File size: 8,570 Bytes
3dc8b54 250612f 3dc8b54 6452638 3dc8b54 45bd9b3 3dc8b54 df93eba 7055dea 8515aa9 7f1783d cbb9466 3dc8b54 49ca6ba d57860e df93eba 7055dea 90d4681 df93eba 8515aa9 2cb2fef 3dc8b54 7f1783d 1cc2888 4536ade 3dc8b54 cbb9466 d5e10b1 3dc8b54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
---
base_model: google/datagemma-rig-27b-it
extra_gated_button_content: Acknowledge license
extra_gated_heading: Access Gemma on Hugging Face
extra_gated_prompt: "To access Gemma on Hugging Face, you\u2019re required to review\
\ and agree to Google\u2019s usage license. To do this, please ensure you\u2019\
re logged in to Hugging Face and click below. Requests are processed immediately."
inference: false
library_name: gguf
license: gemma
pipeline_tag: text-generation
quantized_by: legraphista
tags:
- conversational
- quantized
- GGUF
- quantization
- imat
- imatrix
- static
- 16bit
- 8bit
- 6bit
- 5bit
- 4bit
- 3bit
- 2bit
- 1bit
---
# datagemma-rig-27b-it-IMat-GGUF
_Llama.cpp imatrix quantization of google/datagemma-rig-27b-it_
Original Model: [google/datagemma-rig-27b-it](https://huggingface.co/google/datagemma-rig-27b-it)
Original dtype: `BF16` (`bfloat16`)
Quantized by: llama.cpp [b3750](https://github.com/ggerganov/llama.cpp/releases/tag/b3750)
IMatrix dataset: [here](https://gist.githubusercontent.com/bartowski1182/eb213dccb3571f863da82e99418f81e8/raw/b2869d80f5c16fd7082594248e80144677736635/calibration_datav3.txt)
- [Files](#files)
- [IMatrix](#imatrix)
- [Common Quants](#common-quants)
- [All Quants](#all-quants)
- [Downloading using huggingface-cli](#downloading-using-huggingface-cli)
- [Inference](#inference)
- [Simple chat template](#simple-chat-template)
- [Llama.cpp](#llama-cpp)
- [FAQ](#faq)
- [Why is the IMatrix not applied everywhere?](#why-is-the-imatrix-not-applied-everywhere)
- [How do I merge a split GGUF?](#how-do-i-merge-a-split-gguf)
---
## Files
### IMatrix
Status: ✅ Available
Link: [here](https://huggingface.co/legraphista/datagemma-rig-27b-it-IMat-GGUF/blob/main/imatrix.dat)
### Common Quants
| Filename | Quant type | File Size | Status | Uses IMatrix | Is Split |
| -------- | ---------- | --------- | ------ | ------------ | -------- |
| [datagemma-rig-27b-it.Q8_0.gguf](https://huggingface.co/legraphista/datagemma-rig-27b-it-IMat-GGUF/blob/main/datagemma-rig-27b-it.Q8_0.gguf) | Q8_0 | 28.94GB | ✅ Available | ⚪ Static | 📦 No
| [datagemma-rig-27b-it.Q6_K.gguf](https://huggingface.co/legraphista/datagemma-rig-27b-it-IMat-GGUF/blob/main/datagemma-rig-27b-it.Q6_K.gguf) | Q6_K | 22.34GB | ✅ Available | ⚪ Static | 📦 No
| [datagemma-rig-27b-it.Q4_K.gguf](https://huggingface.co/legraphista/datagemma-rig-27b-it-IMat-GGUF/blob/main/datagemma-rig-27b-it.Q4_K.gguf) | Q4_K | 16.65GB | ✅ Available | 🟢 IMatrix | 📦 No
| [datagemma-rig-27b-it.Q3_K.gguf](https://huggingface.co/legraphista/datagemma-rig-27b-it-IMat-GGUF/blob/main/datagemma-rig-27b-it.Q3_K.gguf) | Q3_K | 13.42GB | ✅ Available | 🟢 IMatrix | 📦 No
| [datagemma-rig-27b-it.Q2_K.gguf](https://huggingface.co/legraphista/datagemma-rig-27b-it-IMat-GGUF/blob/main/datagemma-rig-27b-it.Q2_K.gguf) | Q2_K | 10.45GB | ✅ Available | 🟢 IMatrix | 📦 No
### All Quants
| Filename | Quant type | File Size | Status | Uses IMatrix | Is Split |
| -------- | ---------- | --------- | ------ | ------------ | -------- |
| [datagemma-rig-27b-it.BF16/*](https://huggingface.co/legraphista/datagemma-rig-27b-it-IMat-GGUF/tree/main/datagemma-rig-27b-it.BF16) | BF16 | 54.46GB | ✅ Available | ⚪ Static | ✂ Yes
| [datagemma-rig-27b-it.FP16/*](https://huggingface.co/legraphista/datagemma-rig-27b-it-IMat-GGUF/tree/main/datagemma-rig-27b-it.FP16) | F16 | 54.46GB | ✅ Available | ⚪ Static | ✂ Yes
| [datagemma-rig-27b-it.Q8_0.gguf](https://huggingface.co/legraphista/datagemma-rig-27b-it-IMat-GGUF/blob/main/datagemma-rig-27b-it.Q8_0.gguf) | Q8_0 | 28.94GB | ✅ Available | ⚪ Static | 📦 No
| [datagemma-rig-27b-it.Q6_K.gguf](https://huggingface.co/legraphista/datagemma-rig-27b-it-IMat-GGUF/blob/main/datagemma-rig-27b-it.Q6_K.gguf) | Q6_K | 22.34GB | ✅ Available | ⚪ Static | 📦 No
| [datagemma-rig-27b-it.Q5_K.gguf](https://huggingface.co/legraphista/datagemma-rig-27b-it-IMat-GGUF/blob/main/datagemma-rig-27b-it.Q5_K.gguf) | Q5_K | 19.41GB | ✅ Available | ⚪ Static | 📦 No
| [datagemma-rig-27b-it.Q5_K_S.gguf](https://huggingface.co/legraphista/datagemma-rig-27b-it-IMat-GGUF/blob/main/datagemma-rig-27b-it.Q5_K_S.gguf) | Q5_K_S | 18.88GB | ✅ Available | ⚪ Static | 📦 No
| [datagemma-rig-27b-it.Q4_K.gguf](https://huggingface.co/legraphista/datagemma-rig-27b-it-IMat-GGUF/blob/main/datagemma-rig-27b-it.Q4_K.gguf) | Q4_K | 16.65GB | ✅ Available | 🟢 IMatrix | 📦 No
| [datagemma-rig-27b-it.Q4_K_S.gguf](https://huggingface.co/legraphista/datagemma-rig-27b-it-IMat-GGUF/blob/main/datagemma-rig-27b-it.Q4_K_S.gguf) | Q4_K_S | 15.74GB | ✅ Available | 🟢 IMatrix | 📦 No
| datagemma-rig-27b-it.IQ4_NL | IQ4_NL | - | ⏳ Processing | 🟢 IMatrix | -
| datagemma-rig-27b-it.IQ4_XS | IQ4_XS | - | ⏳ Processing | 🟢 IMatrix | -
| [datagemma-rig-27b-it.Q3_K.gguf](https://huggingface.co/legraphista/datagemma-rig-27b-it-IMat-GGUF/blob/main/datagemma-rig-27b-it.Q3_K.gguf) | Q3_K | 13.42GB | ✅ Available | 🟢 IMatrix | 📦 No
| [datagemma-rig-27b-it.Q3_K_L.gguf](https://huggingface.co/legraphista/datagemma-rig-27b-it-IMat-GGUF/blob/main/datagemma-rig-27b-it.Q3_K_L.gguf) | Q3_K_L | 14.52GB | ✅ Available | 🟢 IMatrix | 📦 No
| [datagemma-rig-27b-it.Q3_K_S.gguf](https://huggingface.co/legraphista/datagemma-rig-27b-it-IMat-GGUF/blob/main/datagemma-rig-27b-it.Q3_K_S.gguf) | Q3_K_S | 12.17GB | ✅ Available | 🟢 IMatrix | 📦 No
| datagemma-rig-27b-it.IQ3_M | IQ3_M | - | ⏳ Processing | 🟢 IMatrix | -
| datagemma-rig-27b-it.IQ3_S | IQ3_S | - | ⏳ Processing | 🟢 IMatrix | -
| datagemma-rig-27b-it.IQ3_XS | IQ3_XS | - | ⏳ Processing | 🟢 IMatrix | -
| datagemma-rig-27b-it.IQ3_XXS | IQ3_XXS | - | ⏳ Processing | 🟢 IMatrix | -
| [datagemma-rig-27b-it.Q2_K.gguf](https://huggingface.co/legraphista/datagemma-rig-27b-it-IMat-GGUF/blob/main/datagemma-rig-27b-it.Q2_K.gguf) | Q2_K | 10.45GB | ✅ Available | 🟢 IMatrix | 📦 No
| [datagemma-rig-27b-it.Q2_K_S.gguf](https://huggingface.co/legraphista/datagemma-rig-27b-it-IMat-GGUF/blob/main/datagemma-rig-27b-it.Q2_K_S.gguf) | Q2_K_S | 9.72GB | ✅ Available | 🟢 IMatrix | 📦 No
| datagemma-rig-27b-it.IQ2_M | IQ2_M | - | ⏳ Processing | 🟢 IMatrix | -
| datagemma-rig-27b-it.IQ2_S | IQ2_S | - | ⏳ Processing | 🟢 IMatrix | -
| datagemma-rig-27b-it.IQ2_XS | IQ2_XS | - | ⏳ Processing | 🟢 IMatrix | -
| datagemma-rig-27b-it.IQ2_XXS | IQ2_XXS | - | ⏳ Processing | 🟢 IMatrix | -
| datagemma-rig-27b-it.IQ1_M | IQ1_M | - | ⏳ Processing | 🟢 IMatrix | -
| datagemma-rig-27b-it.IQ1_S | IQ1_S | - | ⏳ Processing | 🟢 IMatrix | -
## Downloading using huggingface-cli
If you do not have hugginface-cli installed:
```
pip install -U "huggingface_hub[cli]"
```
Download the specific file you want:
```
huggingface-cli download legraphista/datagemma-rig-27b-it-IMat-GGUF --include "datagemma-rig-27b-it.Q8_0.gguf" --local-dir ./
```
If the model file is big, it has been split into multiple files. In order to download them all to a local folder, run:
```
huggingface-cli download legraphista/datagemma-rig-27b-it-IMat-GGUF --include "datagemma-rig-27b-it.Q8_0/*" --local-dir ./
# see FAQ for merging GGUF's
```
---
## Inference
### Simple chat template
```
<bos><start_of_turn>user
{user_prompt}<end_of_turn>
<start_of_turn>model
{assistant_response}<end_of_turn>
<start_of_turn>user
{next_user_prompt}<end_of_turn>
```
### Llama.cpp
```
llama.cpp/main -m datagemma-rig-27b-it.Q8_0.gguf --color -i -p "prompt here (according to the chat template)"
```
---
## FAQ
### Why is the IMatrix not applied everywhere?
According to [this investigation](https://www.reddit.com/r/LocalLLaMA/comments/1993iro/ggufs_quants_can_punch_above_their_weights_now/), it appears that lower quantizations are the only ones that benefit from the imatrix input (as per hellaswag results).
### How do I merge a split GGUF?
1. Make sure you have `gguf-split` available
- To get hold of `gguf-split`, navigate to https://github.com/ggerganov/llama.cpp/releases
- Download the appropriate zip for your system from the latest release
- Unzip the archive and you should be able to find `gguf-split`
2. Locate your GGUF chunks folder (ex: `datagemma-rig-27b-it.Q8_0`)
3. Run `gguf-split --merge datagemma-rig-27b-it.Q8_0/datagemma-rig-27b-it.Q8_0-00001-of-XXXXX.gguf datagemma-rig-27b-it.Q8_0.gguf`
- Make sure to point `gguf-split` to the first chunk of the split.
---
Got a suggestion? Ping me [@legraphista](https://x.com/legraphista)! |