--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - lewtun/autotrain-data-acronym-identification - acronym_identification co2_eq_emissions: 10.435358044493652 model-index: - name: autotrain-demo results: - task: name: Text Classification type: text-classification dataset: name: acronym_identification type: acronym_identification args: default metrics: - name: Accuracy type: accuracy value: 0.9708090976211485 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 7324788 - CO2 Emissions (in grams): 10.435358044493652 ## Validation Metrics - Loss: 0.08991389721632004 - Accuracy: 0.9708090976211485 - Precision: 0.8998421675654347 - Recall: 0.9309429854401959 - F1: 0.9151284109149278 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/lewtun/autotrain-acronym-identification-7324788 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("lewtun/autotrain-acronym-identification-7324788", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("lewtun/autotrain-acronym-identification-7324788", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```