--- base_model: google/datagemma-rag-27b-it extra_gated_button_content: Acknowledge license extra_gated_heading: Access Gemma on Hugging Face extra_gated_prompt: "To access Gemma on Hugging Face, you\u2019re required to review\ \ and agree to Google\u2019s usage license. To do this, please ensure you\u2019\ re logged in to Hugging Face and click below. Requests are processed immediately." inference: false library_name: gguf license: gemma pipeline_tag: text-generation quantized_by: legraphista tags: - conversational - quantized - GGUF - quantization - imat - imatrix - static - 8bit - 6bit - 5bit - 4bit - 3bit - 2bit - 1bit --- # datagemma-rag-27b-it-IMat-GGUF _Llama.cpp imatrix quantization of google/datagemma-rag-27b-it_ Original Model: [google/datagemma-rag-27b-it](https://huggingface.co/google/datagemma-rag-27b-it) Original dtype: `BF16` (`bfloat16`) Quantized by: llama.cpp [b3735](https://github.com/ggerganov/llama.cpp/releases/tag/b3735) IMatrix dataset: [here](https://gist.githubusercontent.com/bartowski1182/eb213dccb3571f863da82e99418f81e8/raw/b2869d80f5c16fd7082594248e80144677736635/calibration_datav3.txt) - [Files](#files) - [IMatrix](#imatrix) - [Common Quants](#common-quants) - [All Quants](#all-quants) - [Downloading using huggingface-cli](#downloading-using-huggingface-cli) - [Inference](#inference) - [Simple chat template](#simple-chat-template) - [Llama.cpp](#llama-cpp) - [FAQ](#faq) - [Why is the IMatrix not applied everywhere?](#why-is-the-imatrix-not-applied-everywhere) - [How do I merge a split GGUF?](#how-do-i-merge-a-split-gguf) --- ## Files ### IMatrix Status: ✅ Available Link: [here](https://huggingface.co/legraphista/datagemma-rag-27b-it-IMat-GGUF/blob/main/imatrix.dat) ### Common Quants | Filename | Quant type | File Size | Status | Uses IMatrix | Is Split | | -------- | ---------- | --------- | ------ | ------------ | -------- | | [datagemma-rag-27b-it.Q8_0.gguf](https://huggingface.co/legraphista/datagemma-rag-27b-it-IMat-GGUF/blob/main/datagemma-rag-27b-it.Q8_0.gguf) | Q8_0 | 28.94GB | ✅ Available | ⚪ Static | 📦 No | [datagemma-rag-27b-it.Q6_K.gguf](https://huggingface.co/legraphista/datagemma-rag-27b-it-IMat-GGUF/blob/main/datagemma-rag-27b-it.Q6_K.gguf) | Q6_K | 22.34GB | ✅ Available | ⚪ Static | 📦 No | [datagemma-rag-27b-it.Q4_K.gguf](https://huggingface.co/legraphista/datagemma-rag-27b-it-IMat-GGUF/blob/main/datagemma-rag-27b-it.Q4_K.gguf) | Q4_K | 16.65GB | ✅ Available | 🟢 IMatrix | 📦 No | [datagemma-rag-27b-it.Q3_K.gguf](https://huggingface.co/legraphista/datagemma-rag-27b-it-IMat-GGUF/blob/main/datagemma-rag-27b-it.Q3_K.gguf) | Q3_K | 13.42GB | ✅ Available | 🟢 IMatrix | 📦 No | [datagemma-rag-27b-it.Q2_K.gguf](https://huggingface.co/legraphista/datagemma-rag-27b-it-IMat-GGUF/blob/main/datagemma-rag-27b-it.Q2_K.gguf) | Q2_K | 10.45GB | ✅ Available | 🟢 IMatrix | 📦 No ### All Quants | Filename | Quant type | File Size | Status | Uses IMatrix | Is Split | | -------- | ---------- | --------- | ------ | ------------ | -------- | | [datagemma-rag-27b-it.Q8_0.gguf](https://huggingface.co/legraphista/datagemma-rag-27b-it-IMat-GGUF/blob/main/datagemma-rag-27b-it.Q8_0.gguf) | Q8_0 | 28.94GB | ✅ Available | ⚪ Static | 📦 No | [datagemma-rag-27b-it.Q6_K.gguf](https://huggingface.co/legraphista/datagemma-rag-27b-it-IMat-GGUF/blob/main/datagemma-rag-27b-it.Q6_K.gguf) | Q6_K | 22.34GB | ✅ Available | ⚪ Static | 📦 No | [datagemma-rag-27b-it.Q5_K.gguf](https://huggingface.co/legraphista/datagemma-rag-27b-it-IMat-GGUF/blob/main/datagemma-rag-27b-it.Q5_K.gguf) | Q5_K | 19.41GB | ✅ Available | ⚪ Static | 📦 No | [datagemma-rag-27b-it.Q5_K_S.gguf](https://huggingface.co/legraphista/datagemma-rag-27b-it-IMat-GGUF/blob/main/datagemma-rag-27b-it.Q5_K_S.gguf) | Q5_K_S | 18.88GB | ✅ Available | ⚪ Static | 📦 No | [datagemma-rag-27b-it.Q4_K.gguf](https://huggingface.co/legraphista/datagemma-rag-27b-it-IMat-GGUF/blob/main/datagemma-rag-27b-it.Q4_K.gguf) | Q4_K | 16.65GB | ✅ Available | 🟢 IMatrix | 📦 No | [datagemma-rag-27b-it.Q4_K_S.gguf](https://huggingface.co/legraphista/datagemma-rag-27b-it-IMat-GGUF/blob/main/datagemma-rag-27b-it.Q4_K_S.gguf) | Q4_K_S | 15.74GB | ✅ Available | 🟢 IMatrix | 📦 No | [datagemma-rag-27b-it.IQ4_NL.gguf](https://huggingface.co/legraphista/datagemma-rag-27b-it-IMat-GGUF/blob/main/datagemma-rag-27b-it.IQ4_NL.gguf) | IQ4_NL | 15.63GB | ✅ Available | 🟢 IMatrix | 📦 No | datagemma-rag-27b-it.IQ4_XS | IQ4_XS | - | ⏳ Processing | 🟢 IMatrix | - | [datagemma-rag-27b-it.Q3_K.gguf](https://huggingface.co/legraphista/datagemma-rag-27b-it-IMat-GGUF/blob/main/datagemma-rag-27b-it.Q3_K.gguf) | Q3_K | 13.42GB | ✅ Available | 🟢 IMatrix | 📦 No | [datagemma-rag-27b-it.Q3_K_L.gguf](https://huggingface.co/legraphista/datagemma-rag-27b-it-IMat-GGUF/blob/main/datagemma-rag-27b-it.Q3_K_L.gguf) | Q3_K_L | 14.52GB | ✅ Available | 🟢 IMatrix | 📦 No | [datagemma-rag-27b-it.Q3_K_S.gguf](https://huggingface.co/legraphista/datagemma-rag-27b-it-IMat-GGUF/blob/main/datagemma-rag-27b-it.Q3_K_S.gguf) | Q3_K_S | 12.17GB | ✅ Available | 🟢 IMatrix | 📦 No | [datagemma-rag-27b-it.IQ3_M.gguf](https://huggingface.co/legraphista/datagemma-rag-27b-it-IMat-GGUF/blob/main/datagemma-rag-27b-it.IQ3_M.gguf) | IQ3_M | 12.45GB | ✅ Available | 🟢 IMatrix | 📦 No | datagemma-rag-27b-it.IQ3_S | IQ3_S | - | ⏳ Processing | 🟢 IMatrix | - | datagemma-rag-27b-it.IQ3_XS | IQ3_XS | - | ⏳ Processing | 🟢 IMatrix | - | datagemma-rag-27b-it.IQ3_XXS | IQ3_XXS | - | ⏳ Processing | 🟢 IMatrix | - | [datagemma-rag-27b-it.Q2_K.gguf](https://huggingface.co/legraphista/datagemma-rag-27b-it-IMat-GGUF/blob/main/datagemma-rag-27b-it.Q2_K.gguf) | Q2_K | 10.45GB | ✅ Available | 🟢 IMatrix | 📦 No | [datagemma-rag-27b-it.Q2_K_S.gguf](https://huggingface.co/legraphista/datagemma-rag-27b-it-IMat-GGUF/blob/main/datagemma-rag-27b-it.Q2_K_S.gguf) | Q2_K_S | 9.72GB | ✅ Available | 🟢 IMatrix | 📦 No | datagemma-rag-27b-it.IQ2_M | IQ2_M | - | ⏳ Processing | 🟢 IMatrix | - | datagemma-rag-27b-it.IQ2_S | IQ2_S | - | ⏳ Processing | 🟢 IMatrix | - | datagemma-rag-27b-it.IQ2_XS | IQ2_XS | - | ⏳ Processing | 🟢 IMatrix | - | datagemma-rag-27b-it.IQ2_XXS | IQ2_XXS | - | ⏳ Processing | 🟢 IMatrix | - | datagemma-rag-27b-it.IQ1_M | IQ1_M | - | ⏳ Processing | 🟢 IMatrix | - | datagemma-rag-27b-it.IQ1_S | IQ1_S | - | ⏳ Processing | 🟢 IMatrix | - ## Downloading using huggingface-cli If you do not have hugginface-cli installed: ``` pip install -U "huggingface_hub[cli]" ``` Download the specific file you want: ``` huggingface-cli download legraphista/datagemma-rag-27b-it-IMat-GGUF --include "datagemma-rag-27b-it.Q8_0.gguf" --local-dir ./ ``` If the model file is big, it has been split into multiple files. In order to download them all to a local folder, run: ``` huggingface-cli download legraphista/datagemma-rag-27b-it-IMat-GGUF --include "datagemma-rag-27b-it.Q8_0/*" --local-dir ./ # see FAQ for merging GGUF's ``` --- ## Inference ### Simple chat template ``` user {user_prompt} model {assistant_response} user {next_user_prompt} ``` ### Llama.cpp ``` llama.cpp/main -m datagemma-rag-27b-it.Q8_0.gguf --color -i -p "prompt here (according to the chat template)" ``` --- ## FAQ ### Why is the IMatrix not applied everywhere? According to [this investigation](https://www.reddit.com/r/LocalLLaMA/comments/1993iro/ggufs_quants_can_punch_above_their_weights_now/), it appears that lower quantizations are the only ones that benefit from the imatrix input (as per hellaswag results). ### How do I merge a split GGUF? 1. Make sure you have `gguf-split` available - To get hold of `gguf-split`, navigate to https://github.com/ggerganov/llama.cpp/releases - Download the appropriate zip for your system from the latest release - Unzip the archive and you should be able to find `gguf-split` 2. Locate your GGUF chunks folder (ex: `datagemma-rag-27b-it.Q8_0`) 3. Run `gguf-split --merge datagemma-rag-27b-it.Q8_0/datagemma-rag-27b-it.Q8_0-00001-of-XXXXX.gguf datagemma-rag-27b-it.Q8_0.gguf` - Make sure to point `gguf-split` to the first chunk of the split. --- Got a suggestion? Ping me [@legraphista](https://x.com/legraphista)!