--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - pt - robust-speech-event model-index: - name: wav2vec2-xls-r-1b-portuguese-CORAA-3 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: pt metrics: - name: Test WER type: wer value: 71.67 - name: Test CER type: cer value: 30.64 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: pt metrics: - name: Test WER type: wer value: 68.18 - name: Test CER type: cer value: 28.34 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sv metrics: - name: Test WER type: wer value: 56.76 - name: Test CER type: cer value: 23.70 --- # wav2vec2-xls-r-1b-portuguese-CORAA-3 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on [CORAA dataset](https://github.com/nilc-nlp/CORAA). It achieves the following results on the evaluation set: - Loss: 1.0029 - Wer: 0.6020 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5000 - training_steps: 30000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 2.0169 | 0.21 | 5000 | 1.9582 | 0.9283 | | 1.8561 | 0.42 | 10000 | 1.6144 | 0.8554 | | 1.6823 | 0.63 | 15000 | 1.4165 | 0.7710 | | 1.52 | 0.84 | 20000 | 1.2441 | 0.7289 | | 1.3757 | 1.05 | 25000 | 1.1061 | 0.6491 | | 1.2377 | 1.26 | 30000 | 1.0029 | 0.6020 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3.dev0 - Tokenizers 0.11.0