ppo-LunarLander-v2 / config.json
leoleung93's picture
Upload PPO LunarLander-v2 trained agent
b1d33fb
raw
history blame
14.3 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8b5aad65e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8b5aad6670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8b5aad6700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8b5aad6790>", "_build": "<function ActorCriticPolicy._build at 0x7f8b5aad6820>", "forward": "<function ActorCriticPolicy.forward at 0x7f8b5aad68b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8b5aad6940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8b5aad69d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8b5aad6a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8b5aad6af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8b5aad6b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8b5aaceae0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670493615764204528, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPu3b1Iz4G6TYQ4OWYwObP2u0O7ahdTuAAAAAAAAAAATYdpPvYdqj9ZpRI/h1gZv62c2D7gA14+AAAAAAAAAABtMQ++KNRJP7IDrLwSdAS/0X4ZvkUgNT4AAAAAAAAAAJo1/jvcWRe830y7O+HFRDzrD4C9goAnPQAAgD8AAIA/ZqIhPR/CKz/jRe88SOgAv38z3TwuNgI8AAAAAAAAAADmnk49w2ExupxvujqV3UA2hRRgO2Pe2bkAAIA/AACAPzPbvTvDfSG6UulJMy6ZHzDH/oG76srMswAAgD8AAIA/87rIvY7Fpj+sfMu+yboBvwSSJr72gBq+AAAAAAAAAACadqA8XIBPvPBDJz5OeZ89JC3XvIoE4LwAAIA/AACAP5oj9TyD1WO82Bw7vaTT4zvznL29O6qkvQAAgD8AAIA/gGsLPboFkj/7WuY9NmAqv1XtpT2dRq49AAAAAAAAAAALiYW+O6sjP4FGvz2qIPO+0y2vvsNIYz4AAAAAAAAAAKpkdr4I8O686nWWvP8m/LqGOVI+vK6/OwAAgD8AAIA/M8OiPA8zKrwJqZK8pOPMPE9kLT1dB3K8AACAPwAAgD/N/jG99vglvO5abj4SHhc9MMGSveqU8z0AAIA/AACAP4Cycb1ScP25hjPLOtPgsbUXKFy5+1HruQAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIY/GbwgqEckCUhpRSlIwBbJRL0owBdJRHQLzsvQk5ZKZ1fZQoaAZoCWgPQwi++KI9Hq9wQJSGlFKUaBVL52gWR0C87MsMRYigdX2UKGgGaAloD0MIaomV0Ygmc0CUhpRSlGgVS/FoFkdAvOziz5XU6XV9lChoBmgJaA9DCAd+VMM+/3FAlIaUUpRoFUvQaBZHQLzs84xUNrl1fZQoaAZoCWgPQwhDWI0lrNZwQJSGlFKUaBVLwmgWR0C87P8DSw4bdX2UKGgGaAloD0MI7+cU5Odib0CUhpRSlGgVS85oFkdAvO1OesgdO3V9lChoBmgJaA9DCDarPlebpXNAlIaUUpRoFU0AAWgWR0C87VGJaaCudX2UKGgGaAloD0MIPGcLCK3ybUCUhpRSlGgVS+poFkdAvO1zeFcps3V9lChoBmgJaA9DCFSobi5+InFAlIaUUpRoFU28AWgWR0C87YT/2kBTdX2UKGgGaAloD0MIPkFiuzvMckCUhpRSlGgVS91oFkdAvO2KGVRk3HV9lChoBmgJaA9DCPFneLNGdnNAlIaUUpRoFU0hAWgWR0C87Z2eUY8/dX2UKGgGaAloD0MIpOGUubmDcECUhpRSlGgVS+poFkdAvO2tuNxVAHV9lChoBmgJaA9DCIwVNZjG3XBAlIaUUpRoFUvRaBZHQLzuPEdNnGt1fZQoaAZoCWgPQwiVtrjG58JxQJSGlFKUaBVL2GgWR0C87jvGMn7YdX2UKGgGaAloD0MI/g3aq0/JcECUhpRSlGgVS71oFkdAvO5A1He7+XV9lChoBmgJaA9DCABWR460V3FAlIaUUpRoFUvtaBZHQLzuTwOOKfp1fZQoaAZoCWgPQwhC0NGq1jVxQJSGlFKUaBVNBgFoFkdAvO5jFAE+xHV9lChoBmgJaA9DCBJPdjPjKnBAlIaUUpRoFUvkaBZHQLzudazu4PR1fZQoaAZoCWgPQwgiwyreyNw5QJSGlFKUaBVLkWgWR0C87q6gmJFcdX2UKGgGaAloD0MILzTXaaRVckCUhpRSlGgVS9BoFkdAvO66IacZtXV9lChoBmgJaA9DCEUSvYzi2G1AlIaUUpRoFUvPaBZHQLzu3M2FWXF1fZQoaAZoCWgPQwiB64oZoZJyQJSGlFKUaBVLwGgWR0C87u9alk6LdX2UKGgGaAloD0MI2zS21wKgc0CUhpRSlGgVTRkBaBZHQLzu71dgOSZ1fZQoaAZoCWgPQwhqSx3ktYNyQJSGlFKUaBVL6mgWR0C87yBf0EowdX2UKGgGaAloD0MIyERKszmGcUCUhpRSlGgVS7hoFkdAvO+GfAbhnHV9lChoBmgJaA9DCFmmXyJeU29AlIaUUpRoFUvIaBZHQLzv07L+xW11fZQoaAZoCWgPQwgIsMivH6dwQJSGlFKUaBVL22gWR0C87+Rl6JIldX2UKGgGaAloD0MIKsdkcf/KbkCUhpRSlGgVS9NoFkdAvPACGnGbTnV9lChoBmgJaA9DCLyWkA/6HXFAlIaUUpRoFUv4aBZHQLzwDDv3JxN1fZQoaAZoCWgPQwhupGyR9FxzQJSGlFKUaBVNjgFoFkdAvPAnpMYdhnV9lChoBmgJaA9DCOc1dolqIHFAlIaUUpRoFU0GAWgWR0C88Cu1KGtZdX2UKGgGaAloD0MIhJ1i1WCpc0CUhpRSlGgVS9xoFkdAvPBRxNqQBHV9lChoBmgJaA9DCOJyvAIRlHBAlIaUUpRoFUvGaBZHQLzwWV6/qPh1fZQoaAZoCWgPQwi/1qVGaK1xQJSGlFKUaBVLymgWR0C88HU9hZyNdX2UKGgGaAloD0MIexSuRyHycUCUhpRSlGgVS+1oFkdAvPB/CKrJbXV9lChoBmgJaA9DCE+w/zo3wnJAlIaUUpRoFUvYaBZHQLzwkPQOWjZ1fZQoaAZoCWgPQwh3D9B9uXRzQJSGlFKUaBVL02gWR0C89M1d5Y5ldX2UKGgGaAloD0MICRUcXhCFZECUhpRSlGgVTegDaBZHQLz1LT72tdR1fZQoaAZoCWgPQwg+0AoMWaNwQJSGlFKUaBVL2mgWR0C89URfOUt7dX2UKGgGaAloD0MIH7k16bZ2cECUhpRSlGgVS8BoFkdAvPVad4FA3XV9lChoBmgJaA9DCOM1r+psN3FAlIaUUpRoFUvGaBZHQLz1s88La251fZQoaAZoCWgPQwi1F9F2TEhxQJSGlFKUaBVL3WgWR0C89bu+mFajdX2UKGgGaAloD0MIq10T0pquckCUhpRSlGgVS9loFkdAvPXcu6ErXnV9lChoBmgJaA9DCPjCZKrgVnNAlIaUUpRoFU0AAWgWR0C89ePN7jT8dX2UKGgGaAloD0MICOOnce+ecECUhpRSlGgVS9BoFkdAvPXxFF2FFnV9lChoBmgJaA9DCDvl0Y2wO3JAlIaUUpRoFUv7aBZHQLz1/T/yXld1fZQoaAZoCWgPQwjY0qOpniJKQJSGlFKUaBVLnmgWR0C89fyNsFdLdX2UKGgGaAloD0MI8DFYcWrycUCUhpRSlGgVS+hoFkdAvPYhzo2XLXV9lChoBmgJaA9DCJLNVfNcM3FAlIaUUpRoFUvZaBZHQLz2KkTHsC11fZQoaAZoCWgPQwidDmQ99YhyQJSGlFKUaBVL4WgWR0C89i/gFX7tdX2UKGgGaAloD0MI3UWYotwtcECUhpRSlGgVS91oFkdAvPZA8GLUC3V9lChoBmgJaA9DCHQkl//QmXFAlIaUUpRoFUu7aBZHQLz2hY7JW/91fZQoaAZoCWgPQwhkIqXZPKI1QJSGlFKUaBVLcWgWR0C89oWDYh+wdX2UKGgGaAloD0MIbNCX3n5vckCUhpRSlGgVS75oFkdAvPa3JV81GnV9lChoBmgJaA9DCK1M+KW+AXFAlIaUUpRoFUvMaBZHQLz2u6qKgqV1fZQoaAZoCWgPQwh9WkV/6HRxQJSGlFKUaBVL2WgWR0C890RSxZ+ydX2UKGgGaAloD0MI+cCO/wJickCUhpRSlGgVS89oFkdAvPdbqgRK6HV9lChoBmgJaA9DCFRTknX4+nBAlIaUUpRoFUu1aBZHQLz3f9srNGF1fZQoaAZoCWgPQwhaYmU08lBxQJSGlFKUaBVL32gWR0C894SMPz4DdX2UKGgGaAloD0MIprc/F402bkCUhpRSlGgVS99oFkdAvPeTgwXZXnV9lChoBmgJaA9DCD1gHjLlGnNAlIaUUpRoFUvMaBZHQLz3pUjLSu11fZQoaAZoCWgPQwjjw+xlm2BxQJSGlFKUaBVL62gWR0C89/mnjyWidX2UKGgGaAloD0MIN8e5TbiWZUCUhpRSlGgVTegDaBZHQLz4ApfQa751fZQoaAZoCWgPQwiRgNHljdFxQJSGlFKUaBVLy2gWR0C8+BmpqASWdX2UKGgGaAloD0MI6rDCLZ8UcUCUhpRSlGgVS85oFkdAvPgfKbKA8XV9lChoBmgJaA9DCKgavRrgO3JAlIaUUpRoFUv/aBZHQLz4LpEQXhx1fZQoaAZoCWgPQwjpYWh1ctNxQJSGlFKUaBVLw2gWR0C8+DfqLS/kdX2UKGgGaAloD0MIfcwHBHqYc0CUhpRSlGgVTVYBaBZHQLz4f2xptaZ1fZQoaAZoCWgPQwhT6LzGrnhyQJSGlFKUaBVL8mgWR0C8+Io+GGmDdX2UKGgGaAloD0MIKuYg6GhpbkCUhpRSlGgVS89oFkdAvPjL1GsmwHV9lChoBmgJaA9DCONve4IEa3JAlIaUUpRoFUvNaBZHQLz43BwMpgF1fZQoaAZoCWgPQwhbXU4JiEBoQJSGlFKUaBVN6ANoFkdAvPjcJHAh0XV9lChoBmgJaA9DCL74oj3eQHJAlIaUUpRoFUvMaBZHQLz5FExZdOZ1fZQoaAZoCWgPQwgVkWEV70dwQJSGlFKUaBVL32gWR0C8+RiaZx7zdX2UKGgGaAloD0MIxofZy3aCc0CUhpRSlGgVS+hoFkdAvPkjO+qR2nV9lChoBmgJaA9DCPbtJCL8WHFAlIaUUpRoFUvvaBZHQLz5Pj+rELp1fZQoaAZoCWgPQwg7pu7Krm1wQJSGlFKUaBVLymgWR0C8+VbEYO2BdX2UKGgGaAloD0MIHTwTmmTDcECUhpRSlGgVS+BoFkdAvPlyoESuhnV9lChoBmgJaA9DCFj/5zBfmnJAlIaUUpRoFUvJaBZHQLz5iNsWO6x1fZQoaAZoCWgPQwhyiLg5FYFzQJSGlFKUaBVLz2gWR0C8+YoVARkFdX2UKGgGaAloD0MIDvlnBvGRc0CUhpRSlGgVS+hoFkdAvPmd6AvtdHV9lChoBmgJaA9DCGjO+pSjTnJAlIaUUpRoFUvHaBZHQLz6JdQfp2V1fZQoaAZoCWgPQwhrtvKSf2NuQJSGlFKUaBVL22gWR0C8+jnQQcxTdX2UKGgGaAloD0MIu5nRj4bJRECUhpRSlGgVS6ZoFkdAvPpZuP3i73V9lChoBmgJaA9DCAeZZOSsLHNAlIaUUpRoFUvlaBZHQLz6XRsMy8B1fZQoaAZoCWgPQwj3WtB74/NzQJSGlFKUaBVLwWgWR0C8+mBIjGDMdX2UKGgGaAloD0MIrhHBODgtcECUhpRSlGgVS8loFkdAvPp7h1klNXV9lChoBmgJaA9DCMJPHEA/sXBAlIaUUpRoFUvXaBZHQLz6g3trsSl1fZQoaAZoCWgPQwhSYAFM2fBwQJSGlFKUaBVLsWgWR0C8+r+7lJYldX2UKGgGaAloD0MIGmmpvJ03c0CUhpRSlGgVTVYBaBZHQLz6zx9G7SR1fZQoaAZoCWgPQwgzUu+p3NtxQJSGlFKUaBVL3GgWR0C8+tuCCjDbdX2UKGgGaAloD0MImx4UlGKPc0CUhpRSlGgVS8JoFkdAvPrkBS1ma3V9lChoBmgJaA9DCEnyXN8Hg3FAlIaUUpRoFU1lAWgWR0C8+vgieNDMdX2UKGgGaAloD0MIONibGFJScECUhpRSlGgVS8ZoFkdAvPsBR3u/lHV9lChoBmgJaA9DCIs08Q6w/nFAlIaUUpRoFUu/aBZHQLz7lxC6Ymd1fZQoaAZoCWgPQwjvkGKAhFJzQJSGlFKUaBVNNAFoFkdAvPuYMqjJuHV9lChoBmgJaA9DCMk6HF3lA3NAlIaUUpRoFUvUaBZHQLz7qJPIn0F1fZQoaAZoCWgPQwjEBgsnqWlyQJSGlFKUaBVLy2gWR0C8+8f2K2rodX2UKGgGaAloD0MIQMObNbhpc0CUhpRSlGgVS9hoFkdAvPvjdvbXYnV9lChoBmgJaA9DCMJR8upcyHBAlIaUUpRoFUvWaBZHQLz74xpcoph1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 615, "n_steps": 1024, "gamma": 0.998, "gae_lambda": 0.98, "ent_coef": 0.02, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 100, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}