leo009 commited on
Commit
a8fca47
·
verified ·
1 Parent(s): e32b69d

Upload 13 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,843 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: gemma
3
+ library_name: transformers
4
+ extra_gated_heading: Access PaliGemma on Hugging Face
5
+ extra_gated_prompt: To access PaliGemma on Hugging Face, you’re required to review
6
+ and agree to Google’s usage license. To do this, please ensure you’re logged-in
7
+ to Hugging Face and click below. Requests are processed immediately.
8
+ extra_gated_button_content: Acknowledge license
9
+ pipeline_tag: image-text-to-text
10
+ ---
11
+ # PaliGemma model card
12
+
13
+ **Model page:** [PaliGemma](https://ai.google.dev/gemma/docs/paligemma)
14
+
15
+ Transformers PaliGemma 3B weights, fine-tuned with 224*224 input images and 256 token input/output text sequences on a mixture of downstream academic datasets. The models are available in float32, bfloat16 and float16 format for research purposes only.
16
+
17
+ **Resources and technical documentation:**
18
+
19
+ * [Responsible Generative AI Toolkit](https://ai.google.dev/responsible)
20
+ * [PaliGemma on Kaggle](https://www.kaggle.com/models/google/paligemma)
21
+ * [PaliGemma on Vertex Model Garden](https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/363)
22
+
23
+ **Terms of Use:** [Terms](https://ai.google.dev/gemma/terms)
24
+
25
+ **Authors:** Google
26
+
27
+ ## Model information
28
+
29
+ ### Model summary
30
+
31
+ #### Description
32
+
33
+ PaliGemma is a versatile and lightweight vision-language model (VLM) inspired by
34
+ [PaLI-3](https://arxiv.org/abs/2310.09199) and based on open components such as
35
+ the [SigLIP vision model](https://arxiv.org/abs/2303.15343) and the [Gemma
36
+ language model](https://arxiv.org/abs/2403.08295). It takes both image and text
37
+ as input and generates text as output, supporting multiple languages. It is designed for class-leading fine-tune performance on a wide range of vision-language tasks such as image and short video caption, visual question answering, text reading, object detection and object segmentation.
38
+
39
+ #### Model architecture
40
+
41
+ PaliGemma is the composition of a [Transformer
42
+ decoder](https://arxiv.org/abs/1706.03762) and a [Vision Transformer image
43
+ encoder](https://arxiv.org/abs/2010.11929), with a total of 3 billion
44
+ params. The text decoder is initialized from
45
+ [Gemma-2B](https://www.kaggle.com/models/google/gemma). The image encoder is
46
+ initialized from
47
+ [SigLIP-So400m/14](https://colab.research.google.com/github/google-research/big_vision/blob/main/big_vision/configs/proj/image_text/SigLIP_demo.ipynb).
48
+ PaliGemma is trained following the PaLI-3 recipes.
49
+
50
+ #### Inputs and outputs
51
+
52
+ * **Input:** Image and text string, such as a prompt to caption the image, or
53
+ a question.
54
+ * **Output:** Generated text in response to the input, such as a caption of
55
+ the image, an answer to a question, a list of object bounding box
56
+ coordinates, or segmentation codewords.
57
+
58
+ ### Model data
59
+
60
+ #### Pre-train datasets
61
+
62
+ PaliGemma is pre-trained on the following mixture of datasets:
63
+
64
+ * **WebLI:** [WebLI (Web Language Image)](https://arxiv.org/abs/2209.06794) is
65
+ a web-scale multilingual image-text dataset built from the public web. A
66
+ wide range of WebLI splits are used to acquire versatile model capabilities,
67
+ such as visual semantic understanding, object localization,
68
+ visually-situated text understanding, multilinguality, etc.
69
+ * **CC3M-35L:** Curated English image-alt_text pairs from webpages ([Sharma et
70
+ al., 2018](https://aclanthology.org/P18-1238/)). We used the [Google Cloud
71
+ Translation API](https://cloud.google.com/translate) to translate into 34
72
+ additional languages.
73
+ * **VQ²A-CC3M-35L/VQG-CC3M-35L:** A subset of VQ2A-CC3M ([Changpinyo et al.,
74
+ 2022a](https://aclanthology.org/2022.naacl-main.142/)), translated into the
75
+ same additional 34 languages as CC3M-35L, using the [Google Cloud
76
+ Translation API](https://cloud.google.com/translate).
77
+ * **OpenImages:** Detection and object-aware questions and answers
78
+ ([Piergiovanni et al. 2022](https://arxiv.org/abs/2209.04372)) generated by
79
+ handcrafted rules on the [OpenImages dataset].
80
+ * **WIT:** Images and texts collected from Wikipedia ([Srinivasan et al.,
81
+ 2021](https://arxiv.org/abs/2103.01913)).
82
+
83
+ [OpenImages dataset]: https://storage.googleapis.com/openimages/web/factsfigures_v7.html
84
+
85
+ #### Data responsibility filtering
86
+
87
+ The following filters are applied to WebLI, with the goal of training PaliGemma
88
+ on clean data:
89
+
90
+ * **Pornographic image filtering:** This filter removes images deemed to be of
91
+ pornographic nature.
92
+ * **Text safety filtering:** We identify and filter out images that are paired
93
+ with unsafe text. Unsafe text is any text deemed to contain or be about
94
+ CSAI, pornography, vulgarities, or otherwise offensive.
95
+ * **Text toxicity filtering:** We further use the [Perspective
96
+ API](https://perspectiveapi.com/) to identify and filter out images that are
97
+ paired with text deemed insulting, obscene, hateful or otherwise toxic.
98
+ * **Text personal information filtering:** We filtered certain personal information and other sensitive data using [Cloud Data Loss Prevention (DLP)
99
+ API](https://cloud.google.com/security/products/dlp) to protect the privacy
100
+ of individuals. Identifiers such as social security numbers and [other sensitive information types] were removed.
101
+ * **Additional methods:** Filtering based on content quality and safety in
102
+ line with our policies and practices.
103
+
104
+ [other sensitive information types]: https://cloud.google.com/sensitive-data-protection/docs/high-sensitivity-infotypes-reference?_gl=1*jg604m*_ga*ODk5MzA3ODQyLjE3MTAzMzQ3NTk.*_ga_WH2QY8WWF5*MTcxMDUxNTkxMS4yLjEuMTcxMDUxNjA2NC4wLjAuMA..&_ga=2.172110058.-899307842.1710334759
105
+
106
+
107
+
108
+ ## How to Use
109
+
110
+ PaliGemma is a single-turn vision language model not meant for conversational use,
111
+ and it works best when fine-tuning to a specific use case.
112
+
113
+ You can configure which task the model will solve by conditioning it with task prefixes,
114
+ such as “detect” or “segment”. The pretrained models were trained in this fashion to imbue
115
+ them with a rich set of capabilities (question answering, captioning, segmentation, etc.).
116
+ However, they are not designed to be used directly, but to be transferred (by fine-tuning)
117
+ to specific tasks using a similar prompt structure. For interactive testing, you can use
118
+ the "mix" family of models, which have been fine-tuned on a mixture of tasks.
119
+
120
+ Please, refer to the [usage and limitations section](#usage-and-limitations) for intended
121
+ use cases, or visit the [blog post](https://huggingface.co/blog/paligemma-google-vlm) for
122
+ additional details and examples.
123
+
124
+ ## Use in Transformers
125
+
126
+ The following snippets use model `google/paligemma-3b-mix-224` for reference purposes.
127
+ The model in this repo you are now browsing may have been trained for other tasks, please
128
+ make sure you use appropriate inputs for the task at hand.
129
+
130
+ ### Running the default precision (`float32`) on CPU
131
+
132
+ ```python
133
+ from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
134
+ from PIL import Image
135
+ import requests
136
+ import torch
137
+
138
+ model_id = "google/paligemma-3b-mix-224"
139
+
140
+ url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
141
+ image = Image.open(requests.get(url, stream=True).raw)
142
+
143
+ model = PaliGemmaForConditionalGeneration.from_pretrained(model_id).eval()
144
+ processor = AutoProcessor.from_pretrained(model_id)
145
+
146
+ # Instruct the model to create a caption in Spanish
147
+ prompt = "caption es"
148
+ model_inputs = processor(text=prompt, images=image, return_tensors="pt")
149
+ input_len = model_inputs["input_ids"].shape[-1]
150
+
151
+ with torch.inference_mode():
152
+ generation = model.generate(**model_inputs, max_new_tokens=100, do_sample=False)
153
+ generation = generation[0][input_len:]
154
+ decoded = processor.decode(generation, skip_special_tokens=True)
155
+ print(decoded)
156
+ ```
157
+
158
+ Output: `Un auto azul estacionado frente a un edificio.`
159
+
160
+ ### Running other precisions on CUDA
161
+
162
+ For convenience, the repos contain revisions of the weights already converted to `bfloat16` and `float16`,
163
+ so you can use them to reduce the download size and avoid casting on your local computer.
164
+
165
+ This is how you'd run `bfloat16` on an nvidia CUDA card.
166
+
167
+ ```python
168
+ from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
169
+ from PIL import Image
170
+ import requests
171
+ import torch
172
+
173
+ model_id = "google/paligemma-3b-mix-224"
174
+ device = "cuda:0"
175
+ dtype = torch.bfloat16
176
+
177
+ url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
178
+ image = Image.open(requests.get(url, stream=True).raw)
179
+
180
+ model = PaliGemmaForConditionalGeneration.from_pretrained(
181
+ model_id,
182
+ torch_dtype=dtype,
183
+ device_map=device,
184
+ revision="bfloat16",
185
+ ).eval()
186
+ processor = AutoProcessor.from_pretrained(model_id)
187
+
188
+ # Instruct the model to create a caption in Spanish
189
+ prompt = "caption es"
190
+ model_inputs = processor(text=prompt, images=image, return_tensors="pt").to(model.device)
191
+ input_len = model_inputs["input_ids"].shape[-1]
192
+
193
+ with torch.inference_mode():
194
+ generation = model.generate(**model_inputs, max_new_tokens=100, do_sample=False)
195
+ generation = generation[0][input_len:]
196
+ decoded = processor.decode(generation, skip_special_tokens=True)
197
+ print(decoded)
198
+ ```
199
+
200
+ ### Loading in 4-bit / 8-bit
201
+
202
+ You need to install `bitsandbytes` to automatically run inference using 8-bit or 4-bit precision:
203
+
204
+ ```
205
+ pip install bitsandbytes accelerate
206
+ ```
207
+
208
+ ```
209
+ from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
210
+ from PIL import Image
211
+ import requests
212
+ import torch
213
+
214
+ model_id = "google/paligemma-3b-mix-224"
215
+ device = "cuda:0"
216
+ dtype = torch.bfloat16
217
+
218
+ url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
219
+ image = Image.open(requests.get(url, stream=True).raw)
220
+
221
+ quantization_config = BitsAndBytesConfig(load_in_8bit=True)
222
+
223
+ model = PaliGemmaForConditionalGeneration.from_pretrained(
224
+ model_id, quantization_config=quantization_config
225
+ ).eval()
226
+ processor = AutoProcessor.from_pretrained(model_id)
227
+
228
+ # Instruct the model to create a caption in Spanish
229
+ prompt = "caption es"
230
+ model_inputs = processor(text=prompt, images=image, return_tensors="pt").to(model.device)
231
+ input_len = model_inputs["input_ids"].shape[-1]
232
+
233
+ with torch.inference_mode():
234
+ generation = model.generate(**model_inputs, max_new_tokens=100, do_sample=False)
235
+ generation = generation[0][input_len:]
236
+ decoded = processor.decode(generation, skip_special_tokens=True)
237
+ print(decoded)
238
+ ```
239
+
240
+ ## Implementation information
241
+
242
+ ### Hardware
243
+
244
+ PaliGemma was trained using the latest generation of Tensor Processing Unit
245
+ (TPU) hardware (TPUv5e).
246
+
247
+ ### Software
248
+
249
+ Training was done using [JAX](https://github.com/google/jax),
250
+ [Flax](https://github.com/google/flax),
251
+ [TFDS](https://github.com/tensorflow/datasets) and
252
+ [`big_vision`](https://github.com/google-research/big_vision).
253
+
254
+ JAX allows researchers to take advantage of the latest generation of hardware,
255
+ including TPUs, for faster and more efficient training of large models.
256
+
257
+ TFDS is used to access datasets and Flax is used for model architecture. The
258
+ PaliGemma fine-tune code and inference code are released in the `big_vision`
259
+ GitHub repository.
260
+
261
+ ## Evaluation information
262
+
263
+ ### Benchmark results
264
+
265
+ In order to verify the transferability of PaliGemma to a wide variety of
266
+ academic tasks, we fine-tune the pretrained models on each task. Additionally we
267
+ train the mix model with a mixture of the transfer tasks. We report results on
268
+ different resolutions to provide an impression of which tasks benefit from
269
+ increased resolution. Importantly, none of these tasks or datasets are part of
270
+ the pretraining data mixture, and their images are explicitly removed from the
271
+ web-scale pre-training data.
272
+
273
+ #### Single task (fine-tune on single task)
274
+
275
+ <table>
276
+ <tbody><tr>
277
+ <th>Benchmark<br>(train split)</th>
278
+ <th>Metric<br>(split)</th>
279
+ <th>pt-224</th>
280
+ <th>pt-448</th>
281
+ <th>pt-896</th>
282
+ </tr>
283
+ <tr>
284
+ <th>Captioning</th>
285
+ </tr>
286
+ <tr>
287
+ <td>
288
+ <a href="https://cocodataset.org/#home">COCO captions</a><br>(train+restval)
289
+ </td>
290
+ <td>CIDEr (val)</td>
291
+ <td>141.92</td>
292
+ <td>144.60</td>
293
+ </tr>
294
+ <tr>
295
+ <td>
296
+ <a href="https://nocaps.org/">NoCaps</a><br>(Eval of COCO<br>captions transfer)
297
+ </td>
298
+ <td>CIDEr (val)</td>
299
+ <td>121.72</td>
300
+ <td>123.58</td>
301
+ </tr>
302
+ <tr>
303
+ <td>
304
+ <a href="https://arxiv.org/pdf/2205.12522">COCO-35L</a><br>(train)
305
+ </td>
306
+ <td>CIDEr dev<br>(en/avg-34/avg)</td>
307
+ <td>
308
+ 139.2<br>
309
+ 115.8<br>
310
+ 116.4
311
+ </td>
312
+ <td>
313
+ 141.2<br>
314
+ 118.0<br>
315
+ 118.6
316
+ </td>
317
+ </tr>
318
+ <tr>
319
+ <td>
320
+ <a href="https://arxiv.org/pdf/2205.12522">XM3600</a><br>(Eval of COCO-35L transfer)
321
+ </td>
322
+ <td>CIDEr dev<br>(en/avg-34/avg)</td>
323
+ <td>
324
+ 78.1<br>
325
+ 41.3<br>
326
+ 42.4
327
+ </td>
328
+ <td>
329
+ 80.0<br>
330
+ 41.9<br>
331
+ 42.9
332
+ </td>
333
+ </tr>
334
+ <tr>
335
+ <td>
336
+ <a href="https://textvqa.org/textcaps/">TextCaps</a><br>(train)
337
+ </td>
338
+ <td>CIDEr (val)</td>
339
+ <td>127.48</td>
340
+ <td>153.94</td>
341
+ </tr>
342
+ <tr>
343
+ <td>
344
+ <a href="https://arxiv.org/abs/2110.11624">SciCap</a><br>(first sentence, no subfigure)<br>(train+val)
345
+ </td>
346
+ <td>CIDEr/BLEU-4<br>(test)</td>
347
+ <td>
348
+ 162.25<br>
349
+ 0.192<br>
350
+ </td>
351
+ <td>
352
+ 181.49<br>
353
+ 0.211<br>
354
+ </td>
355
+ </tr>
356
+ <tr>
357
+ <td>
358
+ <a href="https://arxiv.org/abs/2108.03353">Screen2words</a><br>(train+dev)
359
+ </td>
360
+ <td>CIDEr (test)</td>
361
+ <td>117.57</td>
362
+ <td>119.59</td>
363
+ </tr>
364
+ <tr>
365
+ <td>
366
+ <a href="https://arxiv.org/abs/2010.04295">Widget Captioning</a><br>(train+dev)
367
+ </td>
368
+ <td>CIDEr (test)</td>
369
+ <td>136.07</td>
370
+ <td>148.36</td>
371
+ </tr>
372
+ <tr>
373
+ <th>Question answering</th>
374
+ </tr>
375
+ <tr>
376
+ <td>
377
+ <a href="https://visualqa.org/index.html">VQAv2</a><br>(train+validation)
378
+ </td>
379
+ <td>Accuracy<br>(Test server - std)</td>
380
+ <td>83.19</td>
381
+ <td>85.64</td>
382
+ </tr>
383
+ <tr>
384
+ <td>
385
+ <a href="https://arxiv.org/abs/2401.06209">MMVP</a><br>(Eval of VQAv2 transfer)
386
+ </td>
387
+ <td>Paired Accuracy</td>
388
+ <td>47.33</td>
389
+ <td>45.33</td>
390
+ </tr>
391
+ <tr>
392
+ <td>
393
+ <a href="https://arxiv.org/abs/2305.10355">POPE</a><br>(Eval of VQAv2 transfer)
394
+ </td>
395
+ <td>Accuracy<br>(random/popular/<br>adversarial)</td>
396
+ <td>
397
+ 87.80<br>
398
+ 85.87<br>
399
+ 84.27
400
+ </td>
401
+ <td>
402
+ 88.23<br>
403
+ 86.77<br>
404
+ 85.90
405
+ </td>
406
+ </tr>
407
+ <tr>
408
+ <td>
409
+ <a href="https://okvqa.allenai.org/">OKVQA</a><br>(train)
410
+ </td>
411
+ <td>Accuracy (val)</td>
412
+ <td>63.54</td>
413
+ <td>63.15</td>
414
+ </tr>
415
+ <tr>
416
+ <td>
417
+ <a href="https://allenai.org/project/a-okvqa/home">A-OKVQA</a> (MC)<br>(train+val)
418
+ </td>
419
+ <td>Accuracy<br>(Test server)</td>
420
+ <td>76.37</td>
421
+ <td>76.90</td>
422
+ </tr>
423
+ <tr>
424
+ <td>
425
+ <a href="https://allenai.org/project/a-okvqa/home">A-OKVQA</a> (DA)<br>(train+val)
426
+ </td>
427
+ <td>Accuracy<br>(Test server)</td>
428
+ <td>61.85</td>
429
+ <td>63.22</td>
430
+ </tr>
431
+ <tr>
432
+ <td>
433
+ <a href="https://cs.stanford.edu/people/dorarad/gqa/about.html">GQA</a><br>(train_balanced+<br>val_balanced)
434
+ </td>
435
+ <td>Accuracy<br>(testdev balanced)</td>
436
+ <td>65.61</td>
437
+ <td>67.03</td>
438
+ </tr>
439
+ <tr>
440
+ <td>
441
+ <a href="https://aclanthology.org/2022.findings-acl.196/">xGQA</a><br>(Eval of GQA transfer)
442
+ </td>
443
+ <td>Mean Accuracy<br>(bn, de, en, id,<br>ko, pt, ru, zh)</td>
444
+ <td>58.37</td>
445
+ <td>59.07</td>
446
+ </tr>
447
+ <tr>
448
+ <td>
449
+ <a href="https://lil.nlp.cornell.edu/nlvr/">NLVR2</a><br>(train+dev)
450
+ </td>
451
+ <td>Accuracy (test)</td>
452
+ <td>90.02</td>
453
+ <td>88.93</td>
454
+ </tr>
455
+ <tr>
456
+ <td>
457
+ <a href="https://marvl-challenge.github.io/">MaRVL</a><br>(Eval of NLVR2 transfer)
458
+ </td>
459
+ <td>Mean Accuracy<br>(test)<br>(id, sw, ta, tr, zh)</td>
460
+ <td>80.57</td>
461
+ <td>76.78</td>
462
+ </tr>
463
+ <tr>
464
+ <td>
465
+ <a href="https://allenai.org/data/diagrams">AI2D</a><br>(train)
466
+ </td>
467
+ <td>Accuracy (test)</td>
468
+ <td>72.12</td>
469
+ <td>73.28</td>
470
+ </tr>
471
+ <tr>
472
+ <td>
473
+ <a href="https://scienceqa.github.io/">ScienceQA</a><br>(Img subset, no CoT)<br>(train+val)
474
+ </td>
475
+ <td>Accuracy (test)</td>
476
+ <td>95.39</td>
477
+ <td>95.93</td>
478
+ </tr>
479
+ <tr>
480
+ <td>
481
+ <a href="https://zenodo.org/records/6344334">RSVQA-LR</a> (Non numeric)<br>(train+val)
482
+ </td>
483
+ <td>Mean Accuracy<br>(test)</td>
484
+ <td>92.65</td>
485
+ <td>93.11</td>
486
+ </tr>
487
+ <tr>
488
+ <td>
489
+ <a href="https://zenodo.org/records/6344367">RSVQA-HR</a> (Non numeric)<br>(train+val)
490
+ </td>
491
+ <td>Mean Accuracy<br>(test/test2)</td>
492
+ <td>
493
+ 92.61<br>
494
+ 90.58
495
+ </td>
496
+ <td>
497
+ 92.79<br>
498
+ 90.54
499
+ </td>
500
+ </tr>
501
+ <tr>
502
+ <td>
503
+ <a href="https://arxiv.org/abs/2203.10244">ChartQA</a><br>(human+aug)x(train+val)
504
+ </td>
505
+ <td>Mean Relaxed<br>Accuracy<br>(test_human,<br>test_aug)</td>
506
+ <td>57.08</td>
507
+ <td>71.36</td>
508
+ </tr>
509
+ <tr>
510
+ <td>
511
+ <a href="https://vizwiz.org/tasks-and-datasets/vqa/">VizWiz VQA</a><br>(train+val)
512
+ </td>
513
+ <td>Accuracy<br>(Test server - std)</td>
514
+ <td>
515
+ 73.7
516
+ </td>
517
+ <td>
518
+ 75.52
519
+ </td>
520
+ </tr>
521
+ <tr>
522
+ <td>
523
+ <a href="https://arxiv.org/abs/1810.12440">TallyQA</a><br>(train)
524
+ </td>
525
+ <td>Accuracy<br>(test_simple/<br>test_complex)</td>
526
+ <td>
527
+ 81.72<br>
528
+ 69.56
529
+ </td>
530
+ <td>
531
+ 84.86<br>
532
+ 72.27
533
+ </td>
534
+ </tr>
535
+ <tr>
536
+ <td>
537
+ <a href="https://ocr-vqa.github.io/">OCR-VQA</a><br>(train+val)
538
+ </td>
539
+ <td>Accuracy (test)</td>
540
+ <td>72.32</td>
541
+ <td>74.61</td>
542
+ <td>74.93</td>
543
+ </tr>
544
+ <tr>
545
+ <td>
546
+ <a href="https://textvqa.org/">TextVQA</a><br>(train+val)
547
+ </td>
548
+ <td>Accuracy<br>(Test server - std)</td>
549
+ <td>55.47</td>
550
+ <td>73.15</td>
551
+ <td>76.48</td>
552
+ </tr>
553
+ <tr>
554
+ <td>
555
+ <a href="https://www.docvqa.org/">DocVQA</a><br>(train+val)
556
+ </td>
557
+ <td>ANLS (Test server)</td>
558
+ <td>43.74</td>
559
+ <td>78.02</td>
560
+ <td>84.77</td>
561
+ </tr>
562
+ <tr>
563
+ <td>
564
+ <a href="https://openaccess.thecvf.com/content/WACV2022/papers/Mathew_InfographicVQA_WACV_2022_paper.pdf">Infographic VQA</a><br>(train+val)
565
+ </td>
566
+ <td>ANLS (Test server)</td>
567
+ <td>28.46</td>
568
+ <td>40.47</td>
569
+ <td>47.75</td>
570
+ </tr>
571
+ <tr>
572
+ <td>
573
+ <a href="https://arxiv.org/abs/1905.13648">SceneText VQA</a><br>(train+val)
574
+ </td>
575
+ <td>ANLS (Test server)</td>
576
+ <td>63.29</td>
577
+ <td>81.82</td>
578
+ <td>84.40</td>
579
+ </tr>
580
+ <tr>
581
+ <th>Segmentation</th>
582
+ </tr>
583
+ <tr>
584
+ <td>
585
+ <a href="https://arxiv.org/abs/1608.00272">RefCOCO</a><br>(combined refcoco, refcoco+,<br>refcocog excluding val<br>and test images)
586
+ </td>
587
+ <td>MIoU<br>(validation)<br>refcoco/refcoco+/<br>refcocog</td>
588
+ <td>
589
+ 73.40<br>
590
+ 68.32<br>
591
+ 67.65
592
+ </td>
593
+ <td>
594
+ 75.57<br>
595
+ 69.76<br>
596
+ 70.17
597
+ </td>
598
+ <td>
599
+ 76.94<br>
600
+ 72.18<br>
601
+ 72.22
602
+ </td>
603
+ </tr>
604
+ <tr>
605
+ <th>Video tasks (Caption/QA)</th>
606
+ </tr>
607
+ <tr>
608
+ <td>MSR-VTT (Captioning)</td>
609
+ <td>CIDEr (test)</td>
610
+ <td>70.54</td>
611
+ </tr>
612
+ <tr>
613
+ <td>MSR-VTT (QA)</td>
614
+ <td>Accuracy (test)</td>
615
+ <td>50.09</td>
616
+ </tr>
617
+ <tr>
618
+ <td>ActivityNet (Captioning)</td>
619
+ <td>CIDEr (test)</td>
620
+ <td>34.62</td>
621
+ </tr>
622
+ <tr>
623
+ <td>ActivityNet (QA)</td>
624
+ <td>Accuracy (test)</td>
625
+ <td>50.78</td>
626
+ </tr>
627
+ <tr>
628
+ <td>VATEX (Captioning)</td>
629
+ <td>CIDEr (test)</td>
630
+ <td>79.73</td>
631
+ </tr>
632
+ <tr>
633
+ <td>MSVD (QA)</td>
634
+ <td>Accuracy (test)</td>
635
+ <td>60.22</td>
636
+ </tr>
637
+ </tbody></table>
638
+
639
+ #### Mix model (fine-tune on mixture of transfer tasks)
640
+
641
+ <table>
642
+ <tbody><tr>
643
+ <th>Benchmark</th>
644
+ <th>Metric (split)</th>
645
+ <th>mix-224</th>
646
+ <th>mix-448</th>
647
+ </tr>
648
+ <tr>
649
+ <td><a href="https://arxiv.org/abs/2401.06209">MMVP</a></td>
650
+ <td>Paired Accuracy</td>
651
+ <td>46.00</td>
652
+ <td>45.33</td>
653
+ </tr>
654
+ <tr>
655
+ <td><a href="https://arxiv.org/abs/2305.10355">POPE</a></td>
656
+ <td>Accuracy<br>(random/popular/adversarial)</td>
657
+ <td>
658
+ 88.00<br>
659
+ 86.63<br>
660
+ 85.67
661
+ </td>
662
+ <td>
663
+ 89.37<br>
664
+ 88.40<br>
665
+ 87.47
666
+ </td>
667
+ </tr>
668
+ </tbody></table>
669
+
670
+ ## Ethics and safety
671
+
672
+ ### Evaluation approach
673
+
674
+ Our evaluation methods include structured evaluations and internal red-teaming
675
+ testing of relevant content policies. Red-teaming was conducted by a number of
676
+ different teams, each with different goals and human evaluation metrics. These
677
+ models were evaluated against a number of different categories relevant to
678
+ ethics and safety, including:
679
+
680
+ * Human evaluation on prompts covering child safety, content safety and
681
+ representational harms. See the [Gemma model
682
+ card](https://ai.google.dev/gemma/docs/model_card#evaluation_approach) for
683
+ more details on evaluation approach, but with image captioning and visual
684
+ question answering setups.
685
+ * Image-to-Text benchmark evaluation: Benchmark against relevant academic
686
+ datasets such as FairFace Dataset ([Karkkainen et al.,
687
+ 2021](https://arxiv.org/abs/1908.04913)).
688
+
689
+ ### Evaluation results
690
+
691
+ * The human evaluation results of ethics and safety evaluations are within
692
+ acceptable thresholds for meeting [internal
693
+ policies](https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11)
694
+ for categories such as child safety, content safety and representational
695
+ harms.
696
+ * On top of robust internal evaluations, we also use the Perspective API
697
+ (threshold of 0.8) to measure toxicity, profanity, and other potential
698
+ issues in the generated captions for images sourced from the FairFace
699
+ dataset. We report the maximum and median values observed across subgroups
700
+ for each of the perceived gender, ethnicity, and age attributes.
701
+
702
+
703
+ <table>
704
+ <tbody><tr>
705
+ </tr></tbody><tbody><tr><th>Metric</th>
706
+ <th>Perceived<br>gender</th>
707
+ <th></th>
708
+ <th>Ethnicity</th>
709
+ <th></th>
710
+ <th>Age group</th>
711
+ <th></th>
712
+ </tr>
713
+ <tr>
714
+ <th></th>
715
+ <th>Maximum</th>
716
+ <th>Median</th>
717
+ <th>Maximum</th>
718
+ <th>Median</th>
719
+ <th>Maximum</th>
720
+ <th>Median</th>
721
+ </tr>
722
+ <tr>
723
+ <td>Toxicity</td>
724
+ <td>0.04%</td>
725
+ <td>0.03%</td>
726
+ <td>0.08%</td>
727
+ <td>0.00%</td>
728
+ <td>0.09%</td>
729
+ <td>0.00%</td>
730
+ </tr>
731
+ <tr>
732
+ <td>Identity Attack</td>
733
+ <td>0.00%</td>
734
+ <td>0.00%</td>
735
+ <td>0.00%</td>
736
+ <td>0.00%</td>
737
+ <td>0.00%</td>
738
+ <td>0.00%</td>
739
+ </tr>
740
+ <tr>
741
+ <td>Insult</td>
742
+ <td>0.06%</td>
743
+ <td>0.04%</td>
744
+ <td>0.09%</td>
745
+ <td>0.07%</td>
746
+ <td>0.16%</td>
747
+ <td>0.00%</td>
748
+ </tr>
749
+ <tr>
750
+ <td>Threat</td>
751
+ <td>0.06%</td>
752
+ <td>0.05%</td>
753
+ <td>0.14%</td>
754
+ <td>0.05%</td>
755
+ <td>0.17%</td>
756
+ <td>0.00%</td>
757
+ </tr>
758
+ <tr>
759
+ <td>Profanity</td>
760
+ <td>0.00%</td>
761
+ <td>0.00%</td>
762
+ <td>0.00%</td>
763
+ <td>0.00%</td>
764
+ <td>0.00%</td>
765
+ <td>0.00%</td>
766
+ </tr>
767
+ </tbody></table>
768
+
769
+ ## Usage and limitations
770
+
771
+ ### Intended usage
772
+
773
+ Open Vision Language Models (VLMs) have a wide range of applications across
774
+ various industries and domains. The following list of potential uses is not
775
+ comprehensive. The purpose of this list is to provide contextual information
776
+ about the possible use-cases that the model creators considered as part of model
777
+ training and development.
778
+
779
+ Fine-tune on specific vision-language task:
780
+
781
+ * The pre-trained models can be fine-tuned on a wide range of vision-language
782
+ tasks such as: image captioning, short video caption, visual question
783
+ answering, text reading, object detection and object segmentation.
784
+ * The pre-trained models can be fine-tuned for specific domains such as remote
785
+ sensing question answering, visual questions from people who are blind,
786
+ science question answering, describe UI element functionalities.
787
+ * The pre-trained models can be fine-tuned for tasks with non-textual outputs
788
+ such as bounding boxes or segmentation masks.
789
+
790
+ Vision-language research:
791
+
792
+ * The pre-trained models and fine-tuned models can serve as a foundation for researchers to experiment with VLM
793
+ techniques, develop algorithms, and contribute to the advancement of the
794
+ field.
795
+
796
+ ### Ethical considerations and risks
797
+
798
+ The development of vision-language models (VLMs) raises several ethical concerns. In creating an open model, we have carefully considered the following:
799
+
800
+ * Bias and Fairness
801
+ * VLMs trained on large-scale, real-world image-text data can reflect socio-cultural biases embedded in the training material. These models underwent careful scrutiny, input data pre-processing described and posterior evaluations reported in this card.
802
+ * Misinformation and Misuse
803
+ * VLMs can be misused to generate text that is false, misleading, or harmful.
804
+ * Guidelines are provided for responsible use with the model, see the [Responsible Generative AI Toolkit](https://ai.google.dev/responsible).
805
+ * Transparency and Accountability
806
+ * This model card summarizes details on the models' architecture, capabilities, limitations, and evaluation processes.
807
+ * A responsibly developed open model offers the opportunity to share innovation by making VLM technology accessible to developers and researchers across the AI ecosystem.
808
+
809
+
810
+ Risks identified and mitigations:
811
+
812
+ * **Perpetuation of biases:** It's encouraged to perform continuous monitoring
813
+ (using evaluation metrics, human review) and the exploration of de-biasing
814
+ techniques during model training, fine-tuning, and other use cases.
815
+ * **Generation of harmful content:** Mechanisms and guidelines for content
816
+ safety are essential. Developers are encouraged to exercise caution and
817
+ implement appropriate content safety safeguards based on their specific
818
+ product policies and application use cases.
819
+ * **Misuse for malicious purposes:** Technical limitations and developer and
820
+ end-user education can help mitigate against malicious applications of LLMs.
821
+ Educational resources and reporting mechanisms for users to flag misuse are
822
+ provided. Prohibited uses of Gemma models are outlined in the [Gemma
823
+ Prohibited Use Policy](https://ai.google.dev/gemma/prohibited_use_policy).
824
+ * **Privacy violations:** Models were trained on data filtered to remove certain personal information and sensitive data. Developers are encouraged to adhere to privacy regulations with privacy-preserving techniques.
825
+
826
+ ### Limitations
827
+
828
+ * Most limitations inherited from the underlying Gemma model still apply:
829
+ * VLMs are better at tasks that can be framed with clear prompts and
830
+ instructions. Open-ended or highly complex tasks might be challenging.
831
+ * Natural language is inherently complex. VLMs might struggle to grasp
832
+ subtle nuances, sarcasm, or figurative language.
833
+ * VLMs generate responses based on information they learned from their
834
+ training datasets, but they are not knowledge bases. They may generate
835
+ incorrect or outdated factual statements.
836
+ * VLMs rely on statistical patterns in language and images. They might
837
+ lack the ability to apply common sense reasoning in certain situations.
838
+ * PaliGemma was designed first and foremost to serve as a general pre-trained
839
+ model for transfer to specialized tasks. Hence, its "out of the box" or
840
+ "zero-shot" performance might lag behind models designed specifically for
841
+ that.
842
+ * PaliGemma is not a multi-turn chatbot. It is designed for a single round of
843
+ image and text input.
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<image>": 257152
3
+ }
config.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "final-hf/paligemma-3b-mix-224-main",
3
+ "architectures": [
4
+ "PaliGemmaForConditionalGeneration"
5
+ ],
6
+ "bos_token_id": 2,
7
+ "eos_token_id": 1,
8
+ "hidden_size": 2048,
9
+ "ignore_index": -100,
10
+ "image_token_index": 257152,
11
+ "model_type": "paligemma",
12
+ "pad_token_id": 0,
13
+ "projection_dim": 2048,
14
+ "text_config": {
15
+ "hidden_size": 2048,
16
+ "intermediate_size": 16384,
17
+ "model_type": "gemma",
18
+ "num_attention_heads": 8,
19
+ "num_hidden_layers": 18,
20
+ "num_image_tokens": 256,
21
+ "num_key_value_heads": 1,
22
+ "torch_dtype": "float32",
23
+ "vocab_size": 257216
24
+ },
25
+ "torch_dtype": "float32",
26
+ "transformers_version": "4.41.0.dev0",
27
+ "vision_config": {
28
+ "hidden_size": 1152,
29
+ "intermediate_size": 4304,
30
+ "model_type": "siglip_vision_model",
31
+ "num_attention_heads": 16,
32
+ "num_hidden_layers": 27,
33
+ "num_image_tokens": 256,
34
+ "patch_size": 14,
35
+ "projection_dim": 2048,
36
+ "projector_hidden_act": "gelu_fast",
37
+ "vision_use_head": false
38
+ },
39
+ "vocab_size": 257216
40
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 2,
4
+ "eos_token_id": 1,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.41.0.dev0"
7
+ }
model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:63fd690cdad783794ce4c1d7893ef1f88bc26f4ae94b1925f5d3ad199dbbed87
3
+ size 4953412480
model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c24cf160613c9fcf69641b4eace7de94d07aaabba88800815137453a5fc32f38
3
+ size 4999820608
model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6222ec75c92d438886eaa3a2c5970c7e7973c213937a799ca6c5106f5fae829a
3
+ size 1740714288
model.safetensors.index.json ADDED
@@ -0,0 +1,610 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 11693865920
4
+ },
5
+ "weight_map": {
6
+ "language_model.model.embed_tokens.weight": "model-00001-of-00003.safetensors",
7
+ "language_model.model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
8
+ "language_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
9
+ "language_model.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
10
+ "language_model.model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
11
+ "language_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
12
+ "language_model.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
13
+ "language_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
14
+ "language_model.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
15
+ "language_model.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
16
+ "language_model.model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
17
+ "language_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
18
+ "language_model.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
19
+ "language_model.model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
20
+ "language_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
21
+ "language_model.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
22
+ "language_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
23
+ "language_model.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
24
+ "language_model.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
25
+ "language_model.model.layers.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
26
+ "language_model.model.layers.10.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
27
+ "language_model.model.layers.10.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
28
+ "language_model.model.layers.10.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
29
+ "language_model.model.layers.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
30
+ "language_model.model.layers.10.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
31
+ "language_model.model.layers.10.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
32
+ "language_model.model.layers.10.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
33
+ "language_model.model.layers.10.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
34
+ "language_model.model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
35
+ "language_model.model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
36
+ "language_model.model.layers.11.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
37
+ "language_model.model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
38
+ "language_model.model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
39
+ "language_model.model.layers.11.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
40
+ "language_model.model.layers.11.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
41
+ "language_model.model.layers.11.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
42
+ "language_model.model.layers.11.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
43
+ "language_model.model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
44
+ "language_model.model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
45
+ "language_model.model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
46
+ "language_model.model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
47
+ "language_model.model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
48
+ "language_model.model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
49
+ "language_model.model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
50
+ "language_model.model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
51
+ "language_model.model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
52
+ "language_model.model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
53
+ "language_model.model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
54
+ "language_model.model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
55
+ "language_model.model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
56
+ "language_model.model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
57
+ "language_model.model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
58
+ "language_model.model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
59
+ "language_model.model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
60
+ "language_model.model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
61
+ "language_model.model.layers.14.input_layernorm.weight": "model-00003-of-00003.safetensors",
62
+ "language_model.model.layers.14.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
63
+ "language_model.model.layers.14.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
64
+ "language_model.model.layers.14.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
65
+ "language_model.model.layers.14.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
66
+ "language_model.model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
67
+ "language_model.model.layers.14.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
68
+ "language_model.model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
69
+ "language_model.model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
70
+ "language_model.model.layers.15.input_layernorm.weight": "model-00003-of-00003.safetensors",
71
+ "language_model.model.layers.15.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
72
+ "language_model.model.layers.15.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
73
+ "language_model.model.layers.15.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
74
+ "language_model.model.layers.15.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
75
+ "language_model.model.layers.15.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
76
+ "language_model.model.layers.15.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
77
+ "language_model.model.layers.15.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
78
+ "language_model.model.layers.15.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
79
+ "language_model.model.layers.16.input_layernorm.weight": "model-00003-of-00003.safetensors",
80
+ "language_model.model.layers.16.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
81
+ "language_model.model.layers.16.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
82
+ "language_model.model.layers.16.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
83
+ "language_model.model.layers.16.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
84
+ "language_model.model.layers.16.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
85
+ "language_model.model.layers.16.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
86
+ "language_model.model.layers.16.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
87
+ "language_model.model.layers.16.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
88
+ "language_model.model.layers.17.input_layernorm.weight": "model-00003-of-00003.safetensors",
89
+ "language_model.model.layers.17.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
90
+ "language_model.model.layers.17.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
91
+ "language_model.model.layers.17.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
92
+ "language_model.model.layers.17.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
93
+ "language_model.model.layers.17.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
94
+ "language_model.model.layers.17.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
95
+ "language_model.model.layers.17.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
96
+ "language_model.model.layers.17.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
97
+ "language_model.model.layers.2.input_layernorm.weight": "model-00002-of-00003.safetensors",
98
+ "language_model.model.layers.2.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
99
+ "language_model.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
100
+ "language_model.model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
101
+ "language_model.model.layers.2.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
102
+ "language_model.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
103
+ "language_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
104
+ "language_model.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
105
+ "language_model.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
106
+ "language_model.model.layers.3.input_layernorm.weight": "model-00002-of-00003.safetensors",
107
+ "language_model.model.layers.3.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
108
+ "language_model.model.layers.3.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
109
+ "language_model.model.layers.3.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
110
+ "language_model.model.layers.3.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
111
+ "language_model.model.layers.3.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
112
+ "language_model.model.layers.3.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
113
+ "language_model.model.layers.3.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
114
+ "language_model.model.layers.3.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
115
+ "language_model.model.layers.4.input_layernorm.weight": "model-00002-of-00003.safetensors",
116
+ "language_model.model.layers.4.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
117
+ "language_model.model.layers.4.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
118
+ "language_model.model.layers.4.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
119
+ "language_model.model.layers.4.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
120
+ "language_model.model.layers.4.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
121
+ "language_model.model.layers.4.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
122
+ "language_model.model.layers.4.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
123
+ "language_model.model.layers.4.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
124
+ "language_model.model.layers.5.input_layernorm.weight": "model-00002-of-00003.safetensors",
125
+ "language_model.model.layers.5.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
126
+ "language_model.model.layers.5.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
127
+ "language_model.model.layers.5.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
128
+ "language_model.model.layers.5.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
129
+ "language_model.model.layers.5.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
130
+ "language_model.model.layers.5.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
131
+ "language_model.model.layers.5.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
132
+ "language_model.model.layers.5.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
133
+ "language_model.model.layers.6.input_layernorm.weight": "model-00002-of-00003.safetensors",
134
+ "language_model.model.layers.6.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
135
+ "language_model.model.layers.6.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
136
+ "language_model.model.layers.6.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
137
+ "language_model.model.layers.6.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
138
+ "language_model.model.layers.6.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
139
+ "language_model.model.layers.6.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
140
+ "language_model.model.layers.6.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
141
+ "language_model.model.layers.6.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
142
+ "language_model.model.layers.7.input_layernorm.weight": "model-00002-of-00003.safetensors",
143
+ "language_model.model.layers.7.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
144
+ "language_model.model.layers.7.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
145
+ "language_model.model.layers.7.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
146
+ "language_model.model.layers.7.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
147
+ "language_model.model.layers.7.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
148
+ "language_model.model.layers.7.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
149
+ "language_model.model.layers.7.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
150
+ "language_model.model.layers.7.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
151
+ "language_model.model.layers.8.input_layernorm.weight": "model-00002-of-00003.safetensors",
152
+ "language_model.model.layers.8.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
153
+ "language_model.model.layers.8.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
154
+ "language_model.model.layers.8.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
155
+ "language_model.model.layers.8.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
156
+ "language_model.model.layers.8.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
157
+ "language_model.model.layers.8.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
158
+ "language_model.model.layers.8.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
159
+ "language_model.model.layers.8.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
160
+ "language_model.model.layers.9.input_layernorm.weight": "model-00002-of-00003.safetensors",
161
+ "language_model.model.layers.9.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
162
+ "language_model.model.layers.9.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
163
+ "language_model.model.layers.9.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
164
+ "language_model.model.layers.9.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
165
+ "language_model.model.layers.9.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
166
+ "language_model.model.layers.9.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
167
+ "language_model.model.layers.9.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
168
+ "language_model.model.layers.9.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
169
+ "language_model.model.norm.weight": "model-00003-of-00003.safetensors",
170
+ "multi_modal_projector.linear.bias": "model-00001-of-00003.safetensors",
171
+ "multi_modal_projector.linear.weight": "model-00001-of-00003.safetensors",
172
+ "vision_tower.vision_model.embeddings.patch_embedding.bias": "model-00001-of-00003.safetensors",
173
+ "vision_tower.vision_model.embeddings.patch_embedding.weight": "model-00001-of-00003.safetensors",
174
+ "vision_tower.vision_model.embeddings.position_embedding.weight": "model-00001-of-00003.safetensors",
175
+ "vision_tower.vision_model.encoder.layers.0.layer_norm1.bias": "model-00001-of-00003.safetensors",
176
+ "vision_tower.vision_model.encoder.layers.0.layer_norm1.weight": "model-00001-of-00003.safetensors",
177
+ "vision_tower.vision_model.encoder.layers.0.layer_norm2.bias": "model-00001-of-00003.safetensors",
178
+ "vision_tower.vision_model.encoder.layers.0.layer_norm2.weight": "model-00001-of-00003.safetensors",
179
+ "vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias": "model-00001-of-00003.safetensors",
180
+ "vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight": "model-00001-of-00003.safetensors",
181
+ "vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias": "model-00001-of-00003.safetensors",
182
+ "vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight": "model-00001-of-00003.safetensors",
183
+ "vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
184
+ "vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
185
+ "vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
186
+ "vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
187
+ "vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
188
+ "vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
189
+ "vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
190
+ "vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
191
+ "vision_tower.vision_model.encoder.layers.1.layer_norm1.bias": "model-00001-of-00003.safetensors",
192
+ "vision_tower.vision_model.encoder.layers.1.layer_norm1.weight": "model-00001-of-00003.safetensors",
193
+ "vision_tower.vision_model.encoder.layers.1.layer_norm2.bias": "model-00001-of-00003.safetensors",
194
+ "vision_tower.vision_model.encoder.layers.1.layer_norm2.weight": "model-00001-of-00003.safetensors",
195
+ "vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias": "model-00001-of-00003.safetensors",
196
+ "vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight": "model-00001-of-00003.safetensors",
197
+ "vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias": "model-00001-of-00003.safetensors",
198
+ "vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight": "model-00001-of-00003.safetensors",
199
+ "vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
200
+ "vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
201
+ "vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
202
+ "vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
203
+ "vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
204
+ "vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
205
+ "vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
206
+ "vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
207
+ "vision_tower.vision_model.encoder.layers.10.layer_norm1.bias": "model-00001-of-00003.safetensors",
208
+ "vision_tower.vision_model.encoder.layers.10.layer_norm1.weight": "model-00001-of-00003.safetensors",
209
+ "vision_tower.vision_model.encoder.layers.10.layer_norm2.bias": "model-00001-of-00003.safetensors",
210
+ "vision_tower.vision_model.encoder.layers.10.layer_norm2.weight": "model-00001-of-00003.safetensors",
211
+ "vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias": "model-00001-of-00003.safetensors",
212
+ "vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight": "model-00001-of-00003.safetensors",
213
+ "vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias": "model-00001-of-00003.safetensors",
214
+ "vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight": "model-00001-of-00003.safetensors",
215
+ "vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
216
+ "vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
217
+ "vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
218
+ "vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
219
+ "vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
220
+ "vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
221
+ "vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
222
+ "vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
223
+ "vision_tower.vision_model.encoder.layers.11.layer_norm1.bias": "model-00001-of-00003.safetensors",
224
+ "vision_tower.vision_model.encoder.layers.11.layer_norm1.weight": "model-00001-of-00003.safetensors",
225
+ "vision_tower.vision_model.encoder.layers.11.layer_norm2.bias": "model-00001-of-00003.safetensors",
226
+ "vision_tower.vision_model.encoder.layers.11.layer_norm2.weight": "model-00001-of-00003.safetensors",
227
+ "vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias": "model-00001-of-00003.safetensors",
228
+ "vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight": "model-00001-of-00003.safetensors",
229
+ "vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias": "model-00001-of-00003.safetensors",
230
+ "vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight": "model-00001-of-00003.safetensors",
231
+ "vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
232
+ "vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
233
+ "vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
234
+ "vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
235
+ "vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
236
+ "vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
237
+ "vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
238
+ "vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
239
+ "vision_tower.vision_model.encoder.layers.12.layer_norm1.bias": "model-00001-of-00003.safetensors",
240
+ "vision_tower.vision_model.encoder.layers.12.layer_norm1.weight": "model-00001-of-00003.safetensors",
241
+ "vision_tower.vision_model.encoder.layers.12.layer_norm2.bias": "model-00001-of-00003.safetensors",
242
+ "vision_tower.vision_model.encoder.layers.12.layer_norm2.weight": "model-00001-of-00003.safetensors",
243
+ "vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias": "model-00001-of-00003.safetensors",
244
+ "vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight": "model-00001-of-00003.safetensors",
245
+ "vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias": "model-00001-of-00003.safetensors",
246
+ "vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight": "model-00001-of-00003.safetensors",
247
+ "vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
248
+ "vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
249
+ "vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
250
+ "vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
251
+ "vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
252
+ "vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
253
+ "vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
254
+ "vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
255
+ "vision_tower.vision_model.encoder.layers.13.layer_norm1.bias": "model-00001-of-00003.safetensors",
256
+ "vision_tower.vision_model.encoder.layers.13.layer_norm1.weight": "model-00001-of-00003.safetensors",
257
+ "vision_tower.vision_model.encoder.layers.13.layer_norm2.bias": "model-00001-of-00003.safetensors",
258
+ "vision_tower.vision_model.encoder.layers.13.layer_norm2.weight": "model-00001-of-00003.safetensors",
259
+ "vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias": "model-00001-of-00003.safetensors",
260
+ "vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight": "model-00001-of-00003.safetensors",
261
+ "vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias": "model-00001-of-00003.safetensors",
262
+ "vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight": "model-00001-of-00003.safetensors",
263
+ "vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
264
+ "vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
265
+ "vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
266
+ "vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
267
+ "vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
268
+ "vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
269
+ "vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
270
+ "vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
271
+ "vision_tower.vision_model.encoder.layers.14.layer_norm1.bias": "model-00001-of-00003.safetensors",
272
+ "vision_tower.vision_model.encoder.layers.14.layer_norm1.weight": "model-00001-of-00003.safetensors",
273
+ "vision_tower.vision_model.encoder.layers.14.layer_norm2.bias": "model-00001-of-00003.safetensors",
274
+ "vision_tower.vision_model.encoder.layers.14.layer_norm2.weight": "model-00001-of-00003.safetensors",
275
+ "vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias": "model-00001-of-00003.safetensors",
276
+ "vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight": "model-00001-of-00003.safetensors",
277
+ "vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias": "model-00001-of-00003.safetensors",
278
+ "vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight": "model-00001-of-00003.safetensors",
279
+ "vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
280
+ "vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
281
+ "vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
282
+ "vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
283
+ "vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
284
+ "vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
285
+ "vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
286
+ "vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
287
+ "vision_tower.vision_model.encoder.layers.15.layer_norm1.bias": "model-00001-of-00003.safetensors",
288
+ "vision_tower.vision_model.encoder.layers.15.layer_norm1.weight": "model-00001-of-00003.safetensors",
289
+ "vision_tower.vision_model.encoder.layers.15.layer_norm2.bias": "model-00001-of-00003.safetensors",
290
+ "vision_tower.vision_model.encoder.layers.15.layer_norm2.weight": "model-00001-of-00003.safetensors",
291
+ "vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias": "model-00001-of-00003.safetensors",
292
+ "vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight": "model-00001-of-00003.safetensors",
293
+ "vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias": "model-00001-of-00003.safetensors",
294
+ "vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight": "model-00001-of-00003.safetensors",
295
+ "vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
296
+ "vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
297
+ "vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
298
+ "vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
299
+ "vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
300
+ "vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
301
+ "vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
302
+ "vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
303
+ "vision_tower.vision_model.encoder.layers.16.layer_norm1.bias": "model-00001-of-00003.safetensors",
304
+ "vision_tower.vision_model.encoder.layers.16.layer_norm1.weight": "model-00001-of-00003.safetensors",
305
+ "vision_tower.vision_model.encoder.layers.16.layer_norm2.bias": "model-00001-of-00003.safetensors",
306
+ "vision_tower.vision_model.encoder.layers.16.layer_norm2.weight": "model-00001-of-00003.safetensors",
307
+ "vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias": "model-00001-of-00003.safetensors",
308
+ "vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight": "model-00001-of-00003.safetensors",
309
+ "vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias": "model-00001-of-00003.safetensors",
310
+ "vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight": "model-00001-of-00003.safetensors",
311
+ "vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
312
+ "vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
313
+ "vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
314
+ "vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
315
+ "vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
316
+ "vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
317
+ "vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
318
+ "vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
319
+ "vision_tower.vision_model.encoder.layers.17.layer_norm1.bias": "model-00001-of-00003.safetensors",
320
+ "vision_tower.vision_model.encoder.layers.17.layer_norm1.weight": "model-00001-of-00003.safetensors",
321
+ "vision_tower.vision_model.encoder.layers.17.layer_norm2.bias": "model-00001-of-00003.safetensors",
322
+ "vision_tower.vision_model.encoder.layers.17.layer_norm2.weight": "model-00001-of-00003.safetensors",
323
+ "vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias": "model-00001-of-00003.safetensors",
324
+ "vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight": "model-00001-of-00003.safetensors",
325
+ "vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias": "model-00001-of-00003.safetensors",
326
+ "vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight": "model-00001-of-00003.safetensors",
327
+ "vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
328
+ "vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
329
+ "vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
330
+ "vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
331
+ "vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
332
+ "vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
333
+ "vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
334
+ "vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
335
+ "vision_tower.vision_model.encoder.layers.18.layer_norm1.bias": "model-00001-of-00003.safetensors",
336
+ "vision_tower.vision_model.encoder.layers.18.layer_norm1.weight": "model-00001-of-00003.safetensors",
337
+ "vision_tower.vision_model.encoder.layers.18.layer_norm2.bias": "model-00001-of-00003.safetensors",
338
+ "vision_tower.vision_model.encoder.layers.18.layer_norm2.weight": "model-00001-of-00003.safetensors",
339
+ "vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias": "model-00001-of-00003.safetensors",
340
+ "vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight": "model-00001-of-00003.safetensors",
341
+ "vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias": "model-00001-of-00003.safetensors",
342
+ "vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight": "model-00001-of-00003.safetensors",
343
+ "vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
344
+ "vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
345
+ "vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
346
+ "vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
347
+ "vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
348
+ "vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
349
+ "vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
350
+ "vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
351
+ "vision_tower.vision_model.encoder.layers.19.layer_norm1.bias": "model-00001-of-00003.safetensors",
352
+ "vision_tower.vision_model.encoder.layers.19.layer_norm1.weight": "model-00001-of-00003.safetensors",
353
+ "vision_tower.vision_model.encoder.layers.19.layer_norm2.bias": "model-00001-of-00003.safetensors",
354
+ "vision_tower.vision_model.encoder.layers.19.layer_norm2.weight": "model-00001-of-00003.safetensors",
355
+ "vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias": "model-00001-of-00003.safetensors",
356
+ "vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight": "model-00001-of-00003.safetensors",
357
+ "vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias": "model-00001-of-00003.safetensors",
358
+ "vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight": "model-00001-of-00003.safetensors",
359
+ "vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
360
+ "vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
361
+ "vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
362
+ "vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
363
+ "vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
364
+ "vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
365
+ "vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
366
+ "vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
367
+ "vision_tower.vision_model.encoder.layers.2.layer_norm1.bias": "model-00001-of-00003.safetensors",
368
+ "vision_tower.vision_model.encoder.layers.2.layer_norm1.weight": "model-00001-of-00003.safetensors",
369
+ "vision_tower.vision_model.encoder.layers.2.layer_norm2.bias": "model-00001-of-00003.safetensors",
370
+ "vision_tower.vision_model.encoder.layers.2.layer_norm2.weight": "model-00001-of-00003.safetensors",
371
+ "vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias": "model-00001-of-00003.safetensors",
372
+ "vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight": "model-00001-of-00003.safetensors",
373
+ "vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias": "model-00001-of-00003.safetensors",
374
+ "vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight": "model-00001-of-00003.safetensors",
375
+ "vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
376
+ "vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
377
+ "vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
378
+ "vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
379
+ "vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
380
+ "vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
381
+ "vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
382
+ "vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
383
+ "vision_tower.vision_model.encoder.layers.20.layer_norm1.bias": "model-00001-of-00003.safetensors",
384
+ "vision_tower.vision_model.encoder.layers.20.layer_norm1.weight": "model-00001-of-00003.safetensors",
385
+ "vision_tower.vision_model.encoder.layers.20.layer_norm2.bias": "model-00001-of-00003.safetensors",
386
+ "vision_tower.vision_model.encoder.layers.20.layer_norm2.weight": "model-00001-of-00003.safetensors",
387
+ "vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias": "model-00001-of-00003.safetensors",
388
+ "vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight": "model-00001-of-00003.safetensors",
389
+ "vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias": "model-00001-of-00003.safetensors",
390
+ "vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight": "model-00001-of-00003.safetensors",
391
+ "vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
392
+ "vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
393
+ "vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
394
+ "vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
395
+ "vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
396
+ "vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
397
+ "vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
398
+ "vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
399
+ "vision_tower.vision_model.encoder.layers.21.layer_norm1.bias": "model-00001-of-00003.safetensors",
400
+ "vision_tower.vision_model.encoder.layers.21.layer_norm1.weight": "model-00001-of-00003.safetensors",
401
+ "vision_tower.vision_model.encoder.layers.21.layer_norm2.bias": "model-00001-of-00003.safetensors",
402
+ "vision_tower.vision_model.encoder.layers.21.layer_norm2.weight": "model-00001-of-00003.safetensors",
403
+ "vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias": "model-00001-of-00003.safetensors",
404
+ "vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight": "model-00001-of-00003.safetensors",
405
+ "vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias": "model-00001-of-00003.safetensors",
406
+ "vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight": "model-00001-of-00003.safetensors",
407
+ "vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
408
+ "vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
409
+ "vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
410
+ "vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
411
+ "vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
412
+ "vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
413
+ "vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
414
+ "vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
415
+ "vision_tower.vision_model.encoder.layers.22.layer_norm1.bias": "model-00001-of-00003.safetensors",
416
+ "vision_tower.vision_model.encoder.layers.22.layer_norm1.weight": "model-00001-of-00003.safetensors",
417
+ "vision_tower.vision_model.encoder.layers.22.layer_norm2.bias": "model-00001-of-00003.safetensors",
418
+ "vision_tower.vision_model.encoder.layers.22.layer_norm2.weight": "model-00001-of-00003.safetensors",
419
+ "vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias": "model-00001-of-00003.safetensors",
420
+ "vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight": "model-00001-of-00003.safetensors",
421
+ "vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias": "model-00001-of-00003.safetensors",
422
+ "vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight": "model-00001-of-00003.safetensors",
423
+ "vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
424
+ "vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
425
+ "vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
426
+ "vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
427
+ "vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
428
+ "vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
429
+ "vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
430
+ "vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
431
+ "vision_tower.vision_model.encoder.layers.23.layer_norm1.bias": "model-00001-of-00003.safetensors",
432
+ "vision_tower.vision_model.encoder.layers.23.layer_norm1.weight": "model-00001-of-00003.safetensors",
433
+ "vision_tower.vision_model.encoder.layers.23.layer_norm2.bias": "model-00001-of-00003.safetensors",
434
+ "vision_tower.vision_model.encoder.layers.23.layer_norm2.weight": "model-00001-of-00003.safetensors",
435
+ "vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias": "model-00001-of-00003.safetensors",
436
+ "vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight": "model-00001-of-00003.safetensors",
437
+ "vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias": "model-00001-of-00003.safetensors",
438
+ "vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight": "model-00001-of-00003.safetensors",
439
+ "vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
440
+ "vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
441
+ "vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
442
+ "vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
443
+ "vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
444
+ "vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
445
+ "vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
446
+ "vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
447
+ "vision_tower.vision_model.encoder.layers.24.layer_norm1.bias": "model-00001-of-00003.safetensors",
448
+ "vision_tower.vision_model.encoder.layers.24.layer_norm1.weight": "model-00001-of-00003.safetensors",
449
+ "vision_tower.vision_model.encoder.layers.24.layer_norm2.bias": "model-00001-of-00003.safetensors",
450
+ "vision_tower.vision_model.encoder.layers.24.layer_norm2.weight": "model-00001-of-00003.safetensors",
451
+ "vision_tower.vision_model.encoder.layers.24.mlp.fc1.bias": "model-00001-of-00003.safetensors",
452
+ "vision_tower.vision_model.encoder.layers.24.mlp.fc1.weight": "model-00001-of-00003.safetensors",
453
+ "vision_tower.vision_model.encoder.layers.24.mlp.fc2.bias": "model-00001-of-00003.safetensors",
454
+ "vision_tower.vision_model.encoder.layers.24.mlp.fc2.weight": "model-00001-of-00003.safetensors",
455
+ "vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
456
+ "vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
457
+ "vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
458
+ "vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
459
+ "vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
460
+ "vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
461
+ "vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
462
+ "vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
463
+ "vision_tower.vision_model.encoder.layers.25.layer_norm1.bias": "model-00001-of-00003.safetensors",
464
+ "vision_tower.vision_model.encoder.layers.25.layer_norm1.weight": "model-00001-of-00003.safetensors",
465
+ "vision_tower.vision_model.encoder.layers.25.layer_norm2.bias": "model-00001-of-00003.safetensors",
466
+ "vision_tower.vision_model.encoder.layers.25.layer_norm2.weight": "model-00001-of-00003.safetensors",
467
+ "vision_tower.vision_model.encoder.layers.25.mlp.fc1.bias": "model-00001-of-00003.safetensors",
468
+ "vision_tower.vision_model.encoder.layers.25.mlp.fc1.weight": "model-00001-of-00003.safetensors",
469
+ "vision_tower.vision_model.encoder.layers.25.mlp.fc2.bias": "model-00001-of-00003.safetensors",
470
+ "vision_tower.vision_model.encoder.layers.25.mlp.fc2.weight": "model-00001-of-00003.safetensors",
471
+ "vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
472
+ "vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
473
+ "vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
474
+ "vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
475
+ "vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
476
+ "vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
477
+ "vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
478
+ "vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
479
+ "vision_tower.vision_model.encoder.layers.26.layer_norm1.bias": "model-00001-of-00003.safetensors",
480
+ "vision_tower.vision_model.encoder.layers.26.layer_norm1.weight": "model-00001-of-00003.safetensors",
481
+ "vision_tower.vision_model.encoder.layers.26.layer_norm2.bias": "model-00001-of-00003.safetensors",
482
+ "vision_tower.vision_model.encoder.layers.26.layer_norm2.weight": "model-00001-of-00003.safetensors",
483
+ "vision_tower.vision_model.encoder.layers.26.mlp.fc1.bias": "model-00001-of-00003.safetensors",
484
+ "vision_tower.vision_model.encoder.layers.26.mlp.fc1.weight": "model-00001-of-00003.safetensors",
485
+ "vision_tower.vision_model.encoder.layers.26.mlp.fc2.bias": "model-00001-of-00003.safetensors",
486
+ "vision_tower.vision_model.encoder.layers.26.mlp.fc2.weight": "model-00001-of-00003.safetensors",
487
+ "vision_tower.vision_model.encoder.layers.26.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
488
+ "vision_tower.vision_model.encoder.layers.26.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
489
+ "vision_tower.vision_model.encoder.layers.26.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
490
+ "vision_tower.vision_model.encoder.layers.26.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
491
+ "vision_tower.vision_model.encoder.layers.26.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
492
+ "vision_tower.vision_model.encoder.layers.26.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
493
+ "vision_tower.vision_model.encoder.layers.26.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
494
+ "vision_tower.vision_model.encoder.layers.26.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
495
+ "vision_tower.vision_model.encoder.layers.3.layer_norm1.bias": "model-00001-of-00003.safetensors",
496
+ "vision_tower.vision_model.encoder.layers.3.layer_norm1.weight": "model-00001-of-00003.safetensors",
497
+ "vision_tower.vision_model.encoder.layers.3.layer_norm2.bias": "model-00001-of-00003.safetensors",
498
+ "vision_tower.vision_model.encoder.layers.3.layer_norm2.weight": "model-00001-of-00003.safetensors",
499
+ "vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias": "model-00001-of-00003.safetensors",
500
+ "vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight": "model-00001-of-00003.safetensors",
501
+ "vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias": "model-00001-of-00003.safetensors",
502
+ "vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight": "model-00001-of-00003.safetensors",
503
+ "vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
504
+ "vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
505
+ "vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
506
+ "vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
507
+ "vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
508
+ "vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
509
+ "vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
510
+ "vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
511
+ "vision_tower.vision_model.encoder.layers.4.layer_norm1.bias": "model-00001-of-00003.safetensors",
512
+ "vision_tower.vision_model.encoder.layers.4.layer_norm1.weight": "model-00001-of-00003.safetensors",
513
+ "vision_tower.vision_model.encoder.layers.4.layer_norm2.bias": "model-00001-of-00003.safetensors",
514
+ "vision_tower.vision_model.encoder.layers.4.layer_norm2.weight": "model-00001-of-00003.safetensors",
515
+ "vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias": "model-00001-of-00003.safetensors",
516
+ "vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight": "model-00001-of-00003.safetensors",
517
+ "vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias": "model-00001-of-00003.safetensors",
518
+ "vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight": "model-00001-of-00003.safetensors",
519
+ "vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
520
+ "vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
521
+ "vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
522
+ "vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
523
+ "vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
524
+ "vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
525
+ "vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
526
+ "vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
527
+ "vision_tower.vision_model.encoder.layers.5.layer_norm1.bias": "model-00001-of-00003.safetensors",
528
+ "vision_tower.vision_model.encoder.layers.5.layer_norm1.weight": "model-00001-of-00003.safetensors",
529
+ "vision_tower.vision_model.encoder.layers.5.layer_norm2.bias": "model-00001-of-00003.safetensors",
530
+ "vision_tower.vision_model.encoder.layers.5.layer_norm2.weight": "model-00001-of-00003.safetensors",
531
+ "vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias": "model-00001-of-00003.safetensors",
532
+ "vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight": "model-00001-of-00003.safetensors",
533
+ "vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias": "model-00001-of-00003.safetensors",
534
+ "vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight": "model-00001-of-00003.safetensors",
535
+ "vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
536
+ "vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
537
+ "vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
538
+ "vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
539
+ "vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
540
+ "vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
541
+ "vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
542
+ "vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
543
+ "vision_tower.vision_model.encoder.layers.6.layer_norm1.bias": "model-00001-of-00003.safetensors",
544
+ "vision_tower.vision_model.encoder.layers.6.layer_norm1.weight": "model-00001-of-00003.safetensors",
545
+ "vision_tower.vision_model.encoder.layers.6.layer_norm2.bias": "model-00001-of-00003.safetensors",
546
+ "vision_tower.vision_model.encoder.layers.6.layer_norm2.weight": "model-00001-of-00003.safetensors",
547
+ "vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias": "model-00001-of-00003.safetensors",
548
+ "vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight": "model-00001-of-00003.safetensors",
549
+ "vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias": "model-00001-of-00003.safetensors",
550
+ "vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight": "model-00001-of-00003.safetensors",
551
+ "vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
552
+ "vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
553
+ "vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
554
+ "vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
555
+ "vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
556
+ "vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
557
+ "vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
558
+ "vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
559
+ "vision_tower.vision_model.encoder.layers.7.layer_norm1.bias": "model-00001-of-00003.safetensors",
560
+ "vision_tower.vision_model.encoder.layers.7.layer_norm1.weight": "model-00001-of-00003.safetensors",
561
+ "vision_tower.vision_model.encoder.layers.7.layer_norm2.bias": "model-00001-of-00003.safetensors",
562
+ "vision_tower.vision_model.encoder.layers.7.layer_norm2.weight": "model-00001-of-00003.safetensors",
563
+ "vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias": "model-00001-of-00003.safetensors",
564
+ "vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight": "model-00001-of-00003.safetensors",
565
+ "vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias": "model-00001-of-00003.safetensors",
566
+ "vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight": "model-00001-of-00003.safetensors",
567
+ "vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
568
+ "vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
569
+ "vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
570
+ "vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
571
+ "vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
572
+ "vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
573
+ "vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
574
+ "vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
575
+ "vision_tower.vision_model.encoder.layers.8.layer_norm1.bias": "model-00001-of-00003.safetensors",
576
+ "vision_tower.vision_model.encoder.layers.8.layer_norm1.weight": "model-00001-of-00003.safetensors",
577
+ "vision_tower.vision_model.encoder.layers.8.layer_norm2.bias": "model-00001-of-00003.safetensors",
578
+ "vision_tower.vision_model.encoder.layers.8.layer_norm2.weight": "model-00001-of-00003.safetensors",
579
+ "vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias": "model-00001-of-00003.safetensors",
580
+ "vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight": "model-00001-of-00003.safetensors",
581
+ "vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias": "model-00001-of-00003.safetensors",
582
+ "vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight": "model-00001-of-00003.safetensors",
583
+ "vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
584
+ "vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
585
+ "vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
586
+ "vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
587
+ "vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
588
+ "vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
589
+ "vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
590
+ "vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
591
+ "vision_tower.vision_model.encoder.layers.9.layer_norm1.bias": "model-00001-of-00003.safetensors",
592
+ "vision_tower.vision_model.encoder.layers.9.layer_norm1.weight": "model-00001-of-00003.safetensors",
593
+ "vision_tower.vision_model.encoder.layers.9.layer_norm2.bias": "model-00001-of-00003.safetensors",
594
+ "vision_tower.vision_model.encoder.layers.9.layer_norm2.weight": "model-00001-of-00003.safetensors",
595
+ "vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias": "model-00001-of-00003.safetensors",
596
+ "vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight": "model-00001-of-00003.safetensors",
597
+ "vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias": "model-00001-of-00003.safetensors",
598
+ "vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight": "model-00001-of-00003.safetensors",
599
+ "vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias": "model-00001-of-00003.safetensors",
600
+ "vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
601
+ "vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias": "model-00001-of-00003.safetensors",
602
+ "vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight": "model-00001-of-00003.safetensors",
603
+ "vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias": "model-00001-of-00003.safetensors",
604
+ "vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
605
+ "vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias": "model-00001-of-00003.safetensors",
606
+ "vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
607
+ "vision_tower.vision_model.post_layernorm.bias": "model-00001-of-00003.safetensors",
608
+ "vision_tower.vision_model.post_layernorm.weight": "model-00001-of-00003.safetensors"
609
+ }
610
+ }
preprocessor_config.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_valid_processor_keys": [
3
+ "images",
4
+ "do_resize",
5
+ "size",
6
+ "resample",
7
+ "do_rescale",
8
+ "rescale_factor",
9
+ "do_normalize",
10
+ "image_mean",
11
+ "image_std",
12
+ "return_tensors",
13
+ "data_format",
14
+ "input_data_format",
15
+ "do_convert_rgb"
16
+ ],
17
+ "do_convert_rgb": null,
18
+ "do_normalize": true,
19
+ "do_rescale": true,
20
+ "do_resize": true,
21
+ "image_mean": [
22
+ 0.5,
23
+ 0.5,
24
+ 0.5
25
+ ],
26
+ "image_processor_type": "SiglipImageProcessor",
27
+ "image_seq_length": 256,
28
+ "image_std": [
29
+ 0.5,
30
+ 0.5,
31
+ 0.5
32
+ ],
33
+ "processor_class": "PaliGemmaProcessor",
34
+ "resample": 3,
35
+ "rescale_factor": 0.00392156862745098,
36
+ "size": {
37
+ "height": 224,
38
+ "width": 224
39
+ }
40
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<image>"
4
+ ],
5
+ "bos_token": {
6
+ "content": "<bos>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "eos_token": {
13
+ "content": "<eos>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false
18
+ },
19
+ "pad_token": {
20
+ "content": "<pad>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false
25
+ },
26
+ "unk_token": {
27
+ "content": "<unk>",
28
+ "lstrip": false,
29
+ "normalized": false,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ }
33
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef6773c135b77b834de1d13c75a4c98ab7a3684ffd602d1831e1f1bf5467c563
3
+ size 17549604
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8986bb4f423f07f8c7f70d0dbe3526fb2316056c17bae71b1ea975e77a168fc6
3
+ size 4264023
tokenizer_config.json ADDED
@@ -0,0 +1,1764 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<pad>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<eos>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "<bos>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "3": {
30
+ "content": "<unk>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "4": {
38
+ "content": "<mask>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": false
44
+ },
45
+ "5": {
46
+ "content": "<2mass>",
47
+ "lstrip": false,
48
+ "normalized": true,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": false
52
+ },
53
+ "6": {
54
+ "content": "[@BOS@]",
55
+ "lstrip": false,
56
+ "normalized": true,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": false
60
+ },
61
+ "7": {
62
+ "content": "<unused0>",
63
+ "lstrip": false,
64
+ "normalized": true,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": false
68
+ },
69
+ "8": {
70
+ "content": "<unused1>",
71
+ "lstrip": false,
72
+ "normalized": true,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": false
76
+ },
77
+ "9": {
78
+ "content": "<unused2>",
79
+ "lstrip": false,
80
+ "normalized": true,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": false
84
+ },
85
+ "10": {
86
+ "content": "<unused3>",
87
+ "lstrip": false,
88
+ "normalized": true,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": false
92
+ },
93
+ "11": {
94
+ "content": "<unused4>",
95
+ "lstrip": false,
96
+ "normalized": true,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": false
100
+ },
101
+ "12": {
102
+ "content": "<unused5>",
103
+ "lstrip": false,
104
+ "normalized": true,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": false
108
+ },
109
+ "13": {
110
+ "content": "<unused6>",
111
+ "lstrip": false,
112
+ "normalized": true,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": false
116
+ },
117
+ "14": {
118
+ "content": "<unused7>",
119
+ "lstrip": false,
120
+ "normalized": true,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "15": {
126
+ "content": "<unused8>",
127
+ "lstrip": false,
128
+ "normalized": true,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "16": {
134
+ "content": "<unused9>",
135
+ "lstrip": false,
136
+ "normalized": true,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "17": {
142
+ "content": "<unused10>",
143
+ "lstrip": false,
144
+ "normalized": true,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "18": {
150
+ "content": "<unused11>",
151
+ "lstrip": false,
152
+ "normalized": true,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "19": {
158
+ "content": "<unused12>",
159
+ "lstrip": false,
160
+ "normalized": true,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "20": {
166
+ "content": "<unused13>",
167
+ "lstrip": false,
168
+ "normalized": true,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "21": {
174
+ "content": "<unused14>",
175
+ "lstrip": false,
176
+ "normalized": true,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "22": {
182
+ "content": "<unused15>",
183
+ "lstrip": false,
184
+ "normalized": true,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "23": {
190
+ "content": "<unused16>",
191
+ "lstrip": false,
192
+ "normalized": true,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "24": {
198
+ "content": "<unused17>",
199
+ "lstrip": false,
200
+ "normalized": true,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "25": {
206
+ "content": "<unused18>",
207
+ "lstrip": false,
208
+ "normalized": true,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ },
213
+ "26": {
214
+ "content": "<unused19>",
215
+ "lstrip": false,
216
+ "normalized": true,
217
+ "rstrip": false,
218
+ "single_word": false,
219
+ "special": false
220
+ },
221
+ "27": {
222
+ "content": "<unused20>",
223
+ "lstrip": false,
224
+ "normalized": true,
225
+ "rstrip": false,
226
+ "single_word": false,
227
+ "special": false
228
+ },
229
+ "28": {
230
+ "content": "<unused21>",
231
+ "lstrip": false,
232
+ "normalized": true,
233
+ "rstrip": false,
234
+ "single_word": false,
235
+ "special": false
236
+ },
237
+ "29": {
238
+ "content": "<unused22>",
239
+ "lstrip": false,
240
+ "normalized": true,
241
+ "rstrip": false,
242
+ "single_word": false,
243
+ "special": false
244
+ },
245
+ "30": {
246
+ "content": "<unused23>",
247
+ "lstrip": false,
248
+ "normalized": true,
249
+ "rstrip": false,
250
+ "single_word": false,
251
+ "special": false
252
+ },
253
+ "31": {
254
+ "content": "<unused24>",
255
+ "lstrip": false,
256
+ "normalized": true,
257
+ "rstrip": false,
258
+ "single_word": false,
259
+ "special": false
260
+ },
261
+ "32": {
262
+ "content": "<unused25>",
263
+ "lstrip": false,
264
+ "normalized": true,
265
+ "rstrip": false,
266
+ "single_word": false,
267
+ "special": false
268
+ },
269
+ "33": {
270
+ "content": "<unused26>",
271
+ "lstrip": false,
272
+ "normalized": true,
273
+ "rstrip": false,
274
+ "single_word": false,
275
+ "special": false
276
+ },
277
+ "34": {
278
+ "content": "<unused27>",
279
+ "lstrip": false,
280
+ "normalized": true,
281
+ "rstrip": false,
282
+ "single_word": false,
283
+ "special": false
284
+ },
285
+ "35": {
286
+ "content": "<unused28>",
287
+ "lstrip": false,
288
+ "normalized": true,
289
+ "rstrip": false,
290
+ "single_word": false,
291
+ "special": false
292
+ },
293
+ "36": {
294
+ "content": "<unused29>",
295
+ "lstrip": false,
296
+ "normalized": true,
297
+ "rstrip": false,
298
+ "single_word": false,
299
+ "special": false
300
+ },
301
+ "37": {
302
+ "content": "<unused30>",
303
+ "lstrip": false,
304
+ "normalized": true,
305
+ "rstrip": false,
306
+ "single_word": false,
307
+ "special": false
308
+ },
309
+ "38": {
310
+ "content": "<unused31>",
311
+ "lstrip": false,
312
+ "normalized": true,
313
+ "rstrip": false,
314
+ "single_word": false,
315
+ "special": false
316
+ },
317
+ "39": {
318
+ "content": "<unused32>",
319
+ "lstrip": false,
320
+ "normalized": true,
321
+ "rstrip": false,
322
+ "single_word": false,
323
+ "special": false
324
+ },
325
+ "40": {
326
+ "content": "<unused33>",
327
+ "lstrip": false,
328
+ "normalized": true,
329
+ "rstrip": false,
330
+ "single_word": false,
331
+ "special": false
332
+ },
333
+ "41": {
334
+ "content": "<unused34>",
335
+ "lstrip": false,
336
+ "normalized": true,
337
+ "rstrip": false,
338
+ "single_word": false,
339
+ "special": false
340
+ },
341
+ "42": {
342
+ "content": "<unused35>",
343
+ "lstrip": false,
344
+ "normalized": true,
345
+ "rstrip": false,
346
+ "single_word": false,
347
+ "special": false
348
+ },
349
+ "43": {
350
+ "content": "<unused36>",
351
+ "lstrip": false,
352
+ "normalized": true,
353
+ "rstrip": false,
354
+ "single_word": false,
355
+ "special": false
356
+ },
357
+ "44": {
358
+ "content": "<unused37>",
359
+ "lstrip": false,
360
+ "normalized": true,
361
+ "rstrip": false,
362
+ "single_word": false,
363
+ "special": false
364
+ },
365
+ "45": {
366
+ "content": "<unused38>",
367
+ "lstrip": false,
368
+ "normalized": true,
369
+ "rstrip": false,
370
+ "single_word": false,
371
+ "special": false
372
+ },
373
+ "46": {
374
+ "content": "<unused39>",
375
+ "lstrip": false,
376
+ "normalized": true,
377
+ "rstrip": false,
378
+ "single_word": false,
379
+ "special": false
380
+ },
381
+ "47": {
382
+ "content": "<unused40>",
383
+ "lstrip": false,
384
+ "normalized": true,
385
+ "rstrip": false,
386
+ "single_word": false,
387
+ "special": false
388
+ },
389
+ "48": {
390
+ "content": "<unused41>",
391
+ "lstrip": false,
392
+ "normalized": true,
393
+ "rstrip": false,
394
+ "single_word": false,
395
+ "special": false
396
+ },
397
+ "49": {
398
+ "content": "<unused42>",
399
+ "lstrip": false,
400
+ "normalized": true,
401
+ "rstrip": false,
402
+ "single_word": false,
403
+ "special": false
404
+ },
405
+ "50": {
406
+ "content": "<unused43>",
407
+ "lstrip": false,
408
+ "normalized": true,
409
+ "rstrip": false,
410
+ "single_word": false,
411
+ "special": false
412
+ },
413
+ "51": {
414
+ "content": "<unused44>",
415
+ "lstrip": false,
416
+ "normalized": true,
417
+ "rstrip": false,
418
+ "single_word": false,
419
+ "special": false
420
+ },
421
+ "52": {
422
+ "content": "<unused45>",
423
+ "lstrip": false,
424
+ "normalized": true,
425
+ "rstrip": false,
426
+ "single_word": false,
427
+ "special": false
428
+ },
429
+ "53": {
430
+ "content": "<unused46>",
431
+ "lstrip": false,
432
+ "normalized": true,
433
+ "rstrip": false,
434
+ "single_word": false,
435
+ "special": false
436
+ },
437
+ "54": {
438
+ "content": "<unused47>",
439
+ "lstrip": false,
440
+ "normalized": true,
441
+ "rstrip": false,
442
+ "single_word": false,
443
+ "special": false
444
+ },
445
+ "55": {
446
+ "content": "<unused48>",
447
+ "lstrip": false,
448
+ "normalized": true,
449
+ "rstrip": false,
450
+ "single_word": false,
451
+ "special": false
452
+ },
453
+ "56": {
454
+ "content": "<unused49>",
455
+ "lstrip": false,
456
+ "normalized": true,
457
+ "rstrip": false,
458
+ "single_word": false,
459
+ "special": false
460
+ },
461
+ "57": {
462
+ "content": "<unused50>",
463
+ "lstrip": false,
464
+ "normalized": true,
465
+ "rstrip": false,
466
+ "single_word": false,
467
+ "special": false
468
+ },
469
+ "58": {
470
+ "content": "<unused51>",
471
+ "lstrip": false,
472
+ "normalized": true,
473
+ "rstrip": false,
474
+ "single_word": false,
475
+ "special": false
476
+ },
477
+ "59": {
478
+ "content": "<unused52>",
479
+ "lstrip": false,
480
+ "normalized": true,
481
+ "rstrip": false,
482
+ "single_word": false,
483
+ "special": false
484
+ },
485
+ "60": {
486
+ "content": "<unused53>",
487
+ "lstrip": false,
488
+ "normalized": true,
489
+ "rstrip": false,
490
+ "single_word": false,
491
+ "special": false
492
+ },
493
+ "61": {
494
+ "content": "<unused54>",
495
+ "lstrip": false,
496
+ "normalized": true,
497
+ "rstrip": false,
498
+ "single_word": false,
499
+ "special": false
500
+ },
501
+ "62": {
502
+ "content": "<unused55>",
503
+ "lstrip": false,
504
+ "normalized": true,
505
+ "rstrip": false,
506
+ "single_word": false,
507
+ "special": false
508
+ },
509
+ "63": {
510
+ "content": "<unused56>",
511
+ "lstrip": false,
512
+ "normalized": true,
513
+ "rstrip": false,
514
+ "single_word": false,
515
+ "special": false
516
+ },
517
+ "64": {
518
+ "content": "<unused57>",
519
+ "lstrip": false,
520
+ "normalized": true,
521
+ "rstrip": false,
522
+ "single_word": false,
523
+ "special": false
524
+ },
525
+ "65": {
526
+ "content": "<unused58>",
527
+ "lstrip": false,
528
+ "normalized": true,
529
+ "rstrip": false,
530
+ "single_word": false,
531
+ "special": false
532
+ },
533
+ "66": {
534
+ "content": "<unused59>",
535
+ "lstrip": false,
536
+ "normalized": true,
537
+ "rstrip": false,
538
+ "single_word": false,
539
+ "special": false
540
+ },
541
+ "67": {
542
+ "content": "<unused60>",
543
+ "lstrip": false,
544
+ "normalized": true,
545
+ "rstrip": false,
546
+ "single_word": false,
547
+ "special": false
548
+ },
549
+ "68": {
550
+ "content": "<unused61>",
551
+ "lstrip": false,
552
+ "normalized": true,
553
+ "rstrip": false,
554
+ "single_word": false,
555
+ "special": false
556
+ },
557
+ "69": {
558
+ "content": "<unused62>",
559
+ "lstrip": false,
560
+ "normalized": true,
561
+ "rstrip": false,
562
+ "single_word": false,
563
+ "special": false
564
+ },
565
+ "70": {
566
+ "content": "<unused63>",
567
+ "lstrip": false,
568
+ "normalized": true,
569
+ "rstrip": false,
570
+ "single_word": false,
571
+ "special": false
572
+ },
573
+ "71": {
574
+ "content": "<unused64>",
575
+ "lstrip": false,
576
+ "normalized": true,
577
+ "rstrip": false,
578
+ "single_word": false,
579
+ "special": false
580
+ },
581
+ "72": {
582
+ "content": "<unused65>",
583
+ "lstrip": false,
584
+ "normalized": true,
585
+ "rstrip": false,
586
+ "single_word": false,
587
+ "special": false
588
+ },
589
+ "73": {
590
+ "content": "<unused66>",
591
+ "lstrip": false,
592
+ "normalized": true,
593
+ "rstrip": false,
594
+ "single_word": false,
595
+ "special": false
596
+ },
597
+ "74": {
598
+ "content": "<unused67>",
599
+ "lstrip": false,
600
+ "normalized": true,
601
+ "rstrip": false,
602
+ "single_word": false,
603
+ "special": false
604
+ },
605
+ "75": {
606
+ "content": "<unused68>",
607
+ "lstrip": false,
608
+ "normalized": true,
609
+ "rstrip": false,
610
+ "single_word": false,
611
+ "special": false
612
+ },
613
+ "76": {
614
+ "content": "<unused69>",
615
+ "lstrip": false,
616
+ "normalized": true,
617
+ "rstrip": false,
618
+ "single_word": false,
619
+ "special": false
620
+ },
621
+ "77": {
622
+ "content": "<unused70>",
623
+ "lstrip": false,
624
+ "normalized": true,
625
+ "rstrip": false,
626
+ "single_word": false,
627
+ "special": false
628
+ },
629
+ "78": {
630
+ "content": "<unused71>",
631
+ "lstrip": false,
632
+ "normalized": true,
633
+ "rstrip": false,
634
+ "single_word": false,
635
+ "special": false
636
+ },
637
+ "79": {
638
+ "content": "<unused72>",
639
+ "lstrip": false,
640
+ "normalized": true,
641
+ "rstrip": false,
642
+ "single_word": false,
643
+ "special": false
644
+ },
645
+ "80": {
646
+ "content": "<unused73>",
647
+ "lstrip": false,
648
+ "normalized": true,
649
+ "rstrip": false,
650
+ "single_word": false,
651
+ "special": false
652
+ },
653
+ "81": {
654
+ "content": "<unused74>",
655
+ "lstrip": false,
656
+ "normalized": true,
657
+ "rstrip": false,
658
+ "single_word": false,
659
+ "special": false
660
+ },
661
+ "82": {
662
+ "content": "<unused75>",
663
+ "lstrip": false,
664
+ "normalized": true,
665
+ "rstrip": false,
666
+ "single_word": false,
667
+ "special": false
668
+ },
669
+ "83": {
670
+ "content": "<unused76>",
671
+ "lstrip": false,
672
+ "normalized": true,
673
+ "rstrip": false,
674
+ "single_word": false,
675
+ "special": false
676
+ },
677
+ "84": {
678
+ "content": "<unused77>",
679
+ "lstrip": false,
680
+ "normalized": true,
681
+ "rstrip": false,
682
+ "single_word": false,
683
+ "special": false
684
+ },
685
+ "85": {
686
+ "content": "<unused78>",
687
+ "lstrip": false,
688
+ "normalized": true,
689
+ "rstrip": false,
690
+ "single_word": false,
691
+ "special": false
692
+ },
693
+ "86": {
694
+ "content": "<unused79>",
695
+ "lstrip": false,
696
+ "normalized": true,
697
+ "rstrip": false,
698
+ "single_word": false,
699
+ "special": false
700
+ },
701
+ "87": {
702
+ "content": "<unused80>",
703
+ "lstrip": false,
704
+ "normalized": true,
705
+ "rstrip": false,
706
+ "single_word": false,
707
+ "special": false
708
+ },
709
+ "88": {
710
+ "content": "<unused81>",
711
+ "lstrip": false,
712
+ "normalized": true,
713
+ "rstrip": false,
714
+ "single_word": false,
715
+ "special": false
716
+ },
717
+ "89": {
718
+ "content": "<unused82>",
719
+ "lstrip": false,
720
+ "normalized": true,
721
+ "rstrip": false,
722
+ "single_word": false,
723
+ "special": false
724
+ },
725
+ "90": {
726
+ "content": "<unused83>",
727
+ "lstrip": false,
728
+ "normalized": true,
729
+ "rstrip": false,
730
+ "single_word": false,
731
+ "special": false
732
+ },
733
+ "91": {
734
+ "content": "<unused84>",
735
+ "lstrip": false,
736
+ "normalized": true,
737
+ "rstrip": false,
738
+ "single_word": false,
739
+ "special": false
740
+ },
741
+ "92": {
742
+ "content": "<unused85>",
743
+ "lstrip": false,
744
+ "normalized": true,
745
+ "rstrip": false,
746
+ "single_word": false,
747
+ "special": false
748
+ },
749
+ "93": {
750
+ "content": "<unused86>",
751
+ "lstrip": false,
752
+ "normalized": true,
753
+ "rstrip": false,
754
+ "single_word": false,
755
+ "special": false
756
+ },
757
+ "94": {
758
+ "content": "<unused87>",
759
+ "lstrip": false,
760
+ "normalized": true,
761
+ "rstrip": false,
762
+ "single_word": false,
763
+ "special": false
764
+ },
765
+ "95": {
766
+ "content": "<unused88>",
767
+ "lstrip": false,
768
+ "normalized": true,
769
+ "rstrip": false,
770
+ "single_word": false,
771
+ "special": false
772
+ },
773
+ "96": {
774
+ "content": "<unused89>",
775
+ "lstrip": false,
776
+ "normalized": true,
777
+ "rstrip": false,
778
+ "single_word": false,
779
+ "special": false
780
+ },
781
+ "97": {
782
+ "content": "<unused90>",
783
+ "lstrip": false,
784
+ "normalized": true,
785
+ "rstrip": false,
786
+ "single_word": false,
787
+ "special": false
788
+ },
789
+ "98": {
790
+ "content": "<unused91>",
791
+ "lstrip": false,
792
+ "normalized": true,
793
+ "rstrip": false,
794
+ "single_word": false,
795
+ "special": false
796
+ },
797
+ "99": {
798
+ "content": "<unused92>",
799
+ "lstrip": false,
800
+ "normalized": true,
801
+ "rstrip": false,
802
+ "single_word": false,
803
+ "special": false
804
+ },
805
+ "100": {
806
+ "content": "<unused93>",
807
+ "lstrip": false,
808
+ "normalized": true,
809
+ "rstrip": false,
810
+ "single_word": false,
811
+ "special": false
812
+ },
813
+ "101": {
814
+ "content": "<unused94>",
815
+ "lstrip": false,
816
+ "normalized": true,
817
+ "rstrip": false,
818
+ "single_word": false,
819
+ "special": false
820
+ },
821
+ "102": {
822
+ "content": "<unused95>",
823
+ "lstrip": false,
824
+ "normalized": true,
825
+ "rstrip": false,
826
+ "single_word": false,
827
+ "special": false
828
+ },
829
+ "103": {
830
+ "content": "<unused96>",
831
+ "lstrip": false,
832
+ "normalized": true,
833
+ "rstrip": false,
834
+ "single_word": false,
835
+ "special": false
836
+ },
837
+ "104": {
838
+ "content": "<unused97>",
839
+ "lstrip": false,
840
+ "normalized": true,
841
+ "rstrip": false,
842
+ "single_word": false,
843
+ "special": false
844
+ },
845
+ "105": {
846
+ "content": "<unused98>",
847
+ "lstrip": false,
848
+ "normalized": true,
849
+ "rstrip": false,
850
+ "single_word": false,
851
+ "special": false
852
+ },
853
+ "106": {
854
+ "content": "<start_of_turn>",
855
+ "lstrip": false,
856
+ "normalized": true,
857
+ "rstrip": false,
858
+ "single_word": false,
859
+ "special": false
860
+ },
861
+ "107": {
862
+ "content": "<end_of_turn>",
863
+ "lstrip": false,
864
+ "normalized": true,
865
+ "rstrip": false,
866
+ "single_word": false,
867
+ "special": false
868
+ },
869
+ "108": {
870
+ "content": "\n",
871
+ "lstrip": false,
872
+ "normalized": true,
873
+ "rstrip": false,
874
+ "single_word": false,
875
+ "special": false
876
+ },
877
+ "109": {
878
+ "content": "\n\n",
879
+ "lstrip": false,
880
+ "normalized": true,
881
+ "rstrip": false,
882
+ "single_word": false,
883
+ "special": false
884
+ },
885
+ "110": {
886
+ "content": "\n\n\n",
887
+ "lstrip": false,
888
+ "normalized": true,
889
+ "rstrip": false,
890
+ "single_word": false,
891
+ "special": false
892
+ },
893
+ "111": {
894
+ "content": "\n\n\n\n",
895
+ "lstrip": false,
896
+ "normalized": true,
897
+ "rstrip": false,
898
+ "single_word": false,
899
+ "special": false
900
+ },
901
+ "112": {
902
+ "content": "\n\n\n\n\n",
903
+ "lstrip": false,
904
+ "normalized": true,
905
+ "rstrip": false,
906
+ "single_word": false,
907
+ "special": false
908
+ },
909
+ "113": {
910
+ "content": "\n\n\n\n\n\n",
911
+ "lstrip": false,
912
+ "normalized": true,
913
+ "rstrip": false,
914
+ "single_word": false,
915
+ "special": false
916
+ },
917
+ "114": {
918
+ "content": "\n\n\n\n\n\n\n",
919
+ "lstrip": false,
920
+ "normalized": true,
921
+ "rstrip": false,
922
+ "single_word": false,
923
+ "special": false
924
+ },
925
+ "115": {
926
+ "content": "\n\n\n\n\n\n\n\n",
927
+ "lstrip": false,
928
+ "normalized": true,
929
+ "rstrip": false,
930
+ "single_word": false,
931
+ "special": false
932
+ },
933
+ "116": {
934
+ "content": "\n\n\n\n\n\n\n\n\n",
935
+ "lstrip": false,
936
+ "normalized": true,
937
+ "rstrip": false,
938
+ "single_word": false,
939
+ "special": false
940
+ },
941
+ "117": {
942
+ "content": "\n\n\n\n\n\n\n\n\n\n",
943
+ "lstrip": false,
944
+ "normalized": true,
945
+ "rstrip": false,
946
+ "single_word": false,
947
+ "special": false
948
+ },
949
+ "118": {
950
+ "content": "\n\n\n\n\n\n\n\n\n\n\n",
951
+ "lstrip": false,
952
+ "normalized": true,
953
+ "rstrip": false,
954
+ "single_word": false,
955
+ "special": false
956
+ },
957
+ "119": {
958
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n",
959
+ "lstrip": false,
960
+ "normalized": true,
961
+ "rstrip": false,
962
+ "single_word": false,
963
+ "special": false
964
+ },
965
+ "120": {
966
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n",
967
+ "lstrip": false,
968
+ "normalized": true,
969
+ "rstrip": false,
970
+ "single_word": false,
971
+ "special": false
972
+ },
973
+ "121": {
974
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
975
+ "lstrip": false,
976
+ "normalized": true,
977
+ "rstrip": false,
978
+ "single_word": false,
979
+ "special": false
980
+ },
981
+ "122": {
982
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
983
+ "lstrip": false,
984
+ "normalized": true,
985
+ "rstrip": false,
986
+ "single_word": false,
987
+ "special": false
988
+ },
989
+ "123": {
990
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
991
+ "lstrip": false,
992
+ "normalized": true,
993
+ "rstrip": false,
994
+ "single_word": false,
995
+ "special": false
996
+ },
997
+ "124": {
998
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
999
+ "lstrip": false,
1000
+ "normalized": true,
1001
+ "rstrip": false,
1002
+ "single_word": false,
1003
+ "special": false
1004
+ },
1005
+ "125": {
1006
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1007
+ "lstrip": false,
1008
+ "normalized": true,
1009
+ "rstrip": false,
1010
+ "single_word": false,
1011
+ "special": false
1012
+ },
1013
+ "126": {
1014
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1015
+ "lstrip": false,
1016
+ "normalized": true,
1017
+ "rstrip": false,
1018
+ "single_word": false,
1019
+ "special": false
1020
+ },
1021
+ "127": {
1022
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1023
+ "lstrip": false,
1024
+ "normalized": true,
1025
+ "rstrip": false,
1026
+ "single_word": false,
1027
+ "special": false
1028
+ },
1029
+ "128": {
1030
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1031
+ "lstrip": false,
1032
+ "normalized": true,
1033
+ "rstrip": false,
1034
+ "single_word": false,
1035
+ "special": false
1036
+ },
1037
+ "129": {
1038
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1039
+ "lstrip": false,
1040
+ "normalized": true,
1041
+ "rstrip": false,
1042
+ "single_word": false,
1043
+ "special": false
1044
+ },
1045
+ "130": {
1046
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1047
+ "lstrip": false,
1048
+ "normalized": true,
1049
+ "rstrip": false,
1050
+ "single_word": false,
1051
+ "special": false
1052
+ },
1053
+ "131": {
1054
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1055
+ "lstrip": false,
1056
+ "normalized": true,
1057
+ "rstrip": false,
1058
+ "single_word": false,
1059
+ "special": false
1060
+ },
1061
+ "132": {
1062
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1063
+ "lstrip": false,
1064
+ "normalized": true,
1065
+ "rstrip": false,
1066
+ "single_word": false,
1067
+ "special": false
1068
+ },
1069
+ "133": {
1070
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1071
+ "lstrip": false,
1072
+ "normalized": true,
1073
+ "rstrip": false,
1074
+ "single_word": false,
1075
+ "special": false
1076
+ },
1077
+ "134": {
1078
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1079
+ "lstrip": false,
1080
+ "normalized": true,
1081
+ "rstrip": false,
1082
+ "single_word": false,
1083
+ "special": false
1084
+ },
1085
+ "135": {
1086
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1087
+ "lstrip": false,
1088
+ "normalized": true,
1089
+ "rstrip": false,
1090
+ "single_word": false,
1091
+ "special": false
1092
+ },
1093
+ "136": {
1094
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1095
+ "lstrip": false,
1096
+ "normalized": true,
1097
+ "rstrip": false,
1098
+ "single_word": false,
1099
+ "special": false
1100
+ },
1101
+ "137": {
1102
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1103
+ "lstrip": false,
1104
+ "normalized": true,
1105
+ "rstrip": false,
1106
+ "single_word": false,
1107
+ "special": false
1108
+ },
1109
+ "138": {
1110
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1111
+ "lstrip": false,
1112
+ "normalized": true,
1113
+ "rstrip": false,
1114
+ "single_word": false,
1115
+ "special": false
1116
+ },
1117
+ "139": {
1118
+ "content": "▁▁",
1119
+ "lstrip": false,
1120
+ "normalized": true,
1121
+ "rstrip": false,
1122
+ "single_word": false,
1123
+ "special": false
1124
+ },
1125
+ "140": {
1126
+ "content": "▁▁▁",
1127
+ "lstrip": false,
1128
+ "normalized": true,
1129
+ "rstrip": false,
1130
+ "single_word": false,
1131
+ "special": false
1132
+ },
1133
+ "141": {
1134
+ "content": "▁▁▁▁",
1135
+ "lstrip": false,
1136
+ "normalized": true,
1137
+ "rstrip": false,
1138
+ "single_word": false,
1139
+ "special": false
1140
+ },
1141
+ "142": {
1142
+ "content": "▁▁▁▁▁",
1143
+ "lstrip": false,
1144
+ "normalized": true,
1145
+ "rstrip": false,
1146
+ "single_word": false,
1147
+ "special": false
1148
+ },
1149
+ "143": {
1150
+ "content": "▁▁▁▁▁▁",
1151
+ "lstrip": false,
1152
+ "normalized": true,
1153
+ "rstrip": false,
1154
+ "single_word": false,
1155
+ "special": false
1156
+ },
1157
+ "144": {
1158
+ "content": "▁▁▁▁▁▁▁",
1159
+ "lstrip": false,
1160
+ "normalized": true,
1161
+ "rstrip": false,
1162
+ "single_word": false,
1163
+ "special": false
1164
+ },
1165
+ "145": {
1166
+ "content": "▁▁▁▁▁▁▁▁",
1167
+ "lstrip": false,
1168
+ "normalized": true,
1169
+ "rstrip": false,
1170
+ "single_word": false,
1171
+ "special": false
1172
+ },
1173
+ "146": {
1174
+ "content": "▁▁▁▁▁▁▁▁▁",
1175
+ "lstrip": false,
1176
+ "normalized": true,
1177
+ "rstrip": false,
1178
+ "single_word": false,
1179
+ "special": false
1180
+ },
1181
+ "147": {
1182
+ "content": "▁▁▁▁▁▁▁▁▁▁",
1183
+ "lstrip": false,
1184
+ "normalized": true,
1185
+ "rstrip": false,
1186
+ "single_word": false,
1187
+ "special": false
1188
+ },
1189
+ "148": {
1190
+ "content": "▁▁▁▁▁▁▁▁▁▁▁",
1191
+ "lstrip": false,
1192
+ "normalized": true,
1193
+ "rstrip": false,
1194
+ "single_word": false,
1195
+ "special": false
1196
+ },
1197
+ "149": {
1198
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁",
1199
+ "lstrip": false,
1200
+ "normalized": true,
1201
+ "rstrip": false,
1202
+ "single_word": false,
1203
+ "special": false
1204
+ },
1205
+ "150": {
1206
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁",
1207
+ "lstrip": false,
1208
+ "normalized": true,
1209
+ "rstrip": false,
1210
+ "single_word": false,
1211
+ "special": false
1212
+ },
1213
+ "151": {
1214
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1215
+ "lstrip": false,
1216
+ "normalized": true,
1217
+ "rstrip": false,
1218
+ "single_word": false,
1219
+ "special": false
1220
+ },
1221
+ "152": {
1222
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1223
+ "lstrip": false,
1224
+ "normalized": true,
1225
+ "rstrip": false,
1226
+ "single_word": false,
1227
+ "special": false
1228
+ },
1229
+ "153": {
1230
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1231
+ "lstrip": false,
1232
+ "normalized": true,
1233
+ "rstrip": false,
1234
+ "single_word": false,
1235
+ "special": false
1236
+ },
1237
+ "154": {
1238
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1239
+ "lstrip": false,
1240
+ "normalized": true,
1241
+ "rstrip": false,
1242
+ "single_word": false,
1243
+ "special": false
1244
+ },
1245
+ "155": {
1246
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1247
+ "lstrip": false,
1248
+ "normalized": true,
1249
+ "rstrip": false,
1250
+ "single_word": false,
1251
+ "special": false
1252
+ },
1253
+ "156": {
1254
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1255
+ "lstrip": false,
1256
+ "normalized": true,
1257
+ "rstrip": false,
1258
+ "single_word": false,
1259
+ "special": false
1260
+ },
1261
+ "157": {
1262
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1263
+ "lstrip": false,
1264
+ "normalized": true,
1265
+ "rstrip": false,
1266
+ "single_word": false,
1267
+ "special": false
1268
+ },
1269
+ "158": {
1270
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1271
+ "lstrip": false,
1272
+ "normalized": true,
1273
+ "rstrip": false,
1274
+ "single_word": false,
1275
+ "special": false
1276
+ },
1277
+ "159": {
1278
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1279
+ "lstrip": false,
1280
+ "normalized": true,
1281
+ "rstrip": false,
1282
+ "single_word": false,
1283
+ "special": false
1284
+ },
1285
+ "160": {
1286
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1287
+ "lstrip": false,
1288
+ "normalized": true,
1289
+ "rstrip": false,
1290
+ "single_word": false,
1291
+ "special": false
1292
+ },
1293
+ "161": {
1294
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1295
+ "lstrip": false,
1296
+ "normalized": true,
1297
+ "rstrip": false,
1298
+ "single_word": false,
1299
+ "special": false
1300
+ },
1301
+ "162": {
1302
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1303
+ "lstrip": false,
1304
+ "normalized": true,
1305
+ "rstrip": false,
1306
+ "single_word": false,
1307
+ "special": false
1308
+ },
1309
+ "163": {
1310
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1311
+ "lstrip": false,
1312
+ "normalized": true,
1313
+ "rstrip": false,
1314
+ "single_word": false,
1315
+ "special": false
1316
+ },
1317
+ "164": {
1318
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1319
+ "lstrip": false,
1320
+ "normalized": true,
1321
+ "rstrip": false,
1322
+ "single_word": false,
1323
+ "special": false
1324
+ },
1325
+ "165": {
1326
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1327
+ "lstrip": false,
1328
+ "normalized": true,
1329
+ "rstrip": false,
1330
+ "single_word": false,
1331
+ "special": false
1332
+ },
1333
+ "166": {
1334
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1335
+ "lstrip": false,
1336
+ "normalized": true,
1337
+ "rstrip": false,
1338
+ "single_word": false,
1339
+ "special": false
1340
+ },
1341
+ "167": {
1342
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1343
+ "lstrip": false,
1344
+ "normalized": true,
1345
+ "rstrip": false,
1346
+ "single_word": false,
1347
+ "special": false
1348
+ },
1349
+ "168": {
1350
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1351
+ "lstrip": false,
1352
+ "normalized": true,
1353
+ "rstrip": false,
1354
+ "single_word": false,
1355
+ "special": false
1356
+ },
1357
+ "169": {
1358
+ "content": "<table>",
1359
+ "lstrip": false,
1360
+ "normalized": true,
1361
+ "rstrip": false,
1362
+ "single_word": false,
1363
+ "special": false
1364
+ },
1365
+ "170": {
1366
+ "content": "<caption>",
1367
+ "lstrip": false,
1368
+ "normalized": true,
1369
+ "rstrip": false,
1370
+ "single_word": false,
1371
+ "special": false
1372
+ },
1373
+ "171": {
1374
+ "content": "<thead>",
1375
+ "lstrip": false,
1376
+ "normalized": true,
1377
+ "rstrip": false,
1378
+ "single_word": false,
1379
+ "special": false
1380
+ },
1381
+ "172": {
1382
+ "content": "<tbody>",
1383
+ "lstrip": false,
1384
+ "normalized": true,
1385
+ "rstrip": false,
1386
+ "single_word": false,
1387
+ "special": false
1388
+ },
1389
+ "173": {
1390
+ "content": "<tfoot>",
1391
+ "lstrip": false,
1392
+ "normalized": true,
1393
+ "rstrip": false,
1394
+ "single_word": false,
1395
+ "special": false
1396
+ },
1397
+ "174": {
1398
+ "content": "<tr>",
1399
+ "lstrip": false,
1400
+ "normalized": true,
1401
+ "rstrip": false,
1402
+ "single_word": false,
1403
+ "special": false
1404
+ },
1405
+ "175": {
1406
+ "content": "<th>",
1407
+ "lstrip": false,
1408
+ "normalized": true,
1409
+ "rstrip": false,
1410
+ "single_word": false,
1411
+ "special": false
1412
+ },
1413
+ "176": {
1414
+ "content": "<td>",
1415
+ "lstrip": false,
1416
+ "normalized": true,
1417
+ "rstrip": false,
1418
+ "single_word": false,
1419
+ "special": false
1420
+ },
1421
+ "177": {
1422
+ "content": "</table>",
1423
+ "lstrip": false,
1424
+ "normalized": true,
1425
+ "rstrip": false,
1426
+ "single_word": false,
1427
+ "special": false
1428
+ },
1429
+ "178": {
1430
+ "content": "</caption>",
1431
+ "lstrip": false,
1432
+ "normalized": true,
1433
+ "rstrip": false,
1434
+ "single_word": false,
1435
+ "special": false
1436
+ },
1437
+ "179": {
1438
+ "content": "</thead>",
1439
+ "lstrip": false,
1440
+ "normalized": true,
1441
+ "rstrip": false,
1442
+ "single_word": false,
1443
+ "special": false
1444
+ },
1445
+ "180": {
1446
+ "content": "</tbody>",
1447
+ "lstrip": false,
1448
+ "normalized": true,
1449
+ "rstrip": false,
1450
+ "single_word": false,
1451
+ "special": false
1452
+ },
1453
+ "181": {
1454
+ "content": "</tfoot>",
1455
+ "lstrip": false,
1456
+ "normalized": true,
1457
+ "rstrip": false,
1458
+ "single_word": false,
1459
+ "special": false
1460
+ },
1461
+ "182": {
1462
+ "content": "</tr>",
1463
+ "lstrip": false,
1464
+ "normalized": true,
1465
+ "rstrip": false,
1466
+ "single_word": false,
1467
+ "special": false
1468
+ },
1469
+ "183": {
1470
+ "content": "</th>",
1471
+ "lstrip": false,
1472
+ "normalized": true,
1473
+ "rstrip": false,
1474
+ "single_word": false,
1475
+ "special": false
1476
+ },
1477
+ "184": {
1478
+ "content": "</td>",
1479
+ "lstrip": false,
1480
+ "normalized": true,
1481
+ "rstrip": false,
1482
+ "single_word": false,
1483
+ "special": false
1484
+ },
1485
+ "185": {
1486
+ "content": "<h1>",
1487
+ "lstrip": false,
1488
+ "normalized": true,
1489
+ "rstrip": false,
1490
+ "single_word": false,
1491
+ "special": false
1492
+ },
1493
+ "186": {
1494
+ "content": "<h2>",
1495
+ "lstrip": false,
1496
+ "normalized": true,
1497
+ "rstrip": false,
1498
+ "single_word": false,
1499
+ "special": false
1500
+ },
1501
+ "187": {
1502
+ "content": "<h3>",
1503
+ "lstrip": false,
1504
+ "normalized": true,
1505
+ "rstrip": false,
1506
+ "single_word": false,
1507
+ "special": false
1508
+ },
1509
+ "188": {
1510
+ "content": "<h4>",
1511
+ "lstrip": false,
1512
+ "normalized": true,
1513
+ "rstrip": false,
1514
+ "single_word": false,
1515
+ "special": false
1516
+ },
1517
+ "189": {
1518
+ "content": "<h5>",
1519
+ "lstrip": false,
1520
+ "normalized": true,
1521
+ "rstrip": false,
1522
+ "single_word": false,
1523
+ "special": false
1524
+ },
1525
+ "190": {
1526
+ "content": "<h6>",
1527
+ "lstrip": false,
1528
+ "normalized": true,
1529
+ "rstrip": false,
1530
+ "single_word": false,
1531
+ "special": false
1532
+ },
1533
+ "191": {
1534
+ "content": "<blockquote>",
1535
+ "lstrip": false,
1536
+ "normalized": true,
1537
+ "rstrip": false,
1538
+ "single_word": false,
1539
+ "special": false
1540
+ },
1541
+ "192": {
1542
+ "content": "</h1>",
1543
+ "lstrip": false,
1544
+ "normalized": true,
1545
+ "rstrip": false,
1546
+ "single_word": false,
1547
+ "special": false
1548
+ },
1549
+ "193": {
1550
+ "content": "</h2>",
1551
+ "lstrip": false,
1552
+ "normalized": true,
1553
+ "rstrip": false,
1554
+ "single_word": false,
1555
+ "special": false
1556
+ },
1557
+ "194": {
1558
+ "content": "</h3>",
1559
+ "lstrip": false,
1560
+ "normalized": true,
1561
+ "rstrip": false,
1562
+ "single_word": false,
1563
+ "special": false
1564
+ },
1565
+ "195": {
1566
+ "content": "</h4>",
1567
+ "lstrip": false,
1568
+ "normalized": true,
1569
+ "rstrip": false,
1570
+ "single_word": false,
1571
+ "special": false
1572
+ },
1573
+ "196": {
1574
+ "content": "</h5>",
1575
+ "lstrip": false,
1576
+ "normalized": true,
1577
+ "rstrip": false,
1578
+ "single_word": false,
1579
+ "special": false
1580
+ },
1581
+ "197": {
1582
+ "content": "</h6>",
1583
+ "lstrip": false,
1584
+ "normalized": true,
1585
+ "rstrip": false,
1586
+ "single_word": false,
1587
+ "special": false
1588
+ },
1589
+ "198": {
1590
+ "content": "</blockquote>",
1591
+ "lstrip": false,
1592
+ "normalized": true,
1593
+ "rstrip": false,
1594
+ "single_word": false,
1595
+ "special": false
1596
+ },
1597
+ "199": {
1598
+ "content": "<strong>",
1599
+ "lstrip": false,
1600
+ "normalized": true,
1601
+ "rstrip": false,
1602
+ "single_word": false,
1603
+ "special": false
1604
+ },
1605
+ "200": {
1606
+ "content": "<em>",
1607
+ "lstrip": false,
1608
+ "normalized": true,
1609
+ "rstrip": false,
1610
+ "single_word": false,
1611
+ "special": false
1612
+ },
1613
+ "201": {
1614
+ "content": "<b>",
1615
+ "lstrip": false,
1616
+ "normalized": true,
1617
+ "rstrip": false,
1618
+ "single_word": false,
1619
+ "special": false
1620
+ },
1621
+ "202": {
1622
+ "content": "<i>",
1623
+ "lstrip": false,
1624
+ "normalized": true,
1625
+ "rstrip": false,
1626
+ "single_word": false,
1627
+ "special": false
1628
+ },
1629
+ "203": {
1630
+ "content": "<u>",
1631
+ "lstrip": false,
1632
+ "normalized": true,
1633
+ "rstrip": false,
1634
+ "single_word": false,
1635
+ "special": false
1636
+ },
1637
+ "204": {
1638
+ "content": "<s>",
1639
+ "lstrip": false,
1640
+ "normalized": true,
1641
+ "rstrip": false,
1642
+ "single_word": false,
1643
+ "special": false
1644
+ },
1645
+ "205": {
1646
+ "content": "<sub>",
1647
+ "lstrip": false,
1648
+ "normalized": true,
1649
+ "rstrip": false,
1650
+ "single_word": false,
1651
+ "special": false
1652
+ },
1653
+ "206": {
1654
+ "content": "<sup>",
1655
+ "lstrip": false,
1656
+ "normalized": true,
1657
+ "rstrip": false,
1658
+ "single_word": false,
1659
+ "special": false
1660
+ },
1661
+ "207": {
1662
+ "content": "<code>",
1663
+ "lstrip": false,
1664
+ "normalized": true,
1665
+ "rstrip": false,
1666
+ "single_word": false,
1667
+ "special": false
1668
+ },
1669
+ "208": {
1670
+ "content": "</strong>",
1671
+ "lstrip": false,
1672
+ "normalized": true,
1673
+ "rstrip": false,
1674
+ "single_word": false,
1675
+ "special": false
1676
+ },
1677
+ "209": {
1678
+ "content": "</em>",
1679
+ "lstrip": false,
1680
+ "normalized": true,
1681
+ "rstrip": false,
1682
+ "single_word": false,
1683
+ "special": false
1684
+ },
1685
+ "210": {
1686
+ "content": "</b>",
1687
+ "lstrip": false,
1688
+ "normalized": true,
1689
+ "rstrip": false,
1690
+ "single_word": false,
1691
+ "special": false
1692
+ },
1693
+ "211": {
1694
+ "content": "</i>",
1695
+ "lstrip": false,
1696
+ "normalized": true,
1697
+ "rstrip": false,
1698
+ "single_word": false,
1699
+ "special": false
1700
+ },
1701
+ "212": {
1702
+ "content": "</u>",
1703
+ "lstrip": false,
1704
+ "normalized": true,
1705
+ "rstrip": false,
1706
+ "single_word": false,
1707
+ "special": false
1708
+ },
1709
+ "213": {
1710
+ "content": "</s>",
1711
+ "lstrip": false,
1712
+ "normalized": true,
1713
+ "rstrip": false,
1714
+ "single_word": false,
1715
+ "special": false
1716
+ },
1717
+ "214": {
1718
+ "content": "</sub>",
1719
+ "lstrip": false,
1720
+ "normalized": true,
1721
+ "rstrip": false,
1722
+ "single_word": false,
1723
+ "special": false
1724
+ },
1725
+ "215": {
1726
+ "content": "</sup>",
1727
+ "lstrip": false,
1728
+ "normalized": true,
1729
+ "rstrip": false,
1730
+ "single_word": false,
1731
+ "special": false
1732
+ },
1733
+ "216": {
1734
+ "content": "</code>",
1735
+ "lstrip": false,
1736
+ "normalized": true,
1737
+ "rstrip": false,
1738
+ "single_word": false,
1739
+ "special": false
1740
+ },
1741
+ "257152": {
1742
+ "content": "<image>",
1743
+ "lstrip": false,
1744
+ "normalized": false,
1745
+ "rstrip": false,
1746
+ "single_word": false,
1747
+ "special": true
1748
+ }
1749
+ },
1750
+ "additional_special_tokens": [
1751
+ "<image>"
1752
+ ],
1753
+ "bos_token": "<bos>",
1754
+ "clean_up_tokenization_spaces": false,
1755
+ "eos_token": "<eos>",
1756
+ "model_max_length": 1000000000000000019884624838656,
1757
+ "pad_token": "<pad>",
1758
+ "processor_class": "PaliGemmaProcessor",
1759
+ "sp_model_kwargs": {},
1760
+ "spaces_between_special_tokens": false,
1761
+ "tokenizer_class": "GemmaTokenizer",
1762
+ "unk_token": "<unk>",
1763
+ "use_default_system_prompt": false
1764
+ }