update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- common_voice
|
7 |
+
model-index:
|
8 |
+
- name: sew-tiny-portuguese-cv7
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# sew-tiny-portuguese-cv7
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [lgris/sew-tiny-pt](https://huggingface.co/lgris/sew-tiny-pt) on the common_voice dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.4232
|
20 |
+
- Wer: 0.2745
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 0.0001
|
40 |
+
- train_batch_size: 16
|
41 |
+
- eval_batch_size: 8
|
42 |
+
- seed: 42
|
43 |
+
- gradient_accumulation_steps: 2
|
44 |
+
- total_train_batch_size: 32
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_steps: 1000
|
48 |
+
- training_steps: 40000
|
49 |
+
- mixed_precision_training: Native AMP
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
54 |
+
|:-------------:|:------:|:-----:|:---------------:|:------:|
|
55 |
+
| No log | 2.6 | 1000 | 1.0034 | 0.7308 |
|
56 |
+
| 4.1307 | 5.19 | 2000 | 0.6274 | 0.4721 |
|
57 |
+
| 4.1307 | 7.79 | 3000 | 0.5541 | 0.4130 |
|
58 |
+
| 1.3117 | 10.39 | 4000 | 0.5302 | 0.3880 |
|
59 |
+
| 1.3117 | 12.99 | 5000 | 0.5082 | 0.3644 |
|
60 |
+
| 1.2047 | 15.58 | 6000 | 0.4818 | 0.3539 |
|
61 |
+
| 1.2047 | 18.18 | 7000 | 0.4822 | 0.3477 |
|
62 |
+
| 1.14 | 20.78 | 8000 | 0.4781 | 0.3428 |
|
63 |
+
| 1.14 | 23.38 | 9000 | 0.4840 | 0.3401 |
|
64 |
+
| 1.0818 | 25.97 | 10000 | 0.4613 | 0.3251 |
|
65 |
+
| 1.0818 | 28.57 | 11000 | 0.4569 | 0.3257 |
|
66 |
+
| 1.0451 | 31.17 | 12000 | 0.4494 | 0.3132 |
|
67 |
+
| 1.0451 | 33.77 | 13000 | 0.4560 | 0.3201 |
|
68 |
+
| 1.011 | 36.36 | 14000 | 0.4687 | 0.3174 |
|
69 |
+
| 1.011 | 38.96 | 15000 | 0.4397 | 0.3122 |
|
70 |
+
| 0.9785 | 41.56 | 16000 | 0.4605 | 0.3173 |
|
71 |
+
| 0.9785 | 44.16 | 17000 | 0.4380 | 0.3064 |
|
72 |
+
| 0.9458 | 46.75 | 18000 | 0.4372 | 0.3048 |
|
73 |
+
| 0.9458 | 49.35 | 19000 | 0.4426 | 0.3039 |
|
74 |
+
| 0.9126 | 51.95 | 20000 | 0.4317 | 0.2962 |
|
75 |
+
| 0.9126 | 54.54 | 21000 | 0.4345 | 0.2960 |
|
76 |
+
| 0.8926 | 57.14 | 22000 | 0.4365 | 0.2948 |
|
77 |
+
| 0.8926 | 59.74 | 23000 | 0.4306 | 0.2940 |
|
78 |
+
| 0.8654 | 62.34 | 24000 | 0.4303 | 0.2928 |
|
79 |
+
| 0.8654 | 64.93 | 25000 | 0.4351 | 0.2915 |
|
80 |
+
| 0.8373 | 67.53 | 26000 | 0.4340 | 0.2909 |
|
81 |
+
| 0.8373 | 70.13 | 27000 | 0.4279 | 0.2907 |
|
82 |
+
| 0.83 | 72.73 | 28000 | 0.4214 | 0.2867 |
|
83 |
+
| 0.83 | 75.32 | 29000 | 0.4256 | 0.2849 |
|
84 |
+
| 0.8062 | 77.92 | 30000 | 0.4281 | 0.2826 |
|
85 |
+
| 0.8062 | 80.52 | 31000 | 0.4398 | 0.2865 |
|
86 |
+
| 0.7846 | 83.12 | 32000 | 0.4218 | 0.2812 |
|
87 |
+
| 0.7846 | 85.71 | 33000 | 0.4227 | 0.2791 |
|
88 |
+
| 0.7697 | 88.31 | 34000 | 0.4200 | 0.2767 |
|
89 |
+
| 0.7697 | 90.91 | 35000 | 0.4285 | 0.2791 |
|
90 |
+
| 0.7539 | 93.51 | 36000 | 0.4238 | 0.2777 |
|
91 |
+
| 0.7539 | 96.1 | 37000 | 0.4288 | 0.2757 |
|
92 |
+
| 0.7413 | 98.7 | 38000 | 0.4205 | 0.2748 |
|
93 |
+
| 0.7413 | 101.3 | 39000 | 0.4241 | 0.2761 |
|
94 |
+
| 0.7348 | 103.89 | 40000 | 0.4232 | 0.2745 |
|
95 |
+
|
96 |
+
|
97 |
+
### Framework versions
|
98 |
+
|
99 |
+
- Transformers 4.16.0.dev0
|
100 |
+
- Pytorch 1.10.1+cu102
|
101 |
+
- Datasets 1.17.1.dev0
|
102 |
+
- Tokenizers 0.11.0
|