|
|
|
import json |
|
import os.path as osp |
|
from pathlib import Path |
|
|
|
import numpy as np |
|
import triton_python_backend_utils as pb_utils |
|
|
|
|
|
|
|
|
|
|
|
from .tokenizer.tokenizer import Tokenizer |
|
|
|
|
|
class TritonPythonModel: |
|
"""Your Python model must use the same class name. |
|
|
|
Every Python model that is created must have "TritonPythonModel" as the |
|
class name. |
|
""" |
|
|
|
def initialize(self, args): |
|
"""`initialize` is called only once when the model is being loaded. |
|
Implementing `initialize` function is optional. This function allows |
|
the model to initialize any state associated with this model. |
|
Parameters |
|
---------- |
|
args : dict |
|
Both keys and values are strings. The dictionary keys and values are: |
|
* model_config: A JSON string containing the model configuration |
|
* model_instance_kind: A string containing model instance kind |
|
* model_instance_device_id: A string containing model instance device |
|
ID |
|
* model_repository: Model repository path |
|
* model_version: Model version |
|
* model_name: Model name |
|
""" |
|
|
|
self.model_config = model_config = json.loads(args['model_config']) |
|
|
|
|
|
output_config = pb_utils.get_output_config_by_name( |
|
model_config, 'OUTPUT') |
|
|
|
|
|
self.output_dtype = pb_utils.triton_string_to_numpy( |
|
output_config['data_type']) |
|
|
|
cur_folder = Path(__file__).parent |
|
|
|
self.tokenizer = Tokenizer( |
|
osp.join( |
|
cur_folder, self.model_config['parameters']['tokenizer_path'] |
|
['string_value'])) |
|
|
|
def execute(self, requests): |
|
"""`execute` must be implemented in every Python model. `execute` |
|
function receives a list of pb_utils.InferenceRequest as the only |
|
argument. This function is called when an inference is requested |
|
for this model. Depending on the batching configuration (e.g. Dynamic |
|
Batching) used, `requests` may contain multiple requests. Every |
|
Python model, must create one pb_utils.InferenceResponse for every |
|
pb_utils.InferenceRequest in `requests`. If there is an error, you can |
|
set the error argument when creating a pb_utils.InferenceResponse. |
|
Parameters |
|
---------- |
|
requests : list |
|
A list of pb_utils.InferenceRequest |
|
Returns |
|
------- |
|
list |
|
A list of pb_utils.InferenceResponse. The length of this list must |
|
be the same as `requests` |
|
""" |
|
|
|
responses = [] |
|
|
|
|
|
|
|
for idx, request in enumerate(requests): |
|
|
|
tokens_batch = pb_utils.get_input_tensor_by_name( |
|
request, 'TOKENS_BATCH').as_numpy() |
|
sequence_length = pb_utils.get_input_tensor_by_name( |
|
request, 'sequence_length').as_numpy() |
|
|
|
|
|
outputs = self._postprocessing(tokens_batch.tolist(), |
|
sequence_length) |
|
|
|
|
|
|
|
output_tensor = pb_utils.Tensor( |
|
'OUTPUT', |
|
np.array(outputs).astype(self.output_dtype)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inference_response = pb_utils.InferenceResponse( |
|
output_tensors=[output_tensor]) |
|
responses.append(inference_response) |
|
|
|
|
|
|
|
return responses |
|
|
|
def finalize(self): |
|
"""`finalize` is called only once when the model is being unloaded. |
|
|
|
Implementing `finalize` function is optional. This function allows the |
|
model to perform any necessary clean ups before exit. |
|
""" |
|
print('Cleaning up...') |
|
|
|
def _postprocessing(self, tokens_batch, sequence_length): |
|
"""decode token ids into texts.""" |
|
outputs = [] |
|
for beam_tokens, beam_len in zip(tokens_batch, sequence_length): |
|
for tokens, _len in zip(beam_tokens, beam_len): |
|
output = self.tokenizer.decode(tokens, _len) |
|
output = output.encode('utf8') |
|
outputs.append(output) |
|
return outputs |
|
|