File size: 1,993 Bytes
966e6dc 042ac0b 966e6dc 51bf7f3 7b40d64 51bf7f3 966e6dc 51bf7f3 042ac0b 966e6dc 042ac0b 51bf7f3 966e6dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: google-bert/bert-base-uncased
metrics:
- accuracy
- f1
model-index:
- name: loha_fine_tuned_cb
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# loha_fine_tuned_cb
This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3194
- Accuracy: 0.3182
- F1: 0.1536
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 400
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|
| 1.0888 | 3.5714 | 50 | 1.0482 | 0.2727 | 0.1364 |
| 0.8883 | 7.1429 | 100 | 1.1156 | 0.3182 | 0.1536 |
| 0.808 | 10.7143 | 150 | 1.1921 | 0.3182 | 0.1536 |
| 0.732 | 14.2857 | 200 | 1.2529 | 0.3182 | 0.1536 |
| 0.7553 | 17.8571 | 250 | 1.2877 | 0.3182 | 0.1536 |
| 0.7436 | 21.4286 | 300 | 1.3078 | 0.3182 | 0.1536 |
| 0.7115 | 25.0 | 350 | 1.3167 | 0.3182 | 0.1536 |
| 0.7395 | 28.5714 | 400 | 1.3194 | 0.3182 | 0.1536 |
### Framework versions
- PEFT 0.10.1.dev0
- Transformers 4.40.1
- Pytorch 2.3.0
- Datasets 2.19.0
- Tokenizers 0.19.1 |