--- library_name: transformers license: llama3.1 base_model: meta-llama/Llama-3.1-8B tags: - alignment-handbook - trl - sft - generated_from_trainer - trl - sft - generated_from_trainer datasets: - HuggingFaceH4/ultrachat_200k model-index: - name: zephyr-8b-sft-full results: [] --- # zephyr-8b-sft-full This model is a fine-tuned version of [meta-llama/Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B) on the HuggingFaceH4/ultrachat_200k dataset. It achieves the following results on the evaluation set: - Loss: 1.0747 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 16 - total_train_batch_size: 128 - total_eval_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.103 | 0.1052 | 100 | 1.0989 | | 1.0867 | 0.2103 | 200 | 1.0966 | | 1.111 | 0.3155 | 300 | 1.1012 | | 1.0974 | 0.4206 | 400 | 1.0966 | | 1.0898 | 0.5258 | 500 | 1.0920 | | 1.0749 | 0.6309 | 600 | 1.0876 | | 1.0847 | 0.7361 | 700 | 1.0831 | | 1.0749 | 0.8412 | 800 | 1.0778 | | 1.055 | 0.9464 | 900 | 1.0720 | | 0.9184 | 1.0515 | 1000 | 1.0817 | | 0.8955 | 1.1567 | 1100 | 1.0779 | | 0.914 | 1.2618 | 1200 | 1.0758 | | 0.9098 | 1.3670 | 1300 | 1.0698 | | 0.9126 | 1.4721 | 1400 | 1.0667 | | 0.9032 | 1.5773 | 1500 | 1.0604 | | 0.8882 | 1.6824 | 1600 | 1.0546 | | 0.8847 | 1.7876 | 1700 | 1.0490 | | 0.8831 | 1.8927 | 1800 | 1.0455 | | 0.8781 | 1.9979 | 1900 | 1.0413 | | 0.7197 | 2.1030 | 2000 | 1.0822 | | 0.7137 | 2.2082 | 2100 | 1.0841 | | 0.7115 | 2.3134 | 2200 | 1.0800 | | 0.7178 | 2.4185 | 2300 | 1.0789 | | 0.7063 | 2.5237 | 2400 | 1.0777 | | 0.6964 | 2.6288 | 2500 | 1.0755 | | 0.7121 | 2.7340 | 2600 | 1.0742 | | 0.7049 | 2.8391 | 2700 | 1.0748 | | 0.7024 | 2.9443 | 2800 | 1.0747 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.2.2+rocm5.7 - Datasets 3.2.0 - Tokenizers 0.20.3