File size: 2,196 Bytes
f6ec821 15756ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
library_name: peft
license: apache-2.0
base_model: echarlaix/tiny-random-PhiForCausalLM
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 4e2c54f8-7607-497c-9029-0fd55daa3598
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<br>
# 4e2c54f8-7607-497c-9029-0fd55daa3598
This model is a fine-tuned version of [echarlaix/tiny-random-PhiForCausalLM](https://huggingface.co/echarlaix/tiny-random-PhiForCausalLM) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 6.8322
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.000202
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 50
- training_steps: 310
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0097 | 1 | 6.9341 |
| 6.9004 | 0.4843 | 50 | 6.8755 |
| 6.866 | 0.9685 | 100 | 6.8579 |
| 6.9608 | 1.4528 | 150 | 6.8503 |
| 6.8475 | 1.9370 | 200 | 6.8437 |
| 6.9513 | 2.4213 | 250 | 6.8380 |
| 6.8392 | 2.9056 | 300 | 6.8322 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |