File size: 5,286 Bytes
5ca8ac6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
# Copyright (c) OpenMMLab. All rights reserved.
import json
import os.path as osp
from pathlib import Path
import numpy as np
import triton_python_backend_utils as pb_utils
# This tokenizer is `lmdeploy/turbomind/tokenizer.py`. When an LLM is served
# by triton inference server, it has to be converted first by running
# `python lmdeploy/serve/turbomind/deploy.py`. Then
# `lmdeploy/turbomind/tokenizer.py` will be copied to `tokenizer/tokenizer.py`
from .tokenizer.tokenizer import Tokenizer
class TritonPythonModel:
"""Your Python model must use the same class name.
Every Python model that is created must have "TritonPythonModel" as the
class name.
"""
def initialize(self, args):
"""`initialize` is called only once when the model is being loaded.
Implementing `initialize` function is optional. This function allows
the model to initialize any state associated with this model.
Parameters
----------
args : dict
Both keys and values are strings. The dictionary keys and values are:
* model_config: A JSON string containing the model configuration
* model_instance_kind: A string containing model instance kind
* model_instance_device_id: A string containing model instance device
ID
* model_repository: Model repository path
* model_version: Model version
* model_name: Model name
"""
# Parse model configs
self.model_config = model_config = json.loads(args['model_config'])
# Parse model output configs
output_config = pb_utils.get_output_config_by_name(
model_config, 'OUTPUT')
# Convert Triton types to numpy types
self.output_dtype = pb_utils.triton_string_to_numpy(
output_config['data_type'])
cur_folder = Path(__file__).parent
self.tokenizer = Tokenizer(
osp.join(
cur_folder, self.model_config['parameters']['tokenizer_path']
['string_value']))
def execute(self, requests):
"""`execute` must be implemented in every Python model. `execute`
function receives a list of pb_utils.InferenceRequest as the only
argument. This function is called when an inference is requested
for this model. Depending on the batching configuration (e.g. Dynamic
Batching) used, `requests` may contain multiple requests. Every
Python model, must create one pb_utils.InferenceResponse for every
pb_utils.InferenceRequest in `requests`. If there is an error, you can
set the error argument when creating a pb_utils.InferenceResponse.
Parameters
----------
requests : list
A list of pb_utils.InferenceRequest
Returns
-------
list
A list of pb_utils.InferenceResponse. The length of this list must
be the same as `requests`
"""
responses = []
# Every Python backend must iterate over everyone of the requests
# and create a pb_utils.InferenceResponse for each of them.
for idx, request in enumerate(requests):
# Get input tensors
tokens_batch = pb_utils.get_input_tensor_by_name(
request, 'TOKENS_BATCH').as_numpy()
sequence_length = pb_utils.get_input_tensor_by_name(
request, 'sequence_length').as_numpy()
# Postprocessing output data.
outputs = self._postprocessing(tokens_batch.tolist(),
sequence_length)
# Create output tensors. You need pb_utils.Tensor
# objects to create pb_utils.InferenceResponse.
output_tensor = pb_utils.Tensor(
'OUTPUT',
np.array(outputs).astype(self.output_dtype))
# Create InferenceResponse. You can set an error here in case
# there was a problem with handling this inference request.
# Below is an example of how you can set errors in inference
# response:
#
# pb_utils.InferenceResponse(
# output_tensors=..., TritonError("An error occurred"))
inference_response = pb_utils.InferenceResponse(
output_tensors=[output_tensor])
responses.append(inference_response)
# You should return a list of pb_utils.InferenceResponse. Length
# of this list must match the length of `requests` list.
return responses
def finalize(self):
"""`finalize` is called only once when the model is being unloaded.
Implementing `finalize` function is optional. This function allows the
model to perform any necessary clean ups before exit.
"""
print('Cleaning up...')
def _postprocessing(self, tokens_batch, sequence_length):
"""decode token ids into texts."""
outputs = []
for beam_tokens, beam_len in zip(tokens_batch, sequence_length):
for tokens, _len in zip(beam_tokens, beam_len):
output = self.tokenizer.decode(tokens, _len)
output = output.encode('utf8')
outputs.append(output)
return outputs
|