File size: 3,514 Bytes
df586a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: Qwen/Qwen2-7B
model-index:
- name: outputs/out
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.1`
```yaml
base_model: Qwen/Qwen2-7B
trust_remote_code: true
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
  - path: tatsu-lab/alpaca
    type: alpaca
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/out
sequence_len: 2048
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
adapter: qlora
lora_model_dir:
lora_r: 32
lora_alpha: 64
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 4
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true
gradient_checkpointing: false
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: false
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
special_tokens:

```

</details><br>

# outputs/out

This model is a fine-tuned version of [Qwen/Qwen2-7B](https://huggingface.co/Qwen/Qwen2-7B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 4.3265

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 10.7953       | 0.0031 | 1    | 10.8104         |
| 5.4963        | 0.2513 | 80   | 5.4101          |
| 5.0323        | 0.5026 | 160  | 5.0758          |
| 4.9877        | 0.7538 | 240  | 4.8417          |
| 4.7408        | 1.0051 | 320  | 4.6180          |
| 4.5097        | 1.2442 | 400  | 4.5066          |
| 4.3959        | 1.4955 | 480  | 4.4513          |
| 4.2488        | 1.7468 | 560  | 4.4107          |
| 4.3507        | 1.9980 | 640  | 4.3784          |
| 4.2352        | 2.2352 | 720  | 4.3684          |
| 4.2141        | 2.4865 | 800  | 4.3505          |
| 4.2739        | 2.7377 | 880  | 4.3375          |
| 4.4037        | 2.9890 | 960  | 4.3310          |
| 4.195         | 3.2269 | 1040 | 4.3287          |
| 4.1996        | 3.4782 | 1120 | 4.3268          |
| 4.1353        | 3.7295 | 1200 | 4.3265          |


### Framework versions

- PEFT 0.11.1
- Transformers 4.41.1
- Pytorch 2.1.2+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1