File size: 4,225 Bytes
0d9cdea
 
 
fc939d3
0d9cdea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc939d3
0d9cdea
fc939d3
 
 
 
 
0d9cdea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1616598
7ab4e17
 
0d9cdea
 
 
5be36ec
49d77a7
0d9cdea
 
 
5be36ec
 
fc939d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d9cdea
 
 
 
d7b1418
27e76c2
0d9cdea
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
---
library_name: transformers
license: apache-2.0
base_model: google-bert/bert-large-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- recall
- precision
- f1
model-index:
- name: bert-question-classifier
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-question-classifier

This model is a fine-tuned version of [google-bert/bert-large-uncased](https://huggingface.co/google-bert/bert-large-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0746
- Accuracy: 0.9807
- Recall: 0.8925
- Precision: 0.8909
- F1: 0.8917

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy | Recall | Precision | F1     |
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| No log        | 0.1770 | 100  | 5.0786          | 0.8950   | 0.5327 | 0.4279    | 0.4746 |
| No log        | 0.3540 | 200  | 4.3278          | 0.9257   | 0.5783 | 0.5838    | 0.5810 |
| No log        | 0.5310 | 300  | 3.6620          | 0.9411   | 0.6940 | 0.6612    | 0.6772 |
| No log        | 0.7080 | 400  | 3.1590          | 0.9515   | 0.7420 | 0.7211    | 0.7314 |
| 4.1504        | 0.8850 | 500  | 2.5666          | 0.9580   | 0.7770 | 0.7580    | 0.7674 |
| 4.1504        | 1.0619 | 600  | 2.1826          | 0.9638   | 0.7987 | 0.7954    | 0.7970 |
| 4.1504        | 1.2389 | 700  | 1.9754          | 0.9666   | 0.8168 | 0.8094    | 0.8131 |
| 4.1504        | 1.4159 | 800  | 1.8447          | 0.9686   | 0.8372 | 0.8151    | 0.8260 |
| 4.1504        | 1.5929 | 900  | 1.6676          | 0.9706   | 0.8457 | 0.8283    | 0.8369 |
| 2.012         | 1.7699 | 1000 | 1.5743          | 0.9728   | 0.8510 | 0.8450    | 0.8480 |
| 2.012         | 1.9469 | 1100 | 1.4473          | 0.9749   | 0.8641 | 0.8556    | 0.8598 |
| 2.012         | 2.1239 | 1200 | 1.4000          | 0.9749   | 0.8641 | 0.8551    | 0.8596 |
| 2.012         | 2.3009 | 1300 | 1.3287          | 0.9772   | 0.8764 | 0.8688    | 0.8726 |
| 2.012         | 2.4779 | 1400 | 1.2995          | 0.9770   | 0.8773 | 0.8659    | 0.8715 |
| 1.3018        | 2.6549 | 1500 | 1.2397          | 0.9778   | 0.8793 | 0.8724    | 0.8759 |
| 1.3018        | 2.8319 | 1600 | 1.2059          | 0.9786   | 0.8857 | 0.8753    | 0.8805 |
| 1.3018        | 3.0088 | 1700 | 1.1763          | 0.9790   | 0.8857 | 0.8798    | 0.8828 |
| 1.3018        | 3.1858 | 1800 | 1.1744          | 0.9786   | 0.8816 | 0.8788    | 0.8802 |
| 1.3018        | 3.3628 | 1900 | 1.1356          | 0.9793   | 0.8869 | 0.8818    | 0.8843 |
| 0.9668        | 3.5398 | 2000 | 1.1365          | 0.9791   | 0.8857 | 0.8806    | 0.8832 |
| 0.9668        | 3.7168 | 2100 | 1.1084          | 0.9796   | 0.8872 | 0.8838    | 0.8855 |
| 0.9668        | 3.8938 | 2200 | 1.0939          | 0.9800   | 0.8892 | 0.8864    | 0.8878 |
| 0.9668        | 4.0708 | 2300 | 1.0974          | 0.9796   | 0.8881 | 0.8834    | 0.8857 |
| 0.9668        | 4.2478 | 2400 | 1.0786          | 0.9802   | 0.8916 | 0.8864    | 0.8890 |
| 0.7915        | 4.4248 | 2500 | 1.0766          | 0.9803   | 0.8910 | 0.8881    | 0.8896 |
| 0.7915        | 4.6018 | 2600 | 1.0746          | 0.9807   | 0.8925 | 0.8909    | 0.8917 |
| 0.7915        | 4.7788 | 2700 | 1.0686          | 0.9803   | 0.8910 | 0.8887    | 0.8898 |
| 0.7915        | 4.9558 | 2800 | 1.0637          | 0.9802   | 0.8907 | 0.8873    | 0.8890 |


### Framework versions

- Transformers 4.48.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0