File size: 10,024 Bytes
fc07932
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "from gensim import corpora\n",
    "from gensim.similarities import SparseMatrixSimilarity\n",
    "from gensim.models import TfidfModel\n",
    "import pandas as pd\n",
    "import gensim\n",
    "import pprint\n",
    "from gensim import corpora\n",
    "from gensim.utils import simple_preprocess\n",
    "from gensim.models import TfidfModel\n",
    "from gensim.parsing import strip_tags, strip_numeric, \\\n",
    "    strip_multiple_whitespaces, stem_text, strip_punctuation, \\\n",
    "    remove_stopwords, preprocess_string\n",
    "import re\n",
    "import os\n",
    "from typing import List"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "ename": "NameError",
     "evalue": "name 'strip_tags' is not defined",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mNameError\u001b[0m                                 Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[6], line 5\u001b[0m\n\u001b[1;32m      1\u001b[0m transform_to_lower \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mlambda\u001b[39;00m s: s\u001b[38;5;241m.\u001b[39mlower()\n\u001b[1;32m      2\u001b[0m remove_single_char \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mlambda\u001b[39;00m s: re\u001b[38;5;241m.\u001b[39msub(\u001b[38;5;124mr\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m\\\u001b[39m\u001b[38;5;124ms+\u001b[39m\u001b[38;5;124m\\\u001b[39m\u001b[38;5;124mw\u001b[39m\u001b[38;5;132;01m{1}\u001b[39;00m\u001b[38;5;124m\\\u001b[39m\u001b[38;5;124ms+\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m'\u001b[39m, s)\n\u001b[1;32m      4\u001b[0m cleaning_filters \u001b[38;5;241m=\u001b[39m [\n\u001b[0;32m----> 5\u001b[0m     \u001b[43mstrip_tags\u001b[49m,\n\u001b[1;32m      6\u001b[0m     strip_numeric,\n\u001b[1;32m      7\u001b[0m     strip_punctuation, \n\u001b[1;32m      8\u001b[0m     strip_multiple_whitespaces, \n\u001b[1;32m      9\u001b[0m     transform_to_lower,\n\u001b[1;32m     10\u001b[0m     remove_stopwords,\n\u001b[1;32m     11\u001b[0m     remove_single_char\n\u001b[1;32m     12\u001b[0m ]\n\u001b[1;32m     14\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mgensim_tokenizer\u001b[39m(docs: List[\u001b[38;5;28mstr\u001b[39m]):\n\u001b[1;32m     15\u001b[0m \u001b[38;5;250m    \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m     16\u001b[0m \u001b[38;5;124;03m    Tokenizes a list of strings using a series of cleaning filters.\u001b[39;00m\n\u001b[1;32m     17\u001b[0m \n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m     22\u001b[0m \u001b[38;5;124;03m        List[List[str]]: A list of tokenized documents, where each document is represented as a list of tokens.\u001b[39;00m\n\u001b[1;32m     23\u001b[0m \u001b[38;5;124;03m    \"\"\"\u001b[39;00m\n",
      "\u001b[0;31mNameError\u001b[0m: name 'strip_tags' is not defined"
     ]
    }
   ],
   "source": [
    "\n",
    "transform_to_lower = lambda s: s.lower()\n",
    "remove_single_char = lambda s: re.sub(r'\\s+\\w{1}\\s+', '', s)\n",
    "\n",
    "cleaning_filters = [\n",
    "    strip_tags,\n",
    "    strip_numeric,\n",
    "    strip_punctuation, \n",
    "    strip_multiple_whitespaces, \n",
    "    transform_to_lower,\n",
    "    remove_stopwords,\n",
    "    remove_single_char\n",
    "]\n",
    "\n",
    "def gensim_tokenizer(docs: List[str]):\n",
    "    \"\"\"\n",
    "    Tokenizes a list of strings using a series of cleaning filters.\n",
    "\n",
    "    Args:\n",
    "        docs (List[str]): A list of strings to be tokenized.\n",
    "\n",
    "    Returns:\n",
    "        List[List[str]]: A list of tokenized documents, where each document is represented as a list of tokens.\n",
    "    \"\"\"\n",
    "    tokenized_docs = list()\n",
    "    for doc in docs:\n",
    "        processed_words = preprocess_string(doc, cleaning_filters)\n",
    "        tokenized_docs.append(processed_words)\n",
    "    \n",
    "    return tokenized_docs\n",
    "\n",
    "\n",
    "def cleaning_pipe(document):\n",
    "    \"\"\"\n",
    "    Applies a series of cleaning steps to a document.\n",
    "\n",
    "    Args:\n",
    "        document (str): The document to be cleaned.\n",
    "\n",
    "    Returns:\n",
    "        list: A list of processed words after applying the cleaning filters.\n",
    "    \"\"\"\n",
    "    # Invoking gensim.parsing.preprocess_string method with set of filters\n",
    "    processed_words = preprocess_string(document, cleaning_filters)\n",
    "    return processed_words\n",
    "\n",
    "\n",
    "def get_gensim_dictionary(tokenized_docs: List[str], dict_name: str = \"corpus\", save_dict: bool = False):\n",
    "    \"\"\"\n",
    "        Create dictionary of words in preprocessed corpus and saves the dict object\n",
    "    \"\"\"\n",
    "    dictionary = corpora.Dictionary(tokenized_docs)\n",
    "    if save_dict:    \n",
    "        parent_folder = \"/Users/luis.morales/Desktop/arxiv-paper-recommender/models/nlp_dictionaries\"\n",
    "        dictionary.save(f'{parent_folder}/{dict_name}.dict')\n",
    "    return dictionary\n",
    "\n",
    "\n",
    "def get_closest_n(index_matrix: SparseMatrixSimilarity, query: str, n: int):\n",
    "    '''\n",
    "    Retrieves the top matching documents as per cosine similarity\n",
    "    between the TF-IDF vector of the query and all documents.\n",
    "\n",
    "    Args:\n",
    "        query (str): The query string to find matching documents.\n",
    "        n (int): The number of closest documents to retrieve.\n",
    "\n",
    "    Returns:\n",
    "        numpy.ndarray: An array of indices representing the top matching documents.\n",
    "    '''\n",
    "    # Clean the query document using cleaning_pipe function\n",
    "    query_document = cleaning_pipe(query)\n",
    "\n",
    "    # Convert the query document to bag-of-words representation\n",
    "    query_bow = dictionary.doc2bow(query_document)\n",
    "\n",
    "    # Calculate similarity scores between the query and all documents using TF-IDF model\n",
    "    sims = index_matrix[index_matrix[query_bow]]\n",
    "\n",
    "    # Get the indices of the top n closest documents based on similarity scores\n",
    "    top_idx = sims.argsort()[-1 * n:][::-1]\n",
    "\n",
    "    return top_idx\n",
    "\n",
    "\n",
    "def get_recomendations_metadata(query: str, df: pd.DataFrame, n: int):\n",
    "    '''\n",
    "    Retrieves metadata recommendations based on a query using cosine similarity.\n",
    "\n",
    "    Args:\n",
    "        query (str): The query string for which recommendations are sought.\n",
    "        n (int): The number of recommendations to retrieve.\n",
    "        df (pd.DataFrame): The DataFrame containing metadata information.\n",
    "\n",
    "    Returns:\n",
    "        pd.DataFrame: A DataFrame containing the recommended metadata, reset with a new index.\n",
    "    '''\n",
    "    # Get the indices of the closest matching documents based on the query\n",
    "    recommendations_idxs = get_closest_n(query, n)\n",
    "    \n",
    "    # Retrieve the recommended metadata rows from the DataFrame based on the indices\n",
    "    recommendations_metadata = df.iloc[recommendations_idxs]\n",
    "    \n",
    "    # Reset the index of the recommended metadata DataFrame\n",
    "    recommendations_metadata = recommendations_metadata.reset_index(drop=True)\n",
    "    \n",
    "    return recommendations_metadata"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "corpus = corpora.Dictionary.load()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "td_idf_model = TfidfModel.load(\"/Users/luis.morales/Desktop/arxiv-paper-recommender/models/tfidf/SemanticSherlock.model\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "similarities = SparseMatrixSimilarity.load(\"/Users/luis.morales/Desktop/arxiv-paper-recommender/models/similarities_matrix/LanguageLiberatorSimilarities/LanguageLiberator\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "    query = args.query\n",
    "    \n",
    "    df = pd.read_parquet(\"/Users/luis.morales/Desktop/arxiv-paper-recommender/data/processed/reduced_arxiv_papers.parquet.gzip\")\n",
    "    \n",
    "    dict_corpus = Dictionary.load(\"/Users/luis.morales/Desktop/arxiv-paper-recommender/models/dictionaries/LanguageLiberator.dict\")\n",
    "    \n",
    "    td_idf_model = TfidfModel.load(\"/Users/luis.morales/Desktop/arxiv-paper-recommender/models/tfidf/SemanticSherlock.model\")\n",
    "    \n",
    "    similarities = SparseMatrixSimilarity.load(\"/Users/luis.morales/Desktop/arxiv-paper-recommender/models/similarities_matrix/LanguageLiberatorSimilarities/LanguageLiberator\")\n",
    "    \n",
    "    results_df = get_recomendations_metadata(query=query, df=df, n=3)\n",
    "    print(results_df.head())"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3.11.4 ('arxiv-env': venv)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.4"
  },
  "orig_nbformat": 4,
  "vscode": {
   "interpreter": {
    "hash": "aae17c2ae2f38cc6f211be9b71a2aa280701d8462782cbc1f67caa83a1603363"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}