File size: 5,727 Bytes
c659b21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b65d864
 
c659b21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b65d864
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c659b21
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
---
license: mit
base_model: microsoft/git-base
tags:
- generated_from_trainer
model-index:
- name: git-base-floors615images
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# git-base-floors615images

This model is a fine-tuned version of [microsoft/git-base](https://huggingface.co/microsoft/git-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0971
- Wer Score: 4.3530

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer Score |
|:-------------:|:-----:|:----:|:---------------:|:---------:|
| 7.0263        | 0.72  | 50   | 4.1468          | 2.9871    |
| 1.9906        | 1.45  | 100  | 0.2971          | 0.4260    |
| 0.1401        | 2.17  | 150  | 0.0827          | 2.2259    |
| 0.0772        | 2.9   | 200  | 0.0704          | 3.9564    |
| 0.0567        | 3.62  | 250  | 0.0677          | 3.6360    |
| 0.0501        | 4.35  | 300  | 0.0678          | 3.2940    |
| 0.0443        | 5.07  | 350  | 0.0664          | 3.3094    |
| 0.0386        | 5.8   | 400  | 0.0666          | 3.0884    |
| 0.035         | 6.52  | 450  | 0.0681          | 3.3818    |
| 0.0329        | 7.25  | 500  | 0.0667          | 3.2474    |
| 0.0297        | 7.97  | 550  | 0.0681          | 3.6648    |
| 0.0271        | 8.7   | 600  | 0.0700          | 3.9405    |
| 0.0257        | 9.42  | 650  | 0.0697          | 3.0393    |
| 0.0243        | 10.14 | 700  | 0.0701          | 3.5973    |
| 0.0233        | 10.87 | 750  | 0.0695          | 3.0565    |
| 0.0213        | 11.59 | 800  | 0.0721          | 3.6980    |
| 0.0203        | 12.32 | 850  | 0.0730          | 3.8883    |
| 0.0206        | 13.04 | 900  | 0.0718          | 4.9104    |
| 0.0187        | 13.77 | 950  | 0.0729          | 4.4850    |
| 0.0192        | 14.49 | 1000 | 0.0743          | 4.6366    |
| 0.0184        | 15.22 | 1050 | 0.0729          | 4.9141    |
| 0.0169        | 15.94 | 1100 | 0.0754          | 4.6446    |
| 0.0167        | 16.67 | 1150 | 0.0769          | 4.8232    |
| 0.0162        | 17.39 | 1200 | 0.0766          | 4.7569    |
| 0.0165        | 18.12 | 1250 | 0.0768          | 4.3266    |
| 0.0157        | 18.84 | 1300 | 0.0776          | 4.1375    |
| 0.0144        | 19.57 | 1350 | 0.0778          | 3.9724    |
| 0.015         | 20.29 | 1400 | 0.0790          | 4.7041    |
| 0.0146        | 21.01 | 1450 | 0.0780          | 4.5003    |
| 0.0137        | 21.74 | 1500 | 0.0794          | 4.2167    |
| 0.0141        | 22.46 | 1550 | 0.0792          | 4.4856    |
| 0.0137        | 23.19 | 1600 | 0.0805          | 4.2634    |
| 0.0137        | 23.91 | 1650 | 0.0817          | 4.4162    |
| 0.0127        | 24.64 | 1700 | 0.0804          | 4.0319    |
| 0.0127        | 25.36 | 1750 | 0.0829          | 4.3628    |
| 0.013         | 26.09 | 1800 | 0.0826          | 4.4211    |
| 0.0121        | 26.81 | 1850 | 0.0823          | 4.8932    |
| 0.0119        | 27.54 | 1900 | 0.0835          | 4.6636    |
| 0.012         | 28.26 | 1950 | 0.0842          | 3.8926    |
| 0.0118        | 28.99 | 2000 | 0.0844          | 3.9994    |
| 0.011         | 29.71 | 2050 | 0.0833          | 4.1743    |
| 0.0109        | 30.43 | 2100 | 0.0864          | 4.4217    |
| 0.0108        | 31.16 | 2150 | 0.0851          | 4.8029    |
| 0.0103        | 31.88 | 2200 | 0.0855          | 4.0694    |
| 0.01          | 32.61 | 2250 | 0.0871          | 4.3198    |
| 0.0102        | 33.33 | 2300 | 0.0863          | 4.4082    |
| 0.0099        | 34.06 | 2350 | 0.0871          | 4.2112    |
| 0.0094        | 34.78 | 2400 | 0.0872          | 4.1774    |
| 0.0092        | 35.51 | 2450 | 0.0887          | 3.9742    |
| 0.009         | 36.23 | 2500 | 0.0882          | 4.1958    |
| 0.0088        | 36.96 | 2550 | 0.0893          | 4.2591    |
| 0.0084        | 37.68 | 2600 | 0.0885          | 4.2983    |
| 0.0079        | 38.41 | 2650 | 0.0894          | 4.6550    |
| 0.008         | 39.13 | 2700 | 0.0904          | 4.1277    |
| 0.0076        | 39.86 | 2750 | 0.0908          | 3.6771    |
| 0.0072        | 40.58 | 2800 | 0.0912          | 4.1252    |
| 0.0072        | 41.3  | 2850 | 0.0908          | 4.5660    |
| 0.0069        | 42.03 | 2900 | 0.0917          | 3.9441    |
| 0.0062        | 42.75 | 2950 | 0.0924          | 4.2259    |
| 0.006         | 43.48 | 3000 | 0.0924          | 4.2167    |
| 0.0059        | 44.2  | 3050 | 0.0937          | 4.6047    |
| 0.0055        | 44.93 | 3100 | 0.0945          | 4.4408    |
| 0.0048        | 45.65 | 3150 | 0.0950          | 3.9871    |
| 0.0048        | 46.38 | 3200 | 0.0952          | 4.2259    |
| 0.0046        | 47.1  | 3250 | 0.0962          | 4.2204    |
| 0.0042        | 47.83 | 3300 | 0.0963          | 4.2750    |
| 0.0037        | 48.55 | 3350 | 0.0971          | 4.1891    |
| 0.0039        | 49.28 | 3400 | 0.0970          | 4.3100    |
| 0.0036        | 50.0  | 3450 | 0.0971          | 4.3530    |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.0.1
- Datasets 2.18.0
- Tokenizers 0.15.2