Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -8,7 +8,7 @@ tags:
|
|
8 |
- lstm
|
9 |
license: mit
|
10 |
datasets:
|
11 |
-
- leonvanbokhorst/topic-drift
|
12 |
metrics:
|
13 |
- rmse
|
14 |
- r2_score
|
@@ -24,10 +24,10 @@ model-index:
|
|
24 |
metrics:
|
25 |
- name: Test RMSE
|
26 |
type: rmse
|
27 |
-
value: 0.
|
28 |
- name: Test R²
|
29 |
type: r2
|
30 |
-
value: 0.
|
31 |
- name: Test Loss
|
32 |
type: loss
|
33 |
value: 0.0002
|
@@ -35,7 +35,7 @@ model-index:
|
|
35 |
|
36 |
# Topic Drift Detector Model
|
37 |
|
38 |
-
## Version:
|
39 |
|
40 |
This model detects topic drift in conversations using an enhanced attention-based architecture. Trained on the [leonvanbokhorst/topic-drift](https://huggingface.co/datasets/leonvanbokhorst/topic-drift) dataset.
|
41 |
|
@@ -50,18 +50,18 @@ This model detects topic drift in conversations using an enhanced attention-base
|
|
50 |
## Performance Metrics
|
51 |
```txt
|
52 |
=== Full Training Results ===
|
53 |
-
Best Validation RMSE: 0.
|
54 |
-
Best Validation R²: 0.
|
55 |
|
56 |
=== Test Set Results ===
|
57 |
Loss: 0.0002
|
58 |
-
RMSE: 0.
|
59 |
-
R²: 0.
|
60 |
|
61 |
```
|
62 |
|
63 |
## Training Curves
|
64 |
-

|
|
73 |
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-m3')
|
74 |
|
75 |
# Load topic drift detector
|
76 |
-
model = torch.load('models/
|
77 |
model.eval()
|
78 |
|
79 |
# Prepare conversation window (8 turns)
|
|
|
8 |
- lstm
|
9 |
license: mit
|
10 |
datasets:
|
11 |
+
- leonvanbokhorst/topic-drift-v2
|
12 |
metrics:
|
13 |
- rmse
|
14 |
- r2_score
|
|
|
24 |
metrics:
|
25 |
- name: Test RMSE
|
26 |
type: rmse
|
27 |
+
value: 0.0139
|
28 |
- name: Test R²
|
29 |
type: r2
|
30 |
+
value: 0.8766
|
31 |
- name: Test Loss
|
32 |
type: loss
|
33 |
value: 0.0002
|
|
|
35 |
|
36 |
# Topic Drift Detector Model
|
37 |
|
38 |
+
## Version: v20241225_162244
|
39 |
|
40 |
This model detects topic drift in conversations using an enhanced attention-based architecture. Trained on the [leonvanbokhorst/topic-drift](https://huggingface.co/datasets/leonvanbokhorst/topic-drift) dataset.
|
41 |
|
|
|
50 |
## Performance Metrics
|
51 |
```txt
|
52 |
=== Full Training Results ===
|
53 |
+
Best Validation RMSE: 0.0133
|
54 |
+
Best Validation R²: 0.8873
|
55 |
|
56 |
=== Test Set Results ===
|
57 |
Loss: 0.0002
|
58 |
+
RMSE: 0.0139
|
59 |
+
R²: 0.8766
|
60 |
|
61 |
```
|
62 |
|
63 |
## Training Curves
|
64 |
+

|
65 |
|
66 |
## Usage
|
67 |
```python
|
|
|
73 |
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-m3')
|
74 |
|
75 |
# Load topic drift detector
|
76 |
+
model = torch.load('models/v20241225_162244/topic_drift_model.pt')
|
77 |
model.eval()
|
78 |
|
79 |
# Prepare conversation window (8 turns)
|