0210,[25]6.3261,[26]6.3191,[27]5.9113,[28]5.5892,[29]5.5933,
|
124 |
+
save_imatrix: stored collected data after 30 chunks in Hermes-3-Llama-3.1-70B-IMat-GGUF/imatrix.dat
|
125 |
+
[30]5.5664,[31]5.3252,[32]5.1001,[33]4.9893,[34]4.9118,[35]4.9732,[36]5.0064,[37]4.9847,[38]5.0464,[39]5.1761,
|
126 |
+
save_imatrix: stored collected data after 40 chunks in Hermes-3-Llama-3.1-70B-IMat-GGUF/imatrix.dat
|
127 |
+
[40]5.2587,[41]5.0658,[42]4.8822,[43]4.7117,[44]4.5586,[45]4.4981,[46]4.4530,[47]4.5595,[48]4.6451,[49]4.7463,
|
128 |
+
save_imatrix: stored collected data after 50 chunks in Hermes-3-Llama-3.1-70B-IMat-GGUF/imatrix.dat
|
129 |
+
[50]4.6968,[51]4.7996,[52]4.9034,[53]4.9806,[54]5.0345,[55]5.0484,[56]5.0379,[57]5.0703,[58]5.0689,[59]5.0908,
|
130 |
+
save_imatrix: stored collected data after 60 chunks in Hermes-3-Llama-3.1-70B-IMat-GGUF/imatrix.dat
|
131 |
+
[60]5.0870,[61]5.0991,[62]5.1406,[63]5.1984,[64]5.1646,[65]5.1586,[66]5.1768,[67]5.1865,[68]5.1912,[69]5.1962,
|
132 |
+
save_imatrix: stored collected data after 70 chunks in Hermes-3-Llama-3.1-70B-IMat-GGUF/imatrix.dat
|
133 |
+
[70]5.2210,[71]5.2371,[72]5.2564,[73]5.2562,[74]5.2432,[75]5.2579,[76]5.2687,[77]5.2661,[78]5.2628,[79]5.3063,
|
134 |
+
save_imatrix: stored collected data after 80 chunks in Hermes-3-Llama-3.1-70B-IMat-GGUF/imatrix.dat
|
135 |
+
[80]5.3389,[81]5.3465,[82]5.3624,[83]5.3993,[84]5.3458,[85]5.3456,[86]5.3547,[87]5.3843,[88]5.4268,[89]5.4569,
|
136 |
+
save_imatrix: stored collected data after 90 chunks in Hermes-3-Llama-3.1-70B-IMat-GGUF/imatrix.dat
|
137 |
+
[90]5.4428,[91]5.4191,[92]5.3993,[93]5.3862,[94]5.3646,[95]5.3502,[96]5.3324,[97]5.3531,[98]5.3941,[99]5.4577,
|
138 |
+
save_imatrix: stored collected data after 100 chunks in Hermes-3-Llama-3.1-70B-IMat-GGUF/imatrix.dat
|
139 |
+
[100]5.5153,[101]5.5593,[102]5.6484,[103]5.6790,[104]5.7133,[105]5.6708,[106]5.6876,[107]5.6561,[108]5.5959,[109]5.5353,
|
140 |
+
save_imatrix: stored collected data after 110 chunks in Hermes-3-Llama-3.1-70B-IMat-GGUF/imatrix.dat
|
141 |
+
[110]5.5757,[111]5.6069,[112]5.6253,[113]5.6315,[114]5.6624,[115]5.7002,[116]5.7168,[117]5.7379,[118]5.7737,[119]5.7478,
|
142 |
+
save_imatrix: stored collected data after 120 chunks in Hermes-3-Llama-3.1-70B-IMat-GGUF/imatrix.dat
|
143 |
+
[120]5.6694,[121]5.5910,[122]5.5181,[123]5.4504,[124]5.3941,[125]5.3246,
|
144 |
+
save_imatrix: stored collected data after 125 chunks in Hermes-3-Llama-3.1-70B-IMat-GGUF/imatrix.dat
|
145 |
+
|
146 |
+
llama_print_timings: load time = 32580.75 ms
|
147 |
+
llama_print_timings: sample time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
|
148 |
+
llama_print_timings: prompt eval time = 723343.07 ms / 64000 tokens ( 11.30 ms per token, 88.48 tokens per second)
|
149 |
+
llama_print_timings: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
|
150 |
+
llama_print_timings: total time = 751504.95 ms / 64001 tokens
|
151 |
+
|
152 |
+
Final estimate: PPL = 5.3246 +/- 0.07650
|