---
library_name: peft
base_model: NousResearch/Yarn-Llama-2-13b-64k
tags:
- axolotl
- generated_from_trainer
model-index:
- name: ec5aaaa8-1721-4f9e-bd9a-b86dbfa61d3e
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: NousResearch/Yarn-Llama-2-13b-64k
bf16: true
chat_template: llama3
datasets:
- data_files:
  - 8f86e5b7e52e2d46_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/8f86e5b7e52e2d46_train_data.json
  type:
    field_input: context
    field_instruction: question
    field_output: answer
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: lesso07/ec5aaaa8-1721-4f9e-bd9a-b86dbfa61d3e
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 77GiB
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/8f86e5b7e52e2d46_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: ec5aaaa8-1721-4f9e-bd9a-b86dbfa61d3e
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: ec5aaaa8-1721-4f9e-bd9a-b86dbfa61d3e
warmup_steps: 10
weight_decay: 0.01
xformers_attention: false

```

</details><br>

# ec5aaaa8-1721-4f9e-bd9a-b86dbfa61d3e

This model is a fine-tuned version of [NousResearch/Yarn-Llama-2-13b-64k](https://huggingface.co/NousResearch/Yarn-Llama-2-13b-64k) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8809

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.7151        | 0.0022 | 1    | 1.4439          |
| 2.6818        | 0.0196 | 9    | 1.2748          |
| 2.1777        | 0.0392 | 18   | 1.0613          |
| 1.8875        | 0.0588 | 27   | 1.0010          |
| 2.152         | 0.0784 | 36   | 0.9630          |
| 1.8127        | 0.0980 | 45   | 0.9362          |
| 1.8015        | 0.1176 | 54   | 0.9176          |
| 1.8115        | 0.1373 | 63   | 0.9006          |
| 1.8991        | 0.1569 | 72   | 0.8903          |
| 1.8648        | 0.1765 | 81   | 0.8843          |
| 1.606         | 0.1961 | 90   | 0.8813          |
| 1.6545        | 0.2157 | 99   | 0.8809          |


### Framework versions

- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1