Duplicate from Rallio67/chip_12B_instruct_alpha
Browse filesCo-authored-by: Will B. <[email protected]>
- .gitattributes +34 -0
- README.md +180 -0
- config.json +25 -0
- pytorch_model-00001-of-00003.bin +3 -0
- pytorch_model-00002-of-00003.bin +3 -0
- pytorch_model-00003-of-00003.bin +3 -0
- pytorch_model.bin.index.json +551 -0
- special_tokens_map.json +5 -0
- tokenizer.json +0 -0
- tokenizer_config.json +10 -0
.gitattributes
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
duplicated_from: Rallio67/chip_12B_instruct_alpha
|
3 |
+
---
|
4 |
+
Experimental 12B instruction tuned model based on pythia-12B-deduped
|
5 |
+
--------------------------------------------------
|
6 |
+
# Model may create undesirable content, use at your own risk.
|
7 |
+
Finetuned on a variety of instruction datasets.
|
8 |
+
See: https://github.com/Rallio67/language-model-agents
|
9 |
+
|
10 |
+
# Thanks to LAION contributors and Stability.ai
|
11 |
+
for help building datasets and compute resources.
|
12 |
+
|
13 |
+
# Prompt the model by typing:
|
14 |
+
User: followed by your question. The agent will reply as Chip \
|
15 |
+
Chip is loosely inspired by the fictional character Chip the robot. \
|
16 |
+
see: https://en.wikipedia.org/wiki/Not_Quite_Human_(film))
|
17 |
+
|
18 |
+
# For multiple rounds of dialogue:
|
19 |
+
After your question add two new lines followed by Chip:
|
20 |
+
(\n\nChip:)
|
21 |
+
|
22 |
+
# Example code snippet to run on your own system:
|
23 |
+
```
|
24 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
25 |
+
import torch
|
26 |
+
|
27 |
+
chip_map= {'gpt_neox.embed_in': 0,
|
28 |
+
'gpt_neox.layers': 0,
|
29 |
+
'gpt_neox.final_layer_norm': 0,
|
30 |
+
'embed_out': 0}
|
31 |
+
|
32 |
+
name = "Rallio67/chip_12B_instruct_alpha"
|
33 |
+
model = AutoModelForCausalLM.from_pretrained(name, device_map=chip_map, torch_dtype=torch.float16, load_in_8bit=True )
|
34 |
+
tokenizer = AutoTokenizer.from_pretrained(name)
|
35 |
+
|
36 |
+
def generate_from_model(model, tokenizer):
|
37 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
38 |
+
output_sequences = model.generate(
|
39 |
+
input_ids=encoded_input['input_ids'].cuda(0),
|
40 |
+
do_sample=True,
|
41 |
+
max_new_tokens=35,
|
42 |
+
num_return_sequences=1,
|
43 |
+
top_p=0.95,
|
44 |
+
temperature=0.5,
|
45 |
+
penalty_alpha=0.6,
|
46 |
+
top_k=4,
|
47 |
+
output_scores=True,
|
48 |
+
return_dict_in_generate=True,
|
49 |
+
repetition_penalty=1.03,
|
50 |
+
eos_token_id=0,
|
51 |
+
use_cache=True
|
52 |
+
)
|
53 |
+
gen_sequences = output_sequences.sequences[:, encoded_input['input_ids'].shape[-1]:]
|
54 |
+
for sequence in gen_sequences:
|
55 |
+
new_line=tokenizer.decode(sequence, skip_special_tokens=True)
|
56 |
+
print(new_line)
|
57 |
+
|
58 |
+
text = "User: Why is everyone so excited about AI chatbots these days?"
|
59 |
+
generate_from_model(model,tokenizer)
|
60 |
+
#Chip: Chatbots are a great way to automate simple tasks. They can help you save time and make your life easier. For example, they can
|
61 |
+
```
|
62 |
+
|
63 |
+
Sampling Settings:
|
64 |
+
-------
|
65 |
+
top_p=0.95,
|
66 |
+
temperature=0.5,
|
67 |
+
penalty_alpha=0.6,
|
68 |
+
top_k=4,
|
69 |
+
repetition_penalty=1.03
|
70 |
+
|
71 |
+
Example Generations:
|
72 |
+
---------------
|
73 |
+
>User: Are a manatee and a dolphin more likely to be friends or foes?
|
74 |
+
|
75 |
+
|
76 |
+
Chip: A manatee and a dolphin are both mammals, so they are more likely to be friends than foes.
|
77 |
+
|
78 |
+
|
79 |
+
Chip: I’m not sure. I’d have to look into it.
|
80 |
+
|
81 |
+
|
82 |
+
Chip: I’d say they’re more likely to be enemies. A manatee is a mammal, and a dolphin is a mammal, so they’re more likely to be enemies than friends.
|
83 |
+
|
84 |
+
|
85 |
+
Chip: A manatee and a dolphin are more likely to be friends. Manatees and dolphins are both marine mammals that live in the ocean. They have similar habitats and lifestyles, and they are both herbivores. They also have similar diets, so they can eat the same food.
|
86 |
+
|
87 |
+
>User: Why are roses red?
|
88 |
+
|
89 |
+
Chip: Roses are red because they are made up of a pigment called anthocyanin. Anthocyanin is a pigment that gives the plant its color. It is also found in other flowers, such as daisies, tulips, and violets.
|
90 |
+
|
91 |
+
Chip: Roses are red because they contain a pigment called anthocyanin. Anthocyanins are a type of flavonoid that gives plants their color. Flavonoids are a class of compounds found in plants and other organisms.
|
92 |
+
|
93 |
+
Chip: Roses are red because they are a member of the rose family. The rose family is a large group of plants that includes many different species. The most common type of rose is the garden rose, which is a hybrid of two species of roses. The two species are Rosa gallica and Rosa rugosa. The rose family is named after the genus name of the first species, Rosa.
|
94 |
+
|
95 |
+
Chip: Roses are red because they have a gene that makes them red. The gene is called the anthocyanin gene, and it is found in most plants. It is also found in some other animals, such as birds, lizards, and insects. The anthocyanin gene is responsible for the color of the flower.
|
96 |
+
|
97 |
+
>User: What's a good recipe for bbq ribs?
|
98 |
+
|
99 |
+
Chip: Ingredients:
|
100 |
+
• 4 racks of baby back ribs
|
101 |
+
• 1 bottle of your favorite BBQ sauce
|
102 |
+
• 1/2 cup of brown sugar
|
103 |
+
• 1/2 cup of honey
|
104 |
+
• 1/4 cup of apple cider vinegar
|
105 |
+
• 2 cloves of garlic, minced
|
106 |
+
• 2 tablespoons of chili powder
|
107 |
+
• 1 teaspoon of paprika
|
108 |
+
• 1/2 teaspoon of cayenne pepper
|
109 |
+
• 1/4 teaspoon of black pepper
|
110 |
+
• 1/4 teaspoon of salt
|
111 |
+
|
112 |
+
Instructions:
|
113 |
+
1. Preheat oven to 350 degrees F (175 degrees C).
|
114 |
+
2. Place the ribs in a large roasting pan and cover with the BBQ sauce.
|
115 |
+
3. In a small bowl, mix together the brown sugar, honey, vinegar, garlic, chili powder, paprika, cayenne pepper, black pepper, and salt.
|
116 |
+
4. Pour the mixture over the ribs and rub it into the meat.
|
117 |
+
5. Cover
|
118 |
+
|
119 |
+
Chip: Ingredients:
|
120 |
+
• 1 rack of baby back ribs
|
121 |
+
• 1 bottle of your favorite bbq sauce
|
122 |
+
• 1 onion, sliced
|
123 |
+
• 2 cloves of garlic, minced
|
124 |
+
• 1 teaspoon of paprika
|
125 |
+
• 1 teaspoon of cumin
|
126 |
+
• 1 teaspoon of chili powder
|
127 |
+
• 1 teaspoon of oregano
|
128 |
+
• 1 teaspoon of salt
|
129 |
+
• 1 teaspoon of pepper
|
130 |
+
• 1/2 cup of white vinegar
|
131 |
+
|
132 |
+
Instructions:
|
133 |
+
1. Preheat your oven to 350 degrees Fahrenheit.
|
134 |
+
2. Place the ribs in a baking dish and cover with the bbq sauce.
|
135 |
+
3. In a medium bowl, combine the onion, garlic, paprika, cumin, chili powder, oregano, salt, and pepper.
|
136 |
+
4. Rub the mixture all over the ribs.
|
137 |
+
5. Bake in the preheated oven for 2 hours or until the ribs are tender.
|
138 |
+
6. Remove from the oven and let cool for 10 minutes
|
139 |
+
|
140 |
+
Chip:
|
141 |
+
1. Preheat oven to 350 degrees F (175 degrees C).
|
142 |
+
2. Place the ribs in a baking dish and cover with barbecue sauce.
|
143 |
+
3. Bake in preheated oven for 1 hour or until the ribs are tender.
|
144 |
+
4. Remove from oven and let cool.
|
145 |
+
5. Enjoy!
|
146 |
+
|
147 |
+
Chip:
|
148 |
+
1. Preheat oven to 350 degrees F (175 degrees C).
|
149 |
+
2. Place the ribs in a roasting pan, and season with your favorite barbecue rub.
|
150 |
+
3. Roast the ribs in the preheated oven for 2 hours or until the ribs are tender and cooked through.
|
151 |
+
4. Serve the ribs with your favorite barbecue sauce.
|
152 |
+
|
153 |
+
>User: Where does Santa Claus live?
|
154 |
+
|
155 |
+
Chip: Santa Claus lives in the North Pole. He has a house there, and he spends most of his time there.
|
156 |
+
|
157 |
+
Chip: Santa Claus lives in the North Pole. He has a workshop in the North Pole, and he sends presents to children all over the world.
|
158 |
+
|
159 |
+
Chip: Santa Claus lives in the North Pole. He is a jolly old man who delivers presents to all the good boys and girls on Christmas Eve.
|
160 |
+
|
161 |
+
Chip: Santa Claus lives in the North Pole. He has a very large house there, and he has a lot of elves who help him.
|
162 |
+
|
163 |
+
Training Metrics:
|
164 |
+
---
|
165 |
+
***** train metrics *****
|
166 |
+
epoch = 1.0
|
167 |
+
train_loss = 0.8184
|
168 |
+
train_runtime = 0:46:26.53
|
169 |
+
train_samples = 84230
|
170 |
+
train_samples_per_second = 30.227
|
171 |
+
train_steps_per_second = 0.059
|
172 |
+
|
173 |
+
***** eval metrics *****
|
174 |
+
epoch = 1.0
|
175 |
+
eval_loss = 0.3823
|
176 |
+
eval_runtime = 0:00:04.47
|
177 |
+
eval_samples = 851
|
178 |
+
eval_samples_per_second = 190.064
|
179 |
+
eval_steps_per_second = 3.127
|
180 |
+
perplexity = 1.4657
|
config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "chip_12B_instruct_alpha",
|
3 |
+
"architectures": [
|
4 |
+
"GPTNeoXForCausalLM"
|
5 |
+
],
|
6 |
+
"bos_token_id": 0,
|
7 |
+
"eos_token_id": 0,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_size": 5120,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 20480,
|
12 |
+
"layer_norm_eps": 1e-05,
|
13 |
+
"max_position_embeddings": 2048,
|
14 |
+
"model_type": "gpt_neox",
|
15 |
+
"num_attention_heads": 40,
|
16 |
+
"num_hidden_layers": 36,
|
17 |
+
"rotary_emb_base": 10000,
|
18 |
+
"rotary_pct": 0.25,
|
19 |
+
"tie_word_embeddings": false,
|
20 |
+
"torch_dtype": "float16",
|
21 |
+
"transformers_version": "4.25.1",
|
22 |
+
"use_cache": false,
|
23 |
+
"use_parallel_residual": true,
|
24 |
+
"vocab_size": 50277
|
25 |
+
}
|
pytorch_model-00001-of-00003.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2199ea3104f0637d3a0a4afb1821fed4c01ff922d7786da6296190069f7a0fc3
|
3 |
+
size 9807284863
|
pytorch_model-00002-of-00003.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:edf825e95d9a2a769dce957c9b251e5549f789b43b0b9412810e3cc3aa71a141
|
3 |
+
size 9925895809
|
pytorch_model-00003-of-00003.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d3d8688f30b991acca8774186a9f9710b74a1e66f859a2cc4016eb89cfdaa862
|
3 |
+
size 4101731603
|
pytorch_model.bin.index.json
ADDED
@@ -0,0 +1,551 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 23834724680
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"embed_out.weight": "pytorch_model-00003-of-00003.bin",
|
7 |
+
"gpt_neox.embed_in.weight": "pytorch_model-00001-of-00003.bin",
|
8 |
+
"gpt_neox.final_layer_norm.bias": "pytorch_model-00003-of-00003.bin",
|
9 |
+
"gpt_neox.final_layer_norm.weight": "pytorch_model-00003-of-00003.bin",
|
10 |
+
"gpt_neox.layers.0.attention.bias": "pytorch_model-00001-of-00003.bin",
|
11 |
+
"gpt_neox.layers.0.attention.dense.bias": "pytorch_model-00001-of-00003.bin",
|
12 |
+
"gpt_neox.layers.0.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
|
13 |
+
"gpt_neox.layers.0.attention.masked_bias": "pytorch_model-00001-of-00003.bin",
|
14 |
+
"gpt_neox.layers.0.attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
|
15 |
+
"gpt_neox.layers.0.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
|
16 |
+
"gpt_neox.layers.0.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
17 |
+
"gpt_neox.layers.0.input_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
18 |
+
"gpt_neox.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
19 |
+
"gpt_neox.layers.0.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00003.bin",
|
20 |
+
"gpt_neox.layers.0.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
|
21 |
+
"gpt_neox.layers.0.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00003.bin",
|
22 |
+
"gpt_neox.layers.0.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
|
23 |
+
"gpt_neox.layers.0.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
24 |
+
"gpt_neox.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
25 |
+
"gpt_neox.layers.1.attention.bias": "pytorch_model-00001-of-00003.bin",
|
26 |
+
"gpt_neox.layers.1.attention.dense.bias": "pytorch_model-00001-of-00003.bin",
|
27 |
+
"gpt_neox.layers.1.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
|
28 |
+
"gpt_neox.layers.1.attention.masked_bias": "pytorch_model-00001-of-00003.bin",
|
29 |
+
"gpt_neox.layers.1.attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
|
30 |
+
"gpt_neox.layers.1.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
|
31 |
+
"gpt_neox.layers.1.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
32 |
+
"gpt_neox.layers.1.input_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
33 |
+
"gpt_neox.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
34 |
+
"gpt_neox.layers.1.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00003.bin",
|
35 |
+
"gpt_neox.layers.1.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
|
36 |
+
"gpt_neox.layers.1.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00003.bin",
|
37 |
+
"gpt_neox.layers.1.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
|
38 |
+
"gpt_neox.layers.1.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
39 |
+
"gpt_neox.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
40 |
+
"gpt_neox.layers.10.attention.bias": "pytorch_model-00001-of-00003.bin",
|
41 |
+
"gpt_neox.layers.10.attention.dense.bias": "pytorch_model-00001-of-00003.bin",
|
42 |
+
"gpt_neox.layers.10.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
|
43 |
+
"gpt_neox.layers.10.attention.masked_bias": "pytorch_model-00001-of-00003.bin",
|
44 |
+
"gpt_neox.layers.10.attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
|
45 |
+
"gpt_neox.layers.10.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
|
46 |
+
"gpt_neox.layers.10.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
47 |
+
"gpt_neox.layers.10.input_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
48 |
+
"gpt_neox.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
49 |
+
"gpt_neox.layers.10.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00003.bin",
|
50 |
+
"gpt_neox.layers.10.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
|
51 |
+
"gpt_neox.layers.10.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00003.bin",
|
52 |
+
"gpt_neox.layers.10.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
|
53 |
+
"gpt_neox.layers.10.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
54 |
+
"gpt_neox.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
55 |
+
"gpt_neox.layers.11.attention.bias": "pytorch_model-00001-of-00003.bin",
|
56 |
+
"gpt_neox.layers.11.attention.dense.bias": "pytorch_model-00001-of-00003.bin",
|
57 |
+
"gpt_neox.layers.11.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
|
58 |
+
"gpt_neox.layers.11.attention.masked_bias": "pytorch_model-00001-of-00003.bin",
|
59 |
+
"gpt_neox.layers.11.attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
|
60 |
+
"gpt_neox.layers.11.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
|
61 |
+
"gpt_neox.layers.11.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
62 |
+
"gpt_neox.layers.11.input_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
63 |
+
"gpt_neox.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
64 |
+
"gpt_neox.layers.11.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00003.bin",
|
65 |
+
"gpt_neox.layers.11.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
|
66 |
+
"gpt_neox.layers.11.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00003.bin",
|
67 |
+
"gpt_neox.layers.11.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
|
68 |
+
"gpt_neox.layers.11.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
69 |
+
"gpt_neox.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
70 |
+
"gpt_neox.layers.12.attention.bias": "pytorch_model-00001-of-00003.bin",
|
71 |
+
"gpt_neox.layers.12.attention.dense.bias": "pytorch_model-00001-of-00003.bin",
|
72 |
+
"gpt_neox.layers.12.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
|
73 |
+
"gpt_neox.layers.12.attention.masked_bias": "pytorch_model-00001-of-00003.bin",
|
74 |
+
"gpt_neox.layers.12.attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
|
75 |
+
"gpt_neox.layers.12.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
|
76 |
+
"gpt_neox.layers.12.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
77 |
+
"gpt_neox.layers.12.input_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
78 |
+
"gpt_neox.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
79 |
+
"gpt_neox.layers.12.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00003.bin",
|
80 |
+
"gpt_neox.layers.12.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
|
81 |
+
"gpt_neox.layers.12.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00003.bin",
|
82 |
+
"gpt_neox.layers.12.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
|
83 |
+
"gpt_neox.layers.12.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
84 |
+
"gpt_neox.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
85 |
+
"gpt_neox.layers.13.attention.bias": "pytorch_model-00001-of-00003.bin",
|
86 |
+
"gpt_neox.layers.13.attention.dense.bias": "pytorch_model-00001-of-00003.bin",
|
87 |
+
"gpt_neox.layers.13.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
|
88 |
+
"gpt_neox.layers.13.attention.masked_bias": "pytorch_model-00001-of-00003.bin",
|
89 |
+
"gpt_neox.layers.13.attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
|
90 |
+
"gpt_neox.layers.13.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
|
91 |
+
"gpt_neox.layers.13.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
92 |
+
"gpt_neox.layers.13.input_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
93 |
+
"gpt_neox.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
94 |
+
"gpt_neox.layers.13.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00003.bin",
|
95 |
+
"gpt_neox.layers.13.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
|
96 |
+
"gpt_neox.layers.13.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00003.bin",
|
97 |
+
"gpt_neox.layers.13.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
|
98 |
+
"gpt_neox.layers.13.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
99 |
+
"gpt_neox.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
100 |
+
"gpt_neox.layers.14.attention.bias": "pytorch_model-00001-of-00003.bin",
|
101 |
+
"gpt_neox.layers.14.attention.dense.bias": "pytorch_model-00001-of-00003.bin",
|
102 |
+
"gpt_neox.layers.14.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
|
103 |
+
"gpt_neox.layers.14.attention.masked_bias": "pytorch_model-00001-of-00003.bin",
|
104 |
+
"gpt_neox.layers.14.attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
|
105 |
+
"gpt_neox.layers.14.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
|
106 |
+
"gpt_neox.layers.14.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
107 |
+
"gpt_neox.layers.14.input_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
108 |
+
"gpt_neox.layers.14.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
109 |
+
"gpt_neox.layers.14.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00003.bin",
|
110 |
+
"gpt_neox.layers.14.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
|
111 |
+
"gpt_neox.layers.14.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00003.bin",
|
112 |
+
"gpt_neox.layers.14.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
|
113 |
+
"gpt_neox.layers.14.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
114 |
+
"gpt_neox.layers.14.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
115 |
+
"gpt_neox.layers.15.attention.bias": "pytorch_model-00002-of-00003.bin",
|
116 |
+
"gpt_neox.layers.15.attention.dense.bias": "pytorch_model-00002-of-00003.bin",
|
117 |
+
"gpt_neox.layers.15.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
|
118 |
+
"gpt_neox.layers.15.attention.masked_bias": "pytorch_model-00002-of-00003.bin",
|
119 |
+
"gpt_neox.layers.15.attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
|
120 |
+
"gpt_neox.layers.15.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
|
121 |
+
"gpt_neox.layers.15.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
122 |
+
"gpt_neox.layers.15.input_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
123 |
+
"gpt_neox.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
124 |
+
"gpt_neox.layers.15.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00003.bin",
|
125 |
+
"gpt_neox.layers.15.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
|
126 |
+
"gpt_neox.layers.15.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00003.bin",
|
127 |
+
"gpt_neox.layers.15.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
|
128 |
+
"gpt_neox.layers.15.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
129 |
+
"gpt_neox.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
130 |
+
"gpt_neox.layers.16.attention.bias": "pytorch_model-00002-of-00003.bin",
|
131 |
+
"gpt_neox.layers.16.attention.dense.bias": "pytorch_model-00002-of-00003.bin",
|
132 |
+
"gpt_neox.layers.16.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
|
133 |
+
"gpt_neox.layers.16.attention.masked_bias": "pytorch_model-00002-of-00003.bin",
|
134 |
+
"gpt_neox.layers.16.attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
|
135 |
+
"gpt_neox.layers.16.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
|
136 |
+
"gpt_neox.layers.16.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
137 |
+
"gpt_neox.layers.16.input_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
138 |
+
"gpt_neox.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
139 |
+
"gpt_neox.layers.16.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00003.bin",
|
140 |
+
"gpt_neox.layers.16.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
|
141 |
+
"gpt_neox.layers.16.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00003.bin",
|
142 |
+
"gpt_neox.layers.16.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
|
143 |
+
"gpt_neox.layers.16.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
144 |
+
"gpt_neox.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
145 |
+
"gpt_neox.layers.17.attention.bias": "pytorch_model-00002-of-00003.bin",
|
146 |
+
"gpt_neox.layers.17.attention.dense.bias": "pytorch_model-00002-of-00003.bin",
|
147 |
+
"gpt_neox.layers.17.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
|
148 |
+
"gpt_neox.layers.17.attention.masked_bias": "pytorch_model-00002-of-00003.bin",
|
149 |
+
"gpt_neox.layers.17.attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
|
150 |
+
"gpt_neox.layers.17.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
|
151 |
+
"gpt_neox.layers.17.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
152 |
+
"gpt_neox.layers.17.input_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
153 |
+
"gpt_neox.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
154 |
+
"gpt_neox.layers.17.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00003.bin",
|
155 |
+
"gpt_neox.layers.17.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
|
156 |
+
"gpt_neox.layers.17.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00003.bin",
|
157 |
+
"gpt_neox.layers.17.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
|
158 |
+
"gpt_neox.layers.17.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
159 |
+
"gpt_neox.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
160 |
+
"gpt_neox.layers.18.attention.bias": "pytorch_model-00002-of-00003.bin",
|
161 |
+
"gpt_neox.layers.18.attention.dense.bias": "pytorch_model-00002-of-00003.bin",
|
162 |
+
"gpt_neox.layers.18.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
|
163 |
+
"gpt_neox.layers.18.attention.masked_bias": "pytorch_model-00002-of-00003.bin",
|
164 |
+
"gpt_neox.layers.18.attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
|
165 |
+
"gpt_neox.layers.18.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
|
166 |
+
"gpt_neox.layers.18.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
167 |
+
"gpt_neox.layers.18.input_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
168 |
+
"gpt_neox.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
169 |
+
"gpt_neox.layers.18.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00003.bin",
|
170 |
+
"gpt_neox.layers.18.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
|
171 |
+
"gpt_neox.layers.18.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00003.bin",
|
172 |
+
"gpt_neox.layers.18.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
|
173 |
+
"gpt_neox.layers.18.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
174 |
+
"gpt_neox.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
175 |
+
"gpt_neox.layers.19.attention.bias": "pytorch_model-00002-of-00003.bin",
|
176 |
+
"gpt_neox.layers.19.attention.dense.bias": "pytorch_model-00002-of-00003.bin",
|
177 |
+
"gpt_neox.layers.19.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
|
178 |
+
"gpt_neox.layers.19.attention.masked_bias": "pytorch_model-00002-of-00003.bin",
|
179 |
+
"gpt_neox.layers.19.attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
|
180 |
+
"gpt_neox.layers.19.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
|
181 |
+
"gpt_neox.layers.19.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
182 |
+
"gpt_neox.layers.19.input_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
183 |
+
"gpt_neox.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
184 |
+
"gpt_neox.layers.19.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00003.bin",
|
185 |
+
"gpt_neox.layers.19.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
|
186 |
+
"gpt_neox.layers.19.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00003.bin",
|
187 |
+
"gpt_neox.layers.19.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
|
188 |
+
"gpt_neox.layers.19.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
189 |
+
"gpt_neox.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
190 |
+
"gpt_neox.layers.2.attention.bias": "pytorch_model-00001-of-00003.bin",
|
191 |
+
"gpt_neox.layers.2.attention.dense.bias": "pytorch_model-00001-of-00003.bin",
|
192 |
+
"gpt_neox.layers.2.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
|
193 |
+
"gpt_neox.layers.2.attention.masked_bias": "pytorch_model-00001-of-00003.bin",
|
194 |
+
"gpt_neox.layers.2.attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
|
195 |
+
"gpt_neox.layers.2.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
|
196 |
+
"gpt_neox.layers.2.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
197 |
+
"gpt_neox.layers.2.input_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
198 |
+
"gpt_neox.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
199 |
+
"gpt_neox.layers.2.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00003.bin",
|
200 |
+
"gpt_neox.layers.2.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
|
201 |
+
"gpt_neox.layers.2.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00003.bin",
|
202 |
+
"gpt_neox.layers.2.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
|
203 |
+
"gpt_neox.layers.2.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
204 |
+
"gpt_neox.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
205 |
+
"gpt_neox.layers.20.attention.bias": "pytorch_model-00002-of-00003.bin",
|
206 |
+
"gpt_neox.layers.20.attention.dense.bias": "pytorch_model-00002-of-00003.bin",
|
207 |
+
"gpt_neox.layers.20.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
|
208 |
+
"gpt_neox.layers.20.attention.masked_bias": "pytorch_model-00002-of-00003.bin",
|
209 |
+
"gpt_neox.layers.20.attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
|
210 |
+
"gpt_neox.layers.20.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
|
211 |
+
"gpt_neox.layers.20.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
212 |
+
"gpt_neox.layers.20.input_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
213 |
+
"gpt_neox.layers.20.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
214 |
+
"gpt_neox.layers.20.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00003.bin",
|
215 |
+
"gpt_neox.layers.20.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
|
216 |
+
"gpt_neox.layers.20.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00003.bin",
|
217 |
+
"gpt_neox.layers.20.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
|
218 |
+
"gpt_neox.layers.20.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
219 |
+
"gpt_neox.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
220 |
+
"gpt_neox.layers.21.attention.bias": "pytorch_model-00002-of-00003.bin",
|
221 |
+
"gpt_neox.layers.21.attention.dense.bias": "pytorch_model-00002-of-00003.bin",
|
222 |
+
"gpt_neox.layers.21.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
|
223 |
+
"gpt_neox.layers.21.attention.masked_bias": "pytorch_model-00002-of-00003.bin",
|
224 |
+
"gpt_neox.layers.21.attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
|
225 |
+
"gpt_neox.layers.21.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
|
226 |
+
"gpt_neox.layers.21.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
227 |
+
"gpt_neox.layers.21.input_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
228 |
+
"gpt_neox.layers.21.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
229 |
+
"gpt_neox.layers.21.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00003.bin",
|
230 |
+
"gpt_neox.layers.21.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
|
231 |
+
"gpt_neox.layers.21.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00003.bin",
|
232 |
+
"gpt_neox.layers.21.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
|
233 |
+
"gpt_neox.layers.21.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
234 |
+
"gpt_neox.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
235 |
+
"gpt_neox.layers.22.attention.bias": "pytorch_model-00002-of-00003.bin",
|
236 |
+
"gpt_neox.layers.22.attention.dense.bias": "pytorch_model-00002-of-00003.bin",
|
237 |
+
"gpt_neox.layers.22.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
|
238 |
+
"gpt_neox.layers.22.attention.masked_bias": "pytorch_model-00002-of-00003.bin",
|
239 |
+
"gpt_neox.layers.22.attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
|
240 |
+
"gpt_neox.layers.22.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
|
241 |
+
"gpt_neox.layers.22.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
242 |
+
"gpt_neox.layers.22.input_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
243 |
+
"gpt_neox.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
244 |
+
"gpt_neox.layers.22.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00003.bin",
|
245 |
+
"gpt_neox.layers.22.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
|
246 |
+
"gpt_neox.layers.22.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00003.bin",
|
247 |
+
"gpt_neox.layers.22.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
|
248 |
+
"gpt_neox.layers.22.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
249 |
+
"gpt_neox.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
250 |
+
"gpt_neox.layers.23.attention.bias": "pytorch_model-00002-of-00003.bin",
|
251 |
+
"gpt_neox.layers.23.attention.dense.bias": "pytorch_model-00002-of-00003.bin",
|
252 |
+
"gpt_neox.layers.23.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
|
253 |
+
"gpt_neox.layers.23.attention.masked_bias": "pytorch_model-00002-of-00003.bin",
|
254 |
+
"gpt_neox.layers.23.attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
|
255 |
+
"gpt_neox.layers.23.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
|
256 |
+
"gpt_neox.layers.23.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
257 |
+
"gpt_neox.layers.23.input_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
258 |
+
"gpt_neox.layers.23.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
259 |
+
"gpt_neox.layers.23.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00003.bin",
|
260 |
+
"gpt_neox.layers.23.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
|
261 |
+
"gpt_neox.layers.23.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00003.bin",
|
262 |
+
"gpt_neox.layers.23.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
|
263 |
+
"gpt_neox.layers.23.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
264 |
+
"gpt_neox.layers.23.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
265 |
+
"gpt_neox.layers.24.attention.bias": "pytorch_model-00002-of-00003.bin",
|
266 |
+
"gpt_neox.layers.24.attention.dense.bias": "pytorch_model-00002-of-00003.bin",
|
267 |
+
"gpt_neox.layers.24.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
|
268 |
+
"gpt_neox.layers.24.attention.masked_bias": "pytorch_model-00002-of-00003.bin",
|
269 |
+
"gpt_neox.layers.24.attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
|
270 |
+
"gpt_neox.layers.24.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
|
271 |
+
"gpt_neox.layers.24.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
272 |
+
"gpt_neox.layers.24.input_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
273 |
+
"gpt_neox.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
274 |
+
"gpt_neox.layers.24.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00003.bin",
|
275 |
+
"gpt_neox.layers.24.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
|
276 |
+
"gpt_neox.layers.24.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00003.bin",
|
277 |
+
"gpt_neox.layers.24.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
|
278 |
+
"gpt_neox.layers.24.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
279 |
+
"gpt_neox.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
280 |
+
"gpt_neox.layers.25.attention.bias": "pytorch_model-00002-of-00003.bin",
|
281 |
+
"gpt_neox.layers.25.attention.dense.bias": "pytorch_model-00002-of-00003.bin",
|
282 |
+
"gpt_neox.layers.25.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
|
283 |
+
"gpt_neox.layers.25.attention.masked_bias": "pytorch_model-00002-of-00003.bin",
|
284 |
+
"gpt_neox.layers.25.attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
|
285 |
+
"gpt_neox.layers.25.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
|
286 |
+
"gpt_neox.layers.25.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
287 |
+
"gpt_neox.layers.25.input_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
288 |
+
"gpt_neox.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
289 |
+
"gpt_neox.layers.25.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00003.bin",
|
290 |
+
"gpt_neox.layers.25.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
|
291 |
+
"gpt_neox.layers.25.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00003.bin",
|
292 |
+
"gpt_neox.layers.25.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
|
293 |
+
"gpt_neox.layers.25.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
294 |
+
"gpt_neox.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
295 |
+
"gpt_neox.layers.26.attention.bias": "pytorch_model-00002-of-00003.bin",
|
296 |
+
"gpt_neox.layers.26.attention.dense.bias": "pytorch_model-00002-of-00003.bin",
|
297 |
+
"gpt_neox.layers.26.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
|
298 |
+
"gpt_neox.layers.26.attention.masked_bias": "pytorch_model-00002-of-00003.bin",
|
299 |
+
"gpt_neox.layers.26.attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
|
300 |
+
"gpt_neox.layers.26.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
|
301 |
+
"gpt_neox.layers.26.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
302 |
+
"gpt_neox.layers.26.input_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
303 |
+
"gpt_neox.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
304 |
+
"gpt_neox.layers.26.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00003.bin",
|
305 |
+
"gpt_neox.layers.26.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
|
306 |
+
"gpt_neox.layers.26.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00003.bin",
|
307 |
+
"gpt_neox.layers.26.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
|
308 |
+
"gpt_neox.layers.26.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
309 |
+
"gpt_neox.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
310 |
+
"gpt_neox.layers.27.attention.bias": "pytorch_model-00002-of-00003.bin",
|
311 |
+
"gpt_neox.layers.27.attention.dense.bias": "pytorch_model-00002-of-00003.bin",
|
312 |
+
"gpt_neox.layers.27.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
|
313 |
+
"gpt_neox.layers.27.attention.masked_bias": "pytorch_model-00002-of-00003.bin",
|
314 |
+
"gpt_neox.layers.27.attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
|
315 |
+
"gpt_neox.layers.27.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
|
316 |
+
"gpt_neox.layers.27.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
317 |
+
"gpt_neox.layers.27.input_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
318 |
+
"gpt_neox.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
319 |
+
"gpt_neox.layers.27.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00003.bin",
|
320 |
+
"gpt_neox.layers.27.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
|
321 |
+
"gpt_neox.layers.27.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00003.bin",
|
322 |
+
"gpt_neox.layers.27.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
|
323 |
+
"gpt_neox.layers.27.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
324 |
+
"gpt_neox.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
325 |
+
"gpt_neox.layers.28.attention.bias": "pytorch_model-00002-of-00003.bin",
|
326 |
+
"gpt_neox.layers.28.attention.dense.bias": "pytorch_model-00002-of-00003.bin",
|
327 |
+
"gpt_neox.layers.28.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
|
328 |
+
"gpt_neox.layers.28.attention.masked_bias": "pytorch_model-00002-of-00003.bin",
|
329 |
+
"gpt_neox.layers.28.attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
|
330 |
+
"gpt_neox.layers.28.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
|
331 |
+
"gpt_neox.layers.28.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
332 |
+
"gpt_neox.layers.28.input_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
333 |
+
"gpt_neox.layers.28.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
334 |
+
"gpt_neox.layers.28.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00003.bin",
|
335 |
+
"gpt_neox.layers.28.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
|
336 |
+
"gpt_neox.layers.28.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00003.bin",
|
337 |
+
"gpt_neox.layers.28.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
|
338 |
+
"gpt_neox.layers.28.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
339 |
+
"gpt_neox.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
340 |
+
"gpt_neox.layers.29.attention.bias": "pytorch_model-00002-of-00003.bin",
|
341 |
+
"gpt_neox.layers.29.attention.dense.bias": "pytorch_model-00002-of-00003.bin",
|
342 |
+
"gpt_neox.layers.29.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
|
343 |
+
"gpt_neox.layers.29.attention.masked_bias": "pytorch_model-00002-of-00003.bin",
|
344 |
+
"gpt_neox.layers.29.attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
|
345 |
+
"gpt_neox.layers.29.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
|
346 |
+
"gpt_neox.layers.29.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
347 |
+
"gpt_neox.layers.29.input_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
348 |
+
"gpt_neox.layers.29.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
349 |
+
"gpt_neox.layers.29.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00003.bin",
|
350 |
+
"gpt_neox.layers.29.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00003.bin",
|
351 |
+
"gpt_neox.layers.29.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00003.bin",
|
352 |
+
"gpt_neox.layers.29.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00003.bin",
|
353 |
+
"gpt_neox.layers.29.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
354 |
+
"gpt_neox.layers.29.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
355 |
+
"gpt_neox.layers.3.attention.bias": "pytorch_model-00001-of-00003.bin",
|
356 |
+
"gpt_neox.layers.3.attention.dense.bias": "pytorch_model-00001-of-00003.bin",
|
357 |
+
"gpt_neox.layers.3.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
|
358 |
+
"gpt_neox.layers.3.attention.masked_bias": "pytorch_model-00001-of-00003.bin",
|
359 |
+
"gpt_neox.layers.3.attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
|
360 |
+
"gpt_neox.layers.3.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
|
361 |
+
"gpt_neox.layers.3.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
362 |
+
"gpt_neox.layers.3.input_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
363 |
+
"gpt_neox.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
364 |
+
"gpt_neox.layers.3.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00003.bin",
|
365 |
+
"gpt_neox.layers.3.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
|
366 |
+
"gpt_neox.layers.3.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00003.bin",
|
367 |
+
"gpt_neox.layers.3.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
|
368 |
+
"gpt_neox.layers.3.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
369 |
+
"gpt_neox.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
370 |
+
"gpt_neox.layers.30.attention.bias": "pytorch_model-00002-of-00003.bin",
|
371 |
+
"gpt_neox.layers.30.attention.dense.bias": "pytorch_model-00002-of-00003.bin",
|
372 |
+
"gpt_neox.layers.30.attention.dense.weight": "pytorch_model-00002-of-00003.bin",
|
373 |
+
"gpt_neox.layers.30.attention.masked_bias": "pytorch_model-00002-of-00003.bin",
|
374 |
+
"gpt_neox.layers.30.attention.query_key_value.bias": "pytorch_model-00002-of-00003.bin",
|
375 |
+
"gpt_neox.layers.30.attention.query_key_value.weight": "pytorch_model-00002-of-00003.bin",
|
376 |
+
"gpt_neox.layers.30.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
377 |
+
"gpt_neox.layers.30.input_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
378 |
+
"gpt_neox.layers.30.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
379 |
+
"gpt_neox.layers.30.mlp.dense_4h_to_h.bias": "pytorch_model-00003-of-00003.bin",
|
380 |
+
"gpt_neox.layers.30.mlp.dense_4h_to_h.weight": "pytorch_model-00003-of-00003.bin",
|
381 |
+
"gpt_neox.layers.30.mlp.dense_h_to_4h.bias": "pytorch_model-00003-of-00003.bin",
|
382 |
+
"gpt_neox.layers.30.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00003.bin",
|
383 |
+
"gpt_neox.layers.30.post_attention_layernorm.bias": "pytorch_model-00002-of-00003.bin",
|
384 |
+
"gpt_neox.layers.30.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
385 |
+
"gpt_neox.layers.31.attention.bias": "pytorch_model-00003-of-00003.bin",
|
386 |
+
"gpt_neox.layers.31.attention.dense.bias": "pytorch_model-00003-of-00003.bin",
|
387 |
+
"gpt_neox.layers.31.attention.dense.weight": "pytorch_model-00003-of-00003.bin",
|
388 |
+
"gpt_neox.layers.31.attention.masked_bias": "pytorch_model-00003-of-00003.bin",
|
389 |
+
"gpt_neox.layers.31.attention.query_key_value.bias": "pytorch_model-00003-of-00003.bin",
|
390 |
+
"gpt_neox.layers.31.attention.query_key_value.weight": "pytorch_model-00003-of-00003.bin",
|
391 |
+
"gpt_neox.layers.31.attention.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
392 |
+
"gpt_neox.layers.31.input_layernorm.bias": "pytorch_model-00003-of-00003.bin",
|
393 |
+
"gpt_neox.layers.31.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
394 |
+
"gpt_neox.layers.31.mlp.dense_4h_to_h.bias": "pytorch_model-00003-of-00003.bin",
|
395 |
+
"gpt_neox.layers.31.mlp.dense_4h_to_h.weight": "pytorch_model-00003-of-00003.bin",
|
396 |
+
"gpt_neox.layers.31.mlp.dense_h_to_4h.bias": "pytorch_model-00003-of-00003.bin",
|
397 |
+
"gpt_neox.layers.31.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00003.bin",
|
398 |
+
"gpt_neox.layers.31.post_attention_layernorm.bias": "pytorch_model-00003-of-00003.bin",
|
399 |
+
"gpt_neox.layers.31.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
400 |
+
"gpt_neox.layers.32.attention.bias": "pytorch_model-00003-of-00003.bin",
|
401 |
+
"gpt_neox.layers.32.attention.dense.bias": "pytorch_model-00003-of-00003.bin",
|
402 |
+
"gpt_neox.layers.32.attention.dense.weight": "pytorch_model-00003-of-00003.bin",
|
403 |
+
"gpt_neox.layers.32.attention.masked_bias": "pytorch_model-00003-of-00003.bin",
|
404 |
+
"gpt_neox.layers.32.attention.query_key_value.bias": "pytorch_model-00003-of-00003.bin",
|
405 |
+
"gpt_neox.layers.32.attention.query_key_value.weight": "pytorch_model-00003-of-00003.bin",
|
406 |
+
"gpt_neox.layers.32.attention.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
407 |
+
"gpt_neox.layers.32.input_layernorm.bias": "pytorch_model-00003-of-00003.bin",
|
408 |
+
"gpt_neox.layers.32.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
409 |
+
"gpt_neox.layers.32.mlp.dense_4h_to_h.bias": "pytorch_model-00003-of-00003.bin",
|
410 |
+
"gpt_neox.layers.32.mlp.dense_4h_to_h.weight": "pytorch_model-00003-of-00003.bin",
|
411 |
+
"gpt_neox.layers.32.mlp.dense_h_to_4h.bias": "pytorch_model-00003-of-00003.bin",
|
412 |
+
"gpt_neox.layers.32.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00003.bin",
|
413 |
+
"gpt_neox.layers.32.post_attention_layernorm.bias": "pytorch_model-00003-of-00003.bin",
|
414 |
+
"gpt_neox.layers.32.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
415 |
+
"gpt_neox.layers.33.attention.bias": "pytorch_model-00003-of-00003.bin",
|
416 |
+
"gpt_neox.layers.33.attention.dense.bias": "pytorch_model-00003-of-00003.bin",
|
417 |
+
"gpt_neox.layers.33.attention.dense.weight": "pytorch_model-00003-of-00003.bin",
|
418 |
+
"gpt_neox.layers.33.attention.masked_bias": "pytorch_model-00003-of-00003.bin",
|
419 |
+
"gpt_neox.layers.33.attention.query_key_value.bias": "pytorch_model-00003-of-00003.bin",
|
420 |
+
"gpt_neox.layers.33.attention.query_key_value.weight": "pytorch_model-00003-of-00003.bin",
|
421 |
+
"gpt_neox.layers.33.attention.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
422 |
+
"gpt_neox.layers.33.input_layernorm.bias": "pytorch_model-00003-of-00003.bin",
|
423 |
+
"gpt_neox.layers.33.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
424 |
+
"gpt_neox.layers.33.mlp.dense_4h_to_h.bias": "pytorch_model-00003-of-00003.bin",
|
425 |
+
"gpt_neox.layers.33.mlp.dense_4h_to_h.weight": "pytorch_model-00003-of-00003.bin",
|
426 |
+
"gpt_neox.layers.33.mlp.dense_h_to_4h.bias": "pytorch_model-00003-of-00003.bin",
|
427 |
+
"gpt_neox.layers.33.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00003.bin",
|
428 |
+
"gpt_neox.layers.33.post_attention_layernorm.bias": "pytorch_model-00003-of-00003.bin",
|
429 |
+
"gpt_neox.layers.33.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
430 |
+
"gpt_neox.layers.34.attention.bias": "pytorch_model-00003-of-00003.bin",
|
431 |
+
"gpt_neox.layers.34.attention.dense.bias": "pytorch_model-00003-of-00003.bin",
|
432 |
+
"gpt_neox.layers.34.attention.dense.weight": "pytorch_model-00003-of-00003.bin",
|
433 |
+
"gpt_neox.layers.34.attention.masked_bias": "pytorch_model-00003-of-00003.bin",
|
434 |
+
"gpt_neox.layers.34.attention.query_key_value.bias": "pytorch_model-00003-of-00003.bin",
|
435 |
+
"gpt_neox.layers.34.attention.query_key_value.weight": "pytorch_model-00003-of-00003.bin",
|
436 |
+
"gpt_neox.layers.34.attention.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
437 |
+
"gpt_neox.layers.34.input_layernorm.bias": "pytorch_model-00003-of-00003.bin",
|
438 |
+
"gpt_neox.layers.34.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
439 |
+
"gpt_neox.layers.34.mlp.dense_4h_to_h.bias": "pytorch_model-00003-of-00003.bin",
|
440 |
+
"gpt_neox.layers.34.mlp.dense_4h_to_h.weight": "pytorch_model-00003-of-00003.bin",
|
441 |
+
"gpt_neox.layers.34.mlp.dense_h_to_4h.bias": "pytorch_model-00003-of-00003.bin",
|
442 |
+
"gpt_neox.layers.34.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00003.bin",
|
443 |
+
"gpt_neox.layers.34.post_attention_layernorm.bias": "pytorch_model-00003-of-00003.bin",
|
444 |
+
"gpt_neox.layers.34.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
445 |
+
"gpt_neox.layers.35.attention.bias": "pytorch_model-00003-of-00003.bin",
|
446 |
+
"gpt_neox.layers.35.attention.dense.bias": "pytorch_model-00003-of-00003.bin",
|
447 |
+
"gpt_neox.layers.35.attention.dense.weight": "pytorch_model-00003-of-00003.bin",
|
448 |
+
"gpt_neox.layers.35.attention.masked_bias": "pytorch_model-00003-of-00003.bin",
|
449 |
+
"gpt_neox.layers.35.attention.query_key_value.bias": "pytorch_model-00003-of-00003.bin",
|
450 |
+
"gpt_neox.layers.35.attention.query_key_value.weight": "pytorch_model-00003-of-00003.bin",
|
451 |
+
"gpt_neox.layers.35.attention.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
452 |
+
"gpt_neox.layers.35.input_layernorm.bias": "pytorch_model-00003-of-00003.bin",
|
453 |
+
"gpt_neox.layers.35.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
454 |
+
"gpt_neox.layers.35.mlp.dense_4h_to_h.bias": "pytorch_model-00003-of-00003.bin",
|
455 |
+
"gpt_neox.layers.35.mlp.dense_4h_to_h.weight": "pytorch_model-00003-of-00003.bin",
|
456 |
+
"gpt_neox.layers.35.mlp.dense_h_to_4h.bias": "pytorch_model-00003-of-00003.bin",
|
457 |
+
"gpt_neox.layers.35.mlp.dense_h_to_4h.weight": "pytorch_model-00003-of-00003.bin",
|
458 |
+
"gpt_neox.layers.35.post_attention_layernorm.bias": "pytorch_model-00003-of-00003.bin",
|
459 |
+
"gpt_neox.layers.35.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
460 |
+
"gpt_neox.layers.4.attention.bias": "pytorch_model-00001-of-00003.bin",
|
461 |
+
"gpt_neox.layers.4.attention.dense.bias": "pytorch_model-00001-of-00003.bin",
|
462 |
+
"gpt_neox.layers.4.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
|
463 |
+
"gpt_neox.layers.4.attention.masked_bias": "pytorch_model-00001-of-00003.bin",
|
464 |
+
"gpt_neox.layers.4.attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
|
465 |
+
"gpt_neox.layers.4.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
|
466 |
+
"gpt_neox.layers.4.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
467 |
+
"gpt_neox.layers.4.input_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
468 |
+
"gpt_neox.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
469 |
+
"gpt_neox.layers.4.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00003.bin",
|
470 |
+
"gpt_neox.layers.4.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
|
471 |
+
"gpt_neox.layers.4.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00003.bin",
|
472 |
+
"gpt_neox.layers.4.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
|
473 |
+
"gpt_neox.layers.4.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
474 |
+
"gpt_neox.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
475 |
+
"gpt_neox.layers.5.attention.bias": "pytorch_model-00001-of-00003.bin",
|
476 |
+
"gpt_neox.layers.5.attention.dense.bias": "pytorch_model-00001-of-00003.bin",
|
477 |
+
"gpt_neox.layers.5.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
|
478 |
+
"gpt_neox.layers.5.attention.masked_bias": "pytorch_model-00001-of-00003.bin",
|
479 |
+
"gpt_neox.layers.5.attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
|
480 |
+
"gpt_neox.layers.5.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
|
481 |
+
"gpt_neox.layers.5.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
482 |
+
"gpt_neox.layers.5.input_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
483 |
+
"gpt_neox.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
484 |
+
"gpt_neox.layers.5.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00003.bin",
|
485 |
+
"gpt_neox.layers.5.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
|
486 |
+
"gpt_neox.layers.5.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00003.bin",
|
487 |
+
"gpt_neox.layers.5.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
|
488 |
+
"gpt_neox.layers.5.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
489 |
+
"gpt_neox.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
490 |
+
"gpt_neox.layers.6.attention.bias": "pytorch_model-00001-of-00003.bin",
|
491 |
+
"gpt_neox.layers.6.attention.dense.bias": "pytorch_model-00001-of-00003.bin",
|
492 |
+
"gpt_neox.layers.6.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
|
493 |
+
"gpt_neox.layers.6.attention.masked_bias": "pytorch_model-00001-of-00003.bin",
|
494 |
+
"gpt_neox.layers.6.attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
|
495 |
+
"gpt_neox.layers.6.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
|
496 |
+
"gpt_neox.layers.6.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
497 |
+
"gpt_neox.layers.6.input_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
498 |
+
"gpt_neox.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
499 |
+
"gpt_neox.layers.6.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00003.bin",
|
500 |
+
"gpt_neox.layers.6.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
|
501 |
+
"gpt_neox.layers.6.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00003.bin",
|
502 |
+
"gpt_neox.layers.6.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
|
503 |
+
"gpt_neox.layers.6.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
504 |
+
"gpt_neox.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
505 |
+
"gpt_neox.layers.7.attention.bias": "pytorch_model-00001-of-00003.bin",
|
506 |
+
"gpt_neox.layers.7.attention.dense.bias": "pytorch_model-00001-of-00003.bin",
|
507 |
+
"gpt_neox.layers.7.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
|
508 |
+
"gpt_neox.layers.7.attention.masked_bias": "pytorch_model-00001-of-00003.bin",
|
509 |
+
"gpt_neox.layers.7.attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
|
510 |
+
"gpt_neox.layers.7.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
|
511 |
+
"gpt_neox.layers.7.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
512 |
+
"gpt_neox.layers.7.input_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
513 |
+
"gpt_neox.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
514 |
+
"gpt_neox.layers.7.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00003.bin",
|
515 |
+
"gpt_neox.layers.7.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
|
516 |
+
"gpt_neox.layers.7.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00003.bin",
|
517 |
+
"gpt_neox.layers.7.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
|
518 |
+
"gpt_neox.layers.7.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
519 |
+
"gpt_neox.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
520 |
+
"gpt_neox.layers.8.attention.bias": "pytorch_model-00001-of-00003.bin",
|
521 |
+
"gpt_neox.layers.8.attention.dense.bias": "pytorch_model-00001-of-00003.bin",
|
522 |
+
"gpt_neox.layers.8.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
|
523 |
+
"gpt_neox.layers.8.attention.masked_bias": "pytorch_model-00001-of-00003.bin",
|
524 |
+
"gpt_neox.layers.8.attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
|
525 |
+
"gpt_neox.layers.8.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
|
526 |
+
"gpt_neox.layers.8.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
527 |
+
"gpt_neox.layers.8.input_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
528 |
+
"gpt_neox.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
529 |
+
"gpt_neox.layers.8.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00003.bin",
|
530 |
+
"gpt_neox.layers.8.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
|
531 |
+
"gpt_neox.layers.8.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00003.bin",
|
532 |
+
"gpt_neox.layers.8.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
|
533 |
+
"gpt_neox.layers.8.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
534 |
+
"gpt_neox.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
535 |
+
"gpt_neox.layers.9.attention.bias": "pytorch_model-00001-of-00003.bin",
|
536 |
+
"gpt_neox.layers.9.attention.dense.bias": "pytorch_model-00001-of-00003.bin",
|
537 |
+
"gpt_neox.layers.9.attention.dense.weight": "pytorch_model-00001-of-00003.bin",
|
538 |
+
"gpt_neox.layers.9.attention.masked_bias": "pytorch_model-00001-of-00003.bin",
|
539 |
+
"gpt_neox.layers.9.attention.query_key_value.bias": "pytorch_model-00001-of-00003.bin",
|
540 |
+
"gpt_neox.layers.9.attention.query_key_value.weight": "pytorch_model-00001-of-00003.bin",
|
541 |
+
"gpt_neox.layers.9.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
542 |
+
"gpt_neox.layers.9.input_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
543 |
+
"gpt_neox.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
544 |
+
"gpt_neox.layers.9.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00003.bin",
|
545 |
+
"gpt_neox.layers.9.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00003.bin",
|
546 |
+
"gpt_neox.layers.9.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00003.bin",
|
547 |
+
"gpt_neox.layers.9.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00003.bin",
|
548 |
+
"gpt_neox.layers.9.post_attention_layernorm.bias": "pytorch_model-00001-of-00003.bin",
|
549 |
+
"gpt_neox.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin"
|
550 |
+
}
|
551 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<|endoftext|>",
|
3 |
+
"eos_token": "<|endoftext|>",
|
4 |
+
"unk_token": "<|endoftext|>"
|
5 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"bos_token": "<|endoftext|>",
|
4 |
+
"eos_token": "<|endoftext|>",
|
5 |
+
"model_max_length": 1000000000000000019884624838656,
|
6 |
+
"name_or_path": "pythia-6.7b-deduped",
|
7 |
+
"special_tokens_map_file": "/fsx/home-hailey/.cache/huggingface/hub/models--EleutherAI--gpt-neox-20b/snapshots/3523781c8df75f7741687a4284f6f70e1afa12f4/special_tokens_map.json",
|
8 |
+
"tokenizer_class": "GPTNeoXTokenizer",
|
9 |
+
"unk_token": "<|endoftext|>"
|
10 |
+
}
|