File size: 1,702 Bytes
c7cb8cc 7958ec4 c7cb8cc 7958ec4 c7cb8cc 7958ec4 c7cb8cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: other
base_model: google/gemma-7b
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
- trl
- sft
- generated_from_trainer
datasets:
- HuggingFaceH4/OpenHermes-2.5-1k-longest
model-index:
- name: gemma-7b-sft-full-longest-1k-v1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gemma-7b-sft-full-longest-1k-v1
This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co/google/gemma-7b) on the HuggingFaceH4/OpenHermes-2.5-1k-longest dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0137
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.9689 | 5.0 | 30 | 1.4644 |
| 1.1624 | 10.0 | 60 | 1.0363 |
| 1.0662 | 15.0 | 90 | 1.0137 |
### Framework versions
- Transformers 4.39.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.1
|